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Abstract: As numerical weather forecasting advances, there is a growing demand for higher-quality
atmospheric data. Hyperspectral instruments can capture more atmospheric information and increase
vertical resolution, but there has been limited research into retrieval algorithms for obtaining hyper-
spectral microwaves in the future. This study proposes an atmospheric temperature profile detection
algorithm based on Convolutional Neural Networks (CNN) and Local Attention Mechanisms for
local feature extraction, applied to hyperspectral microwave sensors. The study utilizes the method
of information entropy to extract more effective channels in the vicinities of 60 GHz, 118 GHz, and
425 GHz. The algorithm uses the brightness temperature as the input of the network. The algorithm
addresses common issues encountered in conventional networks, such as overfitting, gradient explo-
sion, and gradient vanishing. Additionally, this method isolates the three oxygen-sensitive frequency
bands for modularized local feature extraction training, thereby avoiding abrupt changes in bright-
ness temperature between adjacent frequency bands. More importantly, the algorithm considers
the correlation between multiple channels and information redundancy, focusing on variations in
local information. This enhances the effectiveness of hyperspectral microwave channel information
extraction. We simulated the brightness temperatures of the selected channels through ARTS and
divided them into training, validation, and test sets. The retrieval capability of the proposed method
is validated on a test dataset, achieving a root mean square error of 1.46 K and a mean absolute
error of 1.4 K for temperature profile. Detailed comparisons are also made between this method and
other commonly used networks for atmospheric retrieval. The results demonstrate that the proposed
method significantly improves the accuracy of temperature profile retrieval, particularly in capturing
fine details, and is more adaptable to complex environments. The model also exhibits scalability,
extending from one-dimensional (pressure level) to three-dimensional space. The error for each pres-
sure level is controlled within 0.7 K and the average error is within 0.4 K, demonstrating effectiveness
across different scales with impressive results. The computational efficiency and accuracy have both
been improved when handling a large amount of radiation data.

Keywords: convolutional neural network (CNN); local agent attention (LAA); temperature profile
retrieval; hyperspectral microwave

1. Introduction

Temperature profiles play a crucial role in various fields such as atmospheric stability
analysis, atmospheric boundary layer studies, climate change research, and weather fore-
casting [1–5]. Therefore, research on and the development of instruments for temperature
profile detection, numerical calculations, and parameter retrieval are of great significance
to the advancement of meteorology [6–8].

Hyperspectral observations can provide more atmospheric information. Currently,
infrared hyperspectral technology is relatively mature for remote sensing, while microwave
radiometers typically use a limited number of channels. A. E. Lipton et al. [9] proposed
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a method in 2003 to establish a suitable combination of center frequencies and band-
widths for atmospheric microwave detection. In 2011, W. J. Blackwell et al. [10] introduced
the concept of hyperspectral microwaves, and then, D. Liu [11] and his team developed
ground-based hyperspectral microwave radiometer products, which yielded excellent
results. Subsequently, many scholars have conducted further research. For example,
J.-F. Mahfouf et al. [12] optimized channel selection using the atmospheric database of
the European Centre for Medium-Range Weather Forecasts (ECMWF). F. Aires et al. [13]
investigated the advantages of satellite hyperspectral microwave sensors (HYMS) in invert-
ing atmospheric temperature and humidity profiles under the background of numerical
weather prediction (NWP). Recently, Yanmeng Bi [14] and his colleagues found that sam-
pling thinner absorption lines at higher spectral resolutions not only allows for a higher
vertical resolution but also helps in mitigating radio frequency interference. Therefore,
research into satellite-based hyperspectral microwaves has a promising and clear prospect,
enabling more effective characterization of atmospheric vertical distribution features.

Regarding the retrieval algorithm for secondary data from remote sensing instruments,
several methods have been applied, including the eigenvector method [15], the optimal esti-
mation method [16], the physical iteration method [17], and the more recent popular neural
network method with better non-linear fitting capabilities [18]. Backpropagation neural
network algorithms (BPNN) and their variants are widely used, with some models having
multiple hidden layers to improve model generalization [19,20]. Additionally, some schol-
ars have made improvements to these models by incorporating batch normalization layers
and dropout layers to enhance model robustness [21,22]. Introducing a one-dimensional
CNN model for training on one-dimensional data requires a novel approach. However, a
detailed exploration of this method is lacking [23].

Despite many scholars having explored the prospects of hyperspectral microwave
applications and there being many retrieval methods, no one has delved deep into the
retrieval methods for hyperspectral microwaves. We propose an approach that takes into
consideration the characteristics of hyperspectral data to address this issue. Specifically, we
introduce a method for local feature extraction based on a CNN and attention mechanisms.
This method utilizes convolutional kernels and pooling layers in high-density frequency
channels, coupled with a local attention adaptation. It captures local information (referring
to the peak centers of the weight functions) while suppressing unimportant information
(referring to the mutual interference between channels). The method is validated and
discussed by simulating brightness temperatures from the Seebor Version 5.0 (SeeborV5)
global atmospheric profile data and Global/Regional Assimilation and Prediction System
(GRAPES) database using the Atmospheric Radiative Transfer Simulator (ARTS). Simulta-
neously, the perturbation matrix (Jacobian matrix) was calculated. The information content
method was then employed to extract channels with more information content and the con-
cept of cumulative information was introduced. Furthermore, a detailed comparison with
commonly used deep learning models for atmospheric profile retrieval is performed. The
model also demonstrates adaptability across different scales, with its advantages in local
information extraction making it suitable for temperature retrieval in three-dimensional
space. In the final analysis, the performance of this model is validated using GRAPES data.

2. Data and Preprocessing
2.1. SeeborV5 Atmospheric Profiles Database

The training data were sourced from the Cooperative Institute for Meteorological
Satellite Studies (CIMSS) global atmospheric profile database, SeeborV5. They include
15,704 temperature profiles and other atmospheric profiles under clear sky conditions.
These data are sourced from climate monitoring instruments or sensors such as NOAA-88.
For consistency and ease of subsequent brightness temperature simulation and comparison,
we integrated the data to obtain 97 pressure levels with the same distribution. To enhance
computational speed and validate the effectiveness of the method, we shuffled the dataset
and randomly extracted 4440 profiles of pressure measurements from the Asian region,



Atmosphere 2024, 15, 235 3 of 18

as shown in Figure 1. Subsequently, we partitioned the dataset into training, validation,
and test sets, with proportions of 80%, 15%, and 5%, respectively. However, it should be
noted that these data are not exact. Interpolation methods were applied when extending
the pressure levels, leading to uncertain errors.
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2.2. GRAPES Database

GRAPES (Global/Regional Assimilation and Prediction System) is an atmospheric
numerical model system initiated by the China Meteorological Administration (CMA). The
system aims to provide high-resolution and high-quality atmospheric observational data
for numerical weather and climate predictions. GRAPES integrates global and regional ob-
servational data, employing advanced numerical models and data assimilation techniques
to enhance the simulation and predictive capabilities of atmospheric and Earth-surface
processes. The system encompasses meteorological elements at the global, regional, and
multiple vertical height levels. Through the real-time assimilation of observational data,
the model output aligns more closely with actual observed conditions. In this study, we
selected the 40-layer pressure profiles for the Asian region in July 2022, with a spatial
resolution of 0.5◦ in latitude and longitude. The GRAPES data grid has a high resolution
and requires significant computational power. Only a portion of the data (60–150◦ E) were
selected for network training. Figure 2 depicts the 3D temperature map for 1 July 2022, at
0000 UTC. The dataset comprises a total of 1302 samples for the month of July. The selection
ratios for the training set, validation set, and test set are consistent with the aforementioned
proportions. The vertical resolution is within 1–3 km, with an accuracy of 1 K.
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Figure 2. GRAPS temperature gird data distribution at 60–150◦ E, 10–80◦ N.

2.3. The Simulation of Brightness Temperature Data

In this study, the Atmospheric Radiative Transfer Simulator (ARTS) was used to
simulate a set of brightness temperature values near the oxygen absorption peak. We
imported HITRAN2020 spectral absorption coefficient data into the ARTS transmission
model to calculate Collision-induced absorption (CIA). The calculations involved the use of
ARTS’ unique agenda for line-by-line numerical computations, accessing various coefficient
files. The PWR-98 mode was employed when computing oxygen and water vapor. The
model also allows for sensor simulation, requiring configuration of sensor responses, line
of sight, altitude, azimuth, and other parameters.

Furthermore, ARTS is capable of calculating Jacobian matrices under non-scattering
conditions to describe atmospheric disturbances from relevant molecules [24]. For this
study, we selected a satellite orbit height of 450 km, a nadir viewing angle of 0–180◦,
and operational frequencies near 60 GHz, 118 GHz, and 425 GHz. We referenced the
specifications of other instruments (HYMS, ATMS, and FY-4) to configure the simulation’s
sensor parameters. Table 1 summarizes the main parameters.

Table 1. ARTS simulation hyperspectral band parameter settings.

50–70 GHz 108–128 GHz 415–435 GHz

Bandwith (MHz) 50 50 50
Polarization Vertical Vertical Vertical

Sensor Noise (K) 0.4 0.4–0.5 0.4–0.6
RT Noise (K) 0.2 0.3 0.4

Spatial res (Km) 25 25 25

Before putting brightness temperature data into the model, each data item was nor-
malized using the Z-score method [21]. The expressions are as follows.

std(x) =

√√√√√ n
∑

i=1
[xi − mean(x)]2

n − 1
(1)
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x̃ =
xi − mean(x)

std(x)
(2)

2.4. Calculation of Cumulative Information Content

Currently, many scholars and researchers utilize the concept of information entropy to
optimize the channels of radiometers, aiming to reduce design costs and instrument weight.
In 2000, Rodgers introduced information theory into the optimization of high-spectral-
resolution instruments by calculating the information entropy H(x) for each channel using
the background error covariance, and observing the error covariance and the Jacobian
matrix [25]. Later, J.-F. Mahfouf et al. [12] and others conducted detailed information
content calculations for channels sensitive to temperature and water vapor using ECMWF
data. They concluded that 137 channels, which account for 90% of the information content,
are sufficient to achieve good results. Although this paper does not focus on channel
selection, it still considers the 90% information content as the criterion for channel selection.
Because the data itself carries inherent errors, the selected channels may only be applicable
to this specific dataset. Below is a brief introduction to the information content calculation
method used in this paper. The probability density function of the atmospheric state before
measurement is denoted as P(x), and the probability density function of the atmospheric
state after measurement is denoted as P(x|y). Here, x represents the atmospheric state
variables, and y represents the observation values (brightness temperature). The obtained
information content is calculated as follows:

S = −
∫

p(x) log p(x)dx + p(x|y) log p(x|y)dx (3)

To simplify the calculation, we assume that x follows a Gaussian distribution with a
background error covariance matrix Sa (calculated based on the sample database using

the NMC method). The posterior covariance matrix is denoted as
ˆ
S, and the observation

error covariance matrix is denoted as Sc (set as 0.2 K2 in this study). The estimation of
ˆ
S is

performed using a Bayesian model in its quadratic form.

ˆ
S = Sa − SaKT(KSaKT + Sc)

−1
KSa (4)

where K represents weighting functions. In this paper, the method of channel-by-channel
selection is used, and finally, the single-channel information content is simplified as follows:

H =
1
2
(ln |Sa| − ln |

ˆ
S|) = −1

2
ln(|I − rrT

1 + rrT |) (5)

where r represents:

r = S− 1
2

c kS
1
2
a (6)

In reality, although the weighting function for each channel is fixed, the perturbation of
temperature profiles varies due to different atmospheric conditions influenced by various
molecular absorption characteristics. Consequently, the actual peak values of the weighting
functions can also change. Therefore, it may be necessary to adjust the frequency channels
for different atmospheric conditions.

H̃(x) =
4440

∑
i=1

Hi(x) (7)

In Equation (7), we consider the summation of information entropy associated with
varying Jacobian matrices, and then we obtain cumulative information. (If the data are time-
dependent, this method can also be employed). This is because a geostationary satellite
radiometer can continuously observe atmospheric physical information in a specific area
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over an extended period. The accumulated information content for observing a specific
atmospheric physical feature over a continuous period is considered as a criterion for
channel selection. The retrieved brightness temperature data from the profile forward
modeling are treated as continuous observations from a satellite microwave radiometer.
Figure 3 shows the selected 268 channels. The bandwidth is 50 MHz. Figure 4 shows the
simulated brightness temperature of selected channel for one sample.
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3. Method
3.1. CNN-LAA

This is a parallel structure composed of CNN, LAA, and fully connected layers. Based
on the characteristics of the weight function and the Jacobian perturbation matrix, the
channels in microwave detection should aim to minimize correlation. However, in between
narrow peaks, the brightness temperature contributions should influence each other, lead-
ing to certain correlations. Therefore, we utilized convolution kernels (similar to filters)
to integrate information from adjacent channels, capturing the brightness temperature
variations and local features in a specific frequency band. The pooling layer extracts
important information from local features while suppressing unimportant details, thus
reducing information redundancy. Through the convolution and pooling layers, we extract
the contributions of adjacent channels to the brightness temperature, effectively reducing
redundancy. Therefore, selecting appropriate sizes for the convolution kernels and pooling
layers is crucial. Figure 5 shows the process of convolution kernel computation. Each
convolution operation integrates the brightness temperature values of adjacent frequency
channels to obtain a new value, representing the overall information for that frequency
range. Since the stride is smaller than the width of the kernel, it helps prevent the loss of
information features.
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Figure 5. We selected a sample with smooth brightness temperature variations near 60 GHz as an
example for convolution kernel computation. In reality, channel frequencies are more densely spaced,
but for the purpose of illustration, we chose a bandwidth of 50 MHz, a kernel size of 5, and a stride
of 2. The window represents the region for each computation.

Using the aforementioned method to evaluate information content, we obtained a
total of 268 high-information channels. In Figure 6, our proposed approach is based on the
convolution, comprising two convolution layers, two pooling layers, dropout layers, and
two fully connected layers. The 268 frequency channels are treated as input features in our
method. Deeper networks with smaller convolutional kernels often yield better training
results than shallower networks with larger kernels. The first convolution layer contains
six channels (each channel is the result of applying different convolution kernels), each
with a length of five. We applied the Relu activation function to the output of each layer
(the activation function layer is omitted in the diagram). The length was then reduced by a
pooling layer with a size of 2. The second convolution layer has ten channels, each with
a kernel size of six, and the second pooling layer has a size of 2. The data then enter two
fully connected layers, enhancing the model’s ability to handle non-linear relationships.
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The dropout layer (with a dropout rate of 0.1) is employed to prevent overfitting, limit the
model’s flexibility, and improve robustness.

Atmosphere 2024, 15, 235 8 of 19 
 

 

 
Figure 6. Schematic of the CNN-LAA. Green color represents the input and output data. Blue 
color represents the layers. 

During the model building and training process, we compared the effects of max 
pooling and average pooling layers. Both yielded similar results in terms of inversion. 
However, utilizing the average pooling layer considered the stacking effect of weight 
functions between adjacent channels, resulting in better handling of details. On the other 
hand, using the max pooling layer highlighted the response of sensitive channels but 
weakened the effect of high-spectral channels. However, without using pooling layers, the 
inversion effect degraded into that of a BPNN. With increased network depth, overfitting 
occurred on the validation set, making it unstable. Subsequently, we incorporated a par-
allel Attention mechanism, where the weights of key-sensitive channels were emphasized, 
compensating for the smoothing effect on sensitive channels. Therefore, we chose the av-
erage pooling layer. 

It is important to note that the convolution will be calculated over adjacent data. 
However, the impact of different frequency bands on the retrieval result might not be the 
same, as each frequency band provides different information, which affects the tempera-
ture retrieval at corresponding altitudes differently. Bayesian’s residual network im-
proves classified tasks performance [26]. Inspired by this, we incorporated a Local Agent 
Attention (LAA). In the first linear layer, we incorporate information from the input layer. 
This linear layer has more neurons than the 268 originally present. Consequently, we split 
the data from the 60 GHz, 118 GHz, and 425 GHz frequency channels into three parts, 
filling the adjacent parts with the output from the first dropout layer to match the dimen-
sions of the first linear layer. We then used the 𝛾 and 𝛽 recorded by the Batch Normali-
zation (BN) layers [27] corresponding to each frequency channel as weights and biases 
added to the three parts of the input data. The inclusion of this module resulted in a 15.7% 
improvement in performance. Therefore, adding input information can mitigate infor-
mation crosstalk between different frequency bands. The added input data are: 


i ix xγ β= +  (8) 

We introduced a local attention mechanism and a block model, where the model fo-
cuses on a small portion of the input information in one step. The model structure of LAA 
is illustrated in Figure 7, using brightness temperature data from the 50 GHz to 70 GHz 
frequency range as an example. The local window size of the model is set to 3, with an 

Figure 6. Schematic of the CNN-LAA. Green color represents the input and output data. Blue color
represents the layers.

During the model building and training process, we compared the effects of max
pooling and average pooling layers. Both yielded similar results in terms of inversion.
However, utilizing the average pooling layer considered the stacking effect of weight
functions between adjacent channels, resulting in better handling of details. On the other
hand, using the max pooling layer highlighted the response of sensitive channels but
weakened the effect of high-spectral channels. However, without using pooling layers, the
inversion effect degraded into that of a BPNN. With increased network depth, overfitting
occurred on the validation set, making it unstable. Subsequently, we incorporated a parallel
Attention mechanism, where the weights of key-sensitive channels were emphasized,
compensating for the smoothing effect on sensitive channels. Therefore, we chose the
average pooling layer.

It is important to note that the convolution will be calculated over adjacent data.
However, the impact of different frequency bands on the retrieval result might not be the
same, as each frequency band provides different information, which affects the temperature
retrieval at corresponding altitudes differently. Bayesian’s residual network improves
classified tasks performance [26]. Inspired by this, we incorporated a Local Agent Attention
(LAA). In the first linear layer, we incorporate information from the input layer. This linear
layer has more neurons than the 268 originally present. Consequently, we split the data
from the 60 GHz, 118 GHz, and 425 GHz frequency channels into three parts, filling the
adjacent parts with the output from the first dropout layer to match the dimensions of
the first linear layer. We then used the γ and β recorded by the Batch Normalization (BN)
layers [27] corresponding to each frequency channel as weights and biases added to the
three parts of the input data. The inclusion of this module resulted in a 15.7% improvement
in performance. Therefore, adding input information can mitigate information crosstalk
between different frequency bands. The added input data are:

x̃i = γxi + β (8)
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We introduced a local attention mechanism and a block model, where the model
focuses on a small portion of the input information in one step. The model structure of
LAA is illustrated in Figure 7, using brightness temperature data from the 50 GHz to 70
GHz frequency range as an example. The local window size of the model is set to 3, with an
additional patch added at both ends for padding, ensuring consistency in the dimensions
between the output and input data. To simplify, we will abbreviate the model output as:

O = att(K, A, att(A, Q, V)) (9)

where Q, K, V ∈ RN×d represent the query, key, and value matrices, N is the number of
layers, and d is the dimension. A = Pooling(K) comes from a pooling operation applied to
K. And att(·) denotes Softmax attention operations.

att =
N

∑
j=1

exp(QKT
√

d)

∑N
j=1 exp(QKT

√
d)

V (10)
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Figure 7. Schematic of the LAA layer. (a) illustrates a local attention mechanism, taking the
50–70 GHz frequency range as an example with a sliding window size of 3. (b) depicts the
architecture of the Agent Attention model.

The input data contain brightness temperature values for each channel (possibly
one-dimensional and three-dimensional data, with the three-dimensional data containing
latitude and longitude). Each window slide includes brightness temperature values for
three channels, thereby obtaining an input set.

Qi = Ki = Vi = concat(Ii, Ii+1, Ii+2) (11)

{Q, K, V}60,118,425 = {Qi, Ki, Vi} (12)

where I represents the input data, and i represents the number of channels in three bands.
We introduced a new matrix A between Q and K. Initially, it replaces K, aggregating

all the information from V and Q, undergoing a softmax attention operation. Subsequently,
it serves as the new V returned to K for a second softmax attention operation. This agent
possesses a hyperparameter n to maintain modeling capability and reduce computational
complexity. To compensate for the lack of feature diversity, we incorporated the DWC
module to enhance the model’s feature diversity. However, this is unnecessary for one-
dimensional features.

Õ = att(K, A, att(A, Q, V)) + DWC(V) (13)
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The output of three frequency bands is concatenated with the output of the previous
level. Equation (8) can be transformed into:

x̃i = γÕi + β (14)

This approach selectively attends to a narrow window of the preceding and succeeding
data, addressing three issues:

1. The local attention mechanism reduces parameters, leading to faster training com-
pared to soft attention, while maintaining differentiability in the data. The distinctive
feature of Agent Attention (AA) [28], as compared to other attention mechanisms,
lies in the introduction of the agent matrix, leading to a significant reduction in
computational complexity. The algorithm complexity is O(Nnd).

2. It is easier to train compared to hard attention, achieving a better balance between
computational efficiency and model performance.

3. It is more conducive to parallelization, as each step only needs to focus on a small
local window, contributing to improved training and inference efficiency. During
training, we observed that aligning the attention mechanism with the convolutional
module’s kernel size yielded the best results, highlighting the significance of input
data processing in the training process.

3.2. Other Retrieval Methods

A 1D-CNN (One-Dimensional Convolutional Neural Network) is typically used to
handle sequential data with positional relationships. James [23] and his colleagues devel-
oped a deep neural network for evaluating future satellite-based hyperspectral microwave
sensor designs. They utilized the predictive performance of these networks as an indicator
of the overall suitability of the instrument, addressing the issue of optimal channel selection.
Multiple 1D-CNN modules were applied in the process, providing a beneficial approach
to solving the optimal channel selection problem. The study also found that the model is
particularly well-suited for complex simulated instruments, exhibiting high accuracy.

BPNN (Backpropagation Neural Network) is a neural network algorithm and currently
one of the most common methods used in retrieval algorithms. It can learn and continuously
adjusts the model’s parameters with historical data, providing good non-linear fitting
capabilities. X. Yan et al. [21] applied BPNN to the retrieval of temperature and relative
humidity from ground-based microwave radiometers and made different improvements
to the model. Similarly, many scholars used BPNN in their research on hyperspectral
microwave channel selection. Comparing it with the method proposed in this paper would
be meaningful.

XGBoost (eXtreme Gradient Boosting) is an ensemble learning algorithm that can be
considered as a further optimization and extension of decision trees and random forests.
It inherits the structure of decision trees and the ensemble algorithm ideas from random
forests. In order to improve the accuracy of air quality predictions, Angel Anwagise [29] and
his team developed a predictive model based on the XGBoost algorithm. They conducted
experiments using a dataset collected from Kaggle. During the model’s development, they
took into account the levels of pollutants such as lead, sulfur dioxide, and nitrogen dioxide,
treating these data as a time series, and used them to train the model for predicting and
evaluating air quality index.

SVM (Support Vector Machine) holds a crucial position in machine learning and is
a powerful and versatile model, particularly representative in regression algorithms. It
is frequently used in meteorology for inverting atmospheric parameters and classifying
targets. For instance, A. Gong et al. [30] successfully employed SVM to perform non-
linear retrieval of near-surface air temperature using satellite remote sensing data and
other information.
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4. Results
4.1. Comparison of Retrieval Performance with Other Methods

To validate the performance of the proposed CNN-LAA model in this paper, we
compared it with other commonly used methods for atmospheric profile retrieval and
meteorological data monitoring. Table 2 provides a detailed comparison of the root mean
square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2)
obtained from each method’s retrievals. We adapted the methods described in the literature
above for use in an improved model tailored for satellite-based hyperspectral microwave
applications. For the temperature profile retrieval, the CNN-LAA method achieved the
best results with RMSE and MAE of 1.46 K and 1.40 K, respectively. It exhibited good fitting
performance. Following closely was the BPNN method.

Table 2. Comparison of retrieval performance with different methods.

Method RMSE MAE R2

CNN-LAA 1.46 1.40 0.97
1D-CNN 1.69 1.63 0.94
Attention 1.71 1.69 0.94

BPNN 1.68 1.58 0.95
XGBoost 1.99 1.82 0.93

SVM 2.08 1.68 0.92

The RMSE and MAE used here refers to the overall root mean square error as fol-
lows [31].

RMSE =

√√√√√ n
∑

i=1
RMSE2

i

n
(15)

MAE =

n
∑

i=1
MAEi

n
(16)

In terms of temperature retrieval, there is not a significant difference in accuracy be-
tween BPNN and CNN methods. However, it is worth noting that the CNN-LAA method
performs better in capturing details. As shown in Figure 8a (where the temperature varia-
tion is smooth), there is an inversion layer (troposphere) at around 12 km (approximately
15,000 pa), and after breaking through the tropopause, the temperature gradually increases,
entering the stratosphere, and then the temperature gradually decreases after crossing the
stratopause. In the upper atmosphere, the electromagnetic energy of particles’ absorption
and radiation experiences less atmospheric attenuation, contributing significantly to the
radiance temperature of satellite-based microwave radiometers (the magnitude of contri-
bution corresponds to the peak of the weighting function in frequency channels). Hence,
at this altitude, frequency channels with strong sensitivity to oxygen molecules contain a
substantial amount of information. The CNN’s convolutional layers and pooling layers can
extract local features effectively. When temperature fluctuations occur, traditional BPNN’s
retrieval results may not be sensitive to temperature changes, leading to the representation
of only the overall trend. In contrast, CNN-LAA can capture variations in brightness
temperature values in certain sensitive and narrow spectral channels, which effectively im-
proves the model’s generalization ability. Most temperature profiles follow a smooth curve
depicting the variation of temperature with altitude. Traditional deep learning methods
can achieve satisfactory retrieval results based on such profiles. We selected a temperature
profile situated near the subpolar low-pressure zone. Apart from the troposphere, both
the stratosphere and mesosphere exhibit numerous small peaks. Details (retrieval bias
of temperature) are shown in Figure 8b. We can see that, in an unstable atmospheric
environment, the CNN-LAA method exhibits better robustness, which is conducive to
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understanding atmospheric patterns and improving meteorological forecasting. The error
for each layer remains near the 0 K line, with the majority staying within 2 K.
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Figure 8. (a) Comparison of temperature profiles generated by CNN1d, BPNN, XGBoost, and SVM
retrieval methods for a special sample (63◦68′ E,70◦54′ N) in SeeborV5. In this sample, the data exhibit
significant fluctuations or oscillations, indicating high volatility. (b) Retrieval bias of temperature by
different methods from special sample in (a).

4.2. Bias of Temperature with Pressure

Each sample has 97 levels, and Figure 9 presents a comparison of temperature devia-
tions in temperature profiles generated by six different deep learning retrieval methods at
various vertical pressures, with a plot for every five layers. In the pressure layers above
1100 Pa, all methods exhibit relatively small temperature deviations. However, the retrieval
performance in the high-altitude atmosphere is generally unsatisfactory due to two main
reasons: firstly, there are very few frequency channels with weight function peaks located
in the high-altitude atmosphere; secondly, the global atmospheric profile database under
clear-sky conditions has a wide distribution, with significant variations in temperature
profiles across different times, terrains, and climatic conditions, leading to “jumps” and
uncertainties in the high-altitude atmospheric data. These two factors make it challenging
for the information from the high-altitude atmosphere to be reflected in the brightness
temperature values. It can be observed that the CNN still maintained a relatively high
level of accuracy in such cases, which also provides new insights for the retrieval of upper
atmospheric information. The results show that the CNN-LAA method performs well in
the range of 10 hPa to 70 hPa, with errors controlled at around 1 K. It demonstrates good
stability in the overall profile retrieval performance. Following closely are the 1D-CNN
and Attention networks, with similar performances, possibly due to their similar model
architectures, both possessing characteristics of local feature extraction and computation.
BPNN also performs well at a mid-level pressure.

From the image, it can be observed that the retrieval performance of SVM and XG-
BOOST methods seems to be relatively poor. In the atmospheric layers with higher and
lower pressures, the retrieval results are not ideal. This aligns with the physical interpre-
tation of frequency channel weighting functions, as microwave radiometers on satellites
mainly receive radiation from the middle atmospheric layer, where the gas molecule content
is higher, and the radiation capability is limited. The radiation from the lower atmospheric
layer also undergoes losses during the path, impacting the retrieval results.

Regarding the retrieval performance in the middle atmospheric layer, the CNN-LAA,
Attention, 1D-CNN, and BPNN methods show good results, with temperature bias primar-
ily concentrated within ±1 K, while XGBoost and SVM exhibit relatively larger fluctuations.
For the atmospheric top and bottom layers, CNN-LAA achieves the best performance.
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work makes it suitable for more complex relationship models, enhancing its generaliza-
tion capabilities. 

In the case of three-dimensional space, the model fully utilizes the advantages of con-
volutional networks in handling high-dimensional data. Simultaneously, it leverages the 
local attention mechanism to process local data effectively. The atmospheric temperature 
in the training sample dataset is based on GRAPES reanalysis data, divided into 40 layers 
vertically from 1000 hPa to 0.01 hPa. Taking the data from 2 July 2022, 0000 UTC as an 
example, the size of a single atmospheric temperature profile sample is 360 × 360 × 40 
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Figure 9. The figure displays the temperature retrieval biases on the test set. Subfigures (a–f) shows
the retrieval bias of temperature (the retrieval temperature minus testdata temperature) generated by
six different deep learning retrieval methods. The yellow solid line represents the median, while the
blue dashed line represents the mean.

4.3. The Retrieval Performance of CNN-LAA in Three-Dimensional Space

The three-dimensional CNN-LAA is capable of inverting observed brightness tem-
peratures within a certain spatial range. It takes into account the spatial continuity and
correlation of weather systems and atmospheric parameter distributions. The key difference
from the one-dimensional CNN-LAA lies in the adjustment of the convolutional layer’s
depth, which is increased to five convolutional layers. This deepening of the network makes
it suitable for more complex relationship models, enhancing its generalization capabilities.
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In the case of three-dimensional space, the model fully utilizes the advantages of
convolutional networks in handling high-dimensional data. Simultaneously, it lever-
ages the local attention mechanism to process local data effectively. The atmospheric
temperature in the training sample dataset is based on GRAPES reanalysis data, di-
vided into 40 layers vertically from 1000 hPa to 0.01 hPa. Taking the data from 2 July
2022, 0000 UTC as an example, the size of a single atmospheric temperature profile
sample is 360 × 360 × 40 (Figure 10, using 1000 hPa temperature as an example). Due
to the large data size of a single sample, exceeding the physical memory of computers,
each sample is processed into 144 smaller samples of size 30 × 30 × 40. The brightness
temperature images of frequency channels should also be segmented into the same
size, with each sample having dimensions of 30 × 30 × 268.

Atmosphere 2024, 15, 235 14 of 19 
 

 

local attention mechanism to process local data effectively. The atmospheric temperature 
in the training sample dataset is based on GRAPES reanalysis data, divided into 40 layers 
vertically from 1000 hPa to 0.01 hPa. Taking the data from 2 July 2022, 0000 UTC as an 
example, the size of a single atmospheric temperature profile sample is 360 × 360 × 40 
(Figure 10, using 1000 hPa temperature as an example). Due to the large data size of a 
single sample, exceeding the physical memory of computers, each sample is processed 
into 144 smaller samples of size 30 × 30 × 40. The brightness temperature images of fre-
quency channels should also be segmented into the same size, with each sample having 
dimensions of 30 × 30 × 268. 

 
Figure 10. (a) depicts the gridded temperature over the Asian region at 1000 hPa, segmented into 
144, 30×30 images. Meanwhile, in figure (b), the brightness temperature image of the 58.50 GHz 
frequency channel is presented, also divided into 144, 30 × 30 images. 

Figure 11 illustrates a scatter plot comparing the retrieved temperatures by the CNN-
LAA with the test sample temperatures for the region in July 2022. The correlation coeffi-
cient between the CNN-LAA retrieved temperatures and the test sample temperatures is 
0.9958, indicating a high level of correlation. The retrieved temperatures show an overall 
bias of 0.42 K compared to the test samples, with an RMSE averaged over the entire layer 
at 0.4 K. The temperature retrieved by the inversion shows a distribution on both sides of 
the 0.4 K line, roughly corresponding to the pressure range from 1000 hPa to 10 hPa. 
Around the altitudes of 200 hPa and 70 hPa, where the height of the atmospheric layers is 
concentrated, the fluctuation of the temperature profile retrieved by the inversion remains 
relatively small. The highest accuracy in temperature retrieval is observed in the middle 
layers of the troposphere (7–20 hPa), with temperature root mean square error (RMSE) 
hovering around 0.2 K. The difference between MAE and RMSE is within 0.1 K. 

Figure 10. (a) depicts the gridded temperature over the Asian region at 1000 hPa, segmented into
144, 30 × 30 images. Meanwhile, in figure (b), the brightness temperature image of the 58.50 GHz
frequency channel is presented, also divided into 144, 30 × 30 images.

Figure 11 illustrates a scatter plot comparing the retrieved temperatures by the CNN-
LAA with the test sample temperatures for the region in July 2022. The correlation coeffi-
cient between the CNN-LAA retrieved temperatures and the test sample temperatures is
0.9958, indicating a high level of correlation. The retrieved temperatures show an overall
bias of 0.42 K compared to the test samples, with an RMSE averaged over the entire layer
at 0.4 K. The temperature retrieved by the inversion shows a distribution on both sides
of the 0.4 K line, roughly corresponding to the pressure range from 1000 hPa to 10 hPa.
Around the altitudes of 200 hPa and 70 hPa, where the height of the atmospheric layers is
concentrated, the fluctuation of the temperature profile retrieved by the inversion remains
relatively small. The highest accuracy in temperature retrieval is observed in the middle
layers of the troposphere (7–20 hPa), with temperature root mean square error (RMSE)
hovering around 0.2 K. The difference between MAE and RMSE is within 0.1 K.
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5. Discussion

With the advancement of computers and improved instrument precision, we now
have access to abundant and highly accurate historical data, providing strong support
for neural network models in atmospheric profile retrieval. In the context of tempera-
ture profile retrieval, researchers often used single-layer or multi-layer feedback neural
networks. Neural network methods primarily rely on training and adjusting network
parameters to perform nonlinear function fitting. However, attention needs to be paid to
the feature distribution of training samples, as well as the structures of input and output
data, to select an appropriate model. The CNN-LAA method proposed in this paper differs
from traditional algorithms as it considers the features of both inputs and outputs. Hy-
perspectral microwave data possess multiple frequency channels, which are constructed
by establishing a large number of dense and interval-weighted functions, some of which
may influence neighboring channels. The contribution of brightness temperature values
is not only determined by the peak value of the current frequency weight function but
also affected by adjacent frequencies. The convolutional layer can capture the features of
neighboring channels, while the pooling layer aggregates local regions and emphasizes the
most significant features of the previous layer’s output, suppressing some less important
details (especially those with high correlations). These characteristics are not possessed by
a traditional BPNN and its derivatives, making the CNN and Attention more suitable for
temperature profile retrieval with hyperspectral data.

A large number of channels can enhance vertical resolution but also lead to significant
overhead. As shown in Figure 12, selecting channels with 90% of the information content
did not significantly improve the inversion performance. There was a slight improvement
in performance in the intermediate layers, but the resource consumption was substantial.
Therefore, we also adjusted the model’s structure, increasing the parameter count 16 times.
Therefore, it is necessary to simplify channels using the information entropy method.

Currently, the microwave sensor has fewer channels but has achieved good results.
Some researchers believe that the data generated by hyperspectral sensors are too large,
leading to a burden on retrieval calculations. However, Yanmeng Bi [14] and his colleagues
have verified that microwave satellites have many potential advantages for hyperspectral
applications. For example, they can mitigate radio frequency interference (RFI), improve
the certainty of inference for line strength and width, and facilitate inversion and modeling.
In Figure 13, it can be observed that we compared a CNN network with five convolutional
layers to CNN-LAA. Within the same training time, CNN-LAA demonstrated a faster
training speed, reaching a smaller loss value when stabilized. This method is suitable for
addressing the issue of high computational resource consumption due to the large data
volume generated by hyperspectral sensors.
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Furthermore, this method is beneficial in practical engineering applications for re-
ducing the influence of noise on the model, improving model robustness, and enhancing
generalization capability. After the convolution and attention operations, the model also
incorporates two fully connected layers and dropout layers to enhance the nonlinear fitting
ability and stability. Our paper utilizes the Adaptive Moment Estimation (Adam) opti-
mization algorithm [32], which combines the ideas of momentum gradient descent and
RMSprop. Adam can adaptively adjust the learning rates for each hyperparameter and
introduces a momentum term for smooth parameter updates.

6. Conclusions

This study proposes a CNN-LAA algorithm for hyperspectral microwave temperature
retrieval, which not only improves accuracy but also performs better in handling details.
The article first optimizes the hyperspectral microwave channels based on information con-
tent, selecting 268 channels containing 90% of the information distributed around 60 GHz,
118 GHz, and 425 GHz. Then, the dataset is input into ARTS to simulate the correspond-
ing brightness temperatures. Through the validation of the test set, the method achieves
excellent retrieval results, with an RMSE of 1.46 K and an MAE of 1.40 K for temperature
retrieval, outperforming the 1D-CNN, Attention, BPNN, XGBoost, and SVM methods at
their best levels. In terms of handling details, CNN-LAA outperforms other methods,
particularly demonstrating better robustness in the middle and upper atmospheric layers.
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This study demonstrates the effectiveness of the CNN-LAA approach for hyperspectral
microwave temperature retrieval, which can capture subtle changes in atmospheric condi-
tions, aiding in the understanding of atmospheric structures and enhancing the accuracy of
weather forecasting. While improving the retrieval accuracy, this method can be extended
to three-dimensional space and still perform well in complex scenarios, with errors con-
trolled within 0.7 K, providing a new reference method for research on and the design
of satellite-based hyperspectral microwave radiometers. In more intricate environments
and simulated instrument scenarios, the model exhibits a more notable enhancement in
accuracy, providing valuable assistance for future satellite multi-channel selection. This
paper only discusses the application of this method in retrieving temperature profiles
under clear-sky conditions, without considering cloud scattering effects, which can have a
significant impact on the profiles. And we did not evaluate the impact of data uncertainty
on the performance of the retrieval method. The uncertainty in the dataset might affect
the selection of frequency channels. Numerical simulations could be conducted by adding
random noise to each channel to obtain an appropriate channel set. These could be topics
for future research.
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