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Abstract: The model simulation focuses on an extreme rainfall event that triggered a flood hazard in
the Lake Victoria basin region of East Africa from June 24th to 26th, 2022. This study investigates
the impacts of its urban canopy on the extreme rainfall events over the Lake Victoria basin in East
Africa, employing the Weather Research and Forecasting (WRF) model at a convective-permitting
resolution. The rapid urbanization of the region has given rise to an urban canopy, which has
notable effects on local weather patterns, including the intensity and distribution of rainfall. The
model incorporates high-resolution land use and urban canopy parameters to accurately capture
the influences of urbanization on local weather patterns. This research comprises three sets of
experiments, two with urban areas and one without, using the WRF model; the experiments focus
on three days of an extreme rainfall event in the Lake Victoria basin. Satellite-based precipitation
products and reanalysis datasets are employed for a synoptic analysis and model evaluation. The
results demonstrate the model’s effectiveness in capturing meteorological variables during an extreme
event compared to observed data. The synoptic patterns reveal that, during the extreme event, the
Mascarene and St. Helena influenced rainfall conditions over the Lake Victoria Basin by directing
moist air toward the northwest. This led to increased moisture convergence from the urban–rural
interface toward urban areas, enhancing convection and processes that result in extreme rainfall.
Moreover, this study indicates that the urban canopy, specifically the building effect parameterization,
significantly amplifies the intensity and duration of rainfall in the urban areas of the region. This
research also indicates a general increase in air temperature, relative humidity, latent heat flux, and
surface sensible heat flux due to the urban canopy. These findings highlight the substantial influence
of urbanization on rainfall patterns in the urban environment.

Keywords: extreme rainfall; urban canopy; sensitivity test; WRF model

1. Introduction

The Lake Victoria basin (LVB) and its surrounding areas face susceptibility to extreme
events, exemplified by destructive flash floods resulting from intense rainfall in mountain-
ous regions [1,2]. In recent times, there has been rapid progress in the development of
the urban canopy model (UCM) in conjunction with mesoscale models. [3] conducted a
comprehensive review outlining the evolution and status of urban canopy schemes within
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the WRF model. This encompasses bulk urban parameterization (BULK) [4], a single-layer
urban canopy model (SLUCM) [5], a multilayer urban canopy model (BEP) [6], and a
simple building energy model (BEM) [7] linked to BEP. The WRF model, coupled with
UCM (WRF/UCM), has been extensively utilized to explore the impacts of urbanization
processes, such as the urban heat island effect and urban air quality.

Cities not only alter the permeability of surfaces and impact the extent of storms but
also have the potential to amplify short-duration (sub-daily) extreme rainfall intensities [8,9],
which are primary triggers for urban pluvial floods [10]. Several factors, including surface
roughness, the presence of tall buildings, urban heat islands (UHI), heightened sensible
heat, and aerosol concentration, can contribute to the intensification of extreme rainfall
in urban areas [11,12]. The increase in surface roughness within a city compared to its
surroundings is linked to the deceleration of air masses moving toward the city, leading to
an augmented surface moisture convergence that elevates the rainfall intensity [13].

The urban environment plays a pivotal role in shaping meteorological conditions and
radiation fluxes, especially during extreme weather events [14]. The impact of urbanization
on weather patterns and energy balance has attracted heightened attention due to its far-
reaching implications for public health, urban planning, and climate change. In the specific
context of the Lake Victoria basin (LVB), an area marked by rapid urban expansion and
susceptibility to intense rainfall events, it is of the utmost importance to understand the
influence of an urban canopy on meteorological parameters [15–18].

An urban canopy, consisting of buildings, roads, vegetation, and other structures, pos-
sesses the capacity to influence local weather conditions via various mechanisms. Urban
areas commonly display elevated temperatures in comparison to the surrounding rural
areas, a phenomenon known as the urban heat island effect [19–21]. This temperature
differential is attributed to factors such as diminished vegetation cover, expanded imper-
vious surfaces, and the generation of anthropogenic heat. Consequently, extreme rainfall
events in urbanized areas may interact with evolving meteorological conditions, potentially
resulting in heightened rainfall intensity and modified storm dynamics.

Furthermore, the urban canopy can shape the formation and behavior of clouds [14,22].
The presence of tall buildings can serve as impediments to the vertical movement of air
masses, giving rise to localized updrafts and downdrafts. These vertical motions contribute
to enhanced cloud formation and precipitation processes, potentially leading to more
pronounced rainfall in urban areas. A crucial facet of the urban canopy’s impact on
meteorology is its influence on radiation fluxes. Vegetation plays a pivotal role in regulating
the energy exchange between the land surface and the atmosphere through processes such
as evapotranspiration, solar radiation absorption, and reflection. As urban areas undergo
a reduction in vegetation cover and an increase in artificial surfaces, significant changes
occur in the energy balance and radiation budget. These alterations can give rise to shifts in
local temperature patterns, atmospheric stability, and the formation and intensity of rainfall
systems [9,23].

The LVB, which includes rapidly growing urban centers such as Kampala, Nairobi,
and Kisumu, is undergoing swift urbanization, population expansion, and changes in land
use [24,25]. These dynamics have the potential to exacerbate the consequences of extreme
rainfall events, leading to heightened flood risks, damage to infrastructure, and threats to
human lives and livelihoods. Consequently, it is imperative to conduct a comprehensive
investigation into how the urban canopy in this region interacts with meteorological
conditions during extreme rainfall events.

Gaining a nuanced understanding of the intricate relationship between urbanization
and meteorology in the LVB can offer valuable insight for urban planners, policymakers,
and disaster management agencies. By pinpointing the specific mechanisms through which
the urban canopy influences extreme rainfall, strategies can be formulated to mitigate the
adverse impacts of such events and bolster urban resilience. Furthermore, this research
contributes to a broader understanding of the urban environment’s role in local and regional



Atmosphere 2024, 15, 226 3 of 21

climate dynamics, facilitating efforts to address the challenges posed by urbanization and
climate change.

This study aims to examine the impact of the urban canopy on meteorological con-
ditions during an extreme rainfall event in the Lake Victoria basin (LVB). We set out to
evaluate the spatiotemporal variations in rainfall characteristics and other meteorologi-
cal parameters across urban and rural areas, employing a combination of observational
data, numerical modeling, and statistical analyses. The outcomes of this investigation
contribute to a more holistic understanding of the interaction between urban environments
and the atmosphere, offering valuable insight for sustainable urban planning and climate
resilience in the LVB and analogous regions experiencing rapid urbanization and extreme
weather events.

The remainder of the paper is organized as follows: Section 2 provides details on
the study area, data, and methodology employed, while Section 3 examines the findings.
Finally, Section 4 outlines the primary conclusions derived from the study.

2. Materials and Methods
2.1. Study Area and Selection of the Heavy Rainfall Event

The basin encompasses portions of Burundi, Rwanda, Kenya, Tanzania, and Uganda,
as depicted in Figure 1. Positioned within a continental sag between the two arms of the
Great Rift Valley system, the basin is flanked by elevated mountain ranges to the east and
west, including Kilimanjaro, Kenya, and Rwenzori. The altitude of the lake surface is ap-
proximately 1135 m above the mean sea level, while the basin itself comprises a succession
of stepped plateaus with an average elevation of 2700 m, rising to 4000 m or more in the
highland areas [26]. The land use and land cover in the LVB have undergone significant
transformations, primarily due to human activities resulting in the conversion of forests,
woodlands, grasslands, and wetlands into either agricultural land or settlements [27].
Figure 1 depicts the changes of land use/land cover up to the year 2022, utilizing Landsat
multi-temporal satellite images. The Lake Victoria region stands out as one of the most
densely populated areas in East Africa, boasting a population exceeding 30 million [5,28,29].

Atmosphere 2024, 15, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. The simulated domain is shown on the right within the location of the Lake Victoria basin, 
showing land-use-category data from WRF model simulations for the year 2022. 

The definition of severe rainfall used in this study is taken from the World Meteoro-
logical Organization (WMO)’s Severe Weather Forecasting Programme (SWFP). Accord-
ing to SWFP, the threshold for defining severe rainfall is set at 50 mm [30]. Table 1 presents 
rainfall data, specifically noting instances of more than 20 mm recorded in the Lake Vic-
toria basin between the 24th and 26th of April 2022. A 20 mm threshold is chosen on the 
basis that it becomes extreme if experienced persistently in the region for more than two 
consecutive days (https://community.wmo.int/en/activity-areas/severe-weather-forecast-
ing-programme-swfp). Accessed on 22 March 2022 

Table 1. The rainfall reported on the 24th, 25th, and 26th of April around the Lake Victoria basin 
with levels above 20 mm. 

Date Stations Rainfall (mm) 

24 April 2022 

Bukoba (Tanzania) 74.6 
Kisumu Met (Kenya) 48.7 
Kampala (Uganda) 29.5 
Entebbe (Uganda) 29.3 

Nyahururu (Kenya) 28 
Narok Met. (Kenya) 25.9 

Nyakibanda (Rwanda) 25.3 
Rubona (Rwanda) 21.5 

25 April 2022 Shinyanga (Tanzania) 31.3 

26 April 2022 

Ukiriguru Met. (Tanzania) 137 
Nyakibanda (Rwanda) 62.1 

Kibeho (Rwanda) 45.7 
Bukoba (Tanzania) 40.3 

Jinja (Uganda) 35.2 

Figure 1. The simulated domain is shown on the right within the location of the Lake Victoria basin,
showing land-use-category data from WRF model simulations for the year 2022.
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The definition of severe rainfall used in this study is taken from the World Meteoro-
logical Organization (WMO)’s Severe Weather Forecasting Programme (SWFP). According
to SWFP, the threshold for defining severe rainfall is set at 50 mm [30]. Table 1 presents
rainfall data, specifically noting instances of more than 20 mm recorded in the Lake Victoria
basin between the 24th and 26th of April 2022. A 20 mm threshold is chosen on the basis
that it becomes extreme if experienced persistently in the region for more than two consec-
utive days (https://community.wmo.int/en/activity-areas/severe-weather-forecasting-
programme-swfp, accessed on 22 March 2022).

Table 1. The rainfall reported on the 24th, 25th, and 26th of April around the Lake Victoria basin with
levels above 20 mm.

Date Stations Rainfall (mm)

24 April 2022

Bukoba (Tanzania) 74.6

Kisumu Met (Kenya) 48.7

Kampala (Uganda) 29.5

Entebbe (Uganda) 29.3

Nyahururu (Kenya) 28

Narok Met. (Kenya) 25.9

Nyakibanda (Rwanda) 25.3

Rubona (Rwanda) 21.5

25 April 2022 Shinyanga (Tanzania) 31.3

26 April 2022

Ukiriguru Met. (Tanzania) 137

Nyakibanda (Rwanda) 62.1

Kibeho (Rwanda) 45.7

Bukoba (Tanzania) 40.3

Jinja (Uganda) 35.2

Mwanza (Tanzania) 35.1

Kinigi (Rwanda) 31.4

Byumba (Rwanda) 30

Kigali (Rwanda) 24.4

Nyagahanga (Rwanda) 23.8

2.2. The Interactions between Lake Victoria and the Atmosphere

The storms in this region are caused by circulation in the atmosphere above Lake
Victoria. Daytime breezes flow outward from the relatively cool surface of the lake toward
the sunbaked land. At night, the pattern reverses, and land breezes converge over the
water. Combined with evaporation from the vast lake and warm-air convection into the
atmosphere, this results in thunderstorms [31].

The lake’s large surface area and relatively warm temperatures can lead to the evapo-
ration of water into the atmosphere. This process contributes to the moisture content in the
air, which can then lead to precipitation in the form of rain or storms in the surrounding
region [32].

Additionally, the presence of Lake Victoria also influences local wind patterns. The
temperature difference between the lake and the surrounding land can create a temperature
gradient, leading to the formation of breezes or winds that can affect the local climate and
weather patterns [33].

The lake also plays a role in regulating the temperature of the surrounding area.
During the day, the water in the lake absorbs heat from the sun, helping to moderate the

https://community.wmo.int/en/activity-areas/severe-weather-forecasting-programme-swfp
https://community.wmo.int/en/activity-areas/severe-weather-forecasting-programme-swfp
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temperature of the air above it. At night, the lake releases this heat, keeping the surrounding
area warmer than it would be otherwise [34].

In summary, the interactions between Lake Victoria and the atmosphere are complex
and dynamic, with the lake exerting a significant influence on the local climate and weather
patterns in the region.

2.3. Model Description and Experiments

The Weather Research and Forecasting model, version 4.4.2, with a convective-permitting
resolution of 3 km, was employed to simulate the impact of the urban canopy on meteo-
rology during an extreme rainfall event in the LVB [35]. The model runs were conducted
using a modified version of WRF, specifically version 4.4.2. The WRF model is a non-
hydrostatic compressible model that utilizes a mass coordinate system, and it is widely
used as a mesoscale meteorological model. The version utilized in this study incorporates
an updated urban Local Climate Zone (LCZ) numbering system, ranging from 51 to 61 in
parameter tables, to prevent potential overlaps with existing land-type data.

The simulation period commenced on 23 April 2022 at 00:00 UTC and lasted until
26 April 2022, 00:00 UTC. To ensure the model’s stability, the first day (24 h) of the output
was designated as spin-up time, with the subsequent 96 h considered for analysis. The
initial and boundary conditions for the simulations were derived from the European Centre
for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis datasets, obtained from
the NCAR/UCAR website (rda.ucar.edu); these datasets feature a horizontal resolution
of 0.25◦.

Three experiments were conducted during this study. The first experiment involved
replacing urban areas with the dominant surrounding vegetation category (referred to as
non-urban physics or non-urban). The other two experiments served as control simulations
and utilized the default land use of two distinct urban physics schemes, which included
urban areas. The model was executed with three nested domains as shown in Table 2.,
featuring horizontal resolutions of 27 km, 9 km, and 3 km, and encompassing 50 vertical
levels from the surface to the 50 hPa level. The investigation into the effects of the urban
canopy was carried out by analyzing the differences between the control simulations and
the non-urban simulation.

Table 2. Model configuration and scheme setting.

D01 D02 D03

Model WRF-ARW V.4.4.2

Grid spacing (km) 27 9 3

Radiation RRTMG

Land surface model Noah-LSM +single-layer UCM+ building effect parameterization (BEP)

PBL BouLac boundary
layer scheme

Cumulus
parameterization Grell 3D (5) Grell 3D (5) None

The control simulations involved the urban canopy model (UCM) three-category
option with surface effects for roofs, walls, and streets. This included an experiment
with a green roof option and utilized the PBL Yonsei University scheme: a non-local-K
scheme with an explicit entrainment layer and a parabolic K profile in the unstable mixed
layer (bl_pbl_physics = 1). Additionally, it incorporated building effect parameterization
(BEP) with the PBL scheme BouLac PBL (8), i.e., Bougeault–Lacarrère PBL, which was
specifically designed for use with the BEPurban model [36]. This scheme included a TKE
prediction option.

Several physical parameterizations were switched on for this study, including
the following:
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1. The Noah-land-surface model [37], which was used to represent land-surface processes.
2. The rapid radiative transfer model (RRTMG) scheme for long- and short-wave

radiation [38]. A radiative transfer model simulates the interaction of radiation with
the atmosphere.

3. A modified MM5 surface layer scheme [39], which was employed for surface
layer processes.

4. The BouLac boundary layer scheme [36], which was used to model boundary
layer processes.

5. The Stony Brook University (Y. Lin) scheme [40]. A five-class scheme with riming
intensity, which accounts for mixed-phase processes in microphysics.

Additionally, the cumulus convection scheme used in this study was the Grell 3D
cumulus scheme [41] for domains d01 and d02. However, it was not used for the finest
domain (d03), since the model can explicitly solve convection at such a fine resolution
(3 km).

Figure 2 shows the systematic approach or set of procedures used to conduct research,
in our case it involves a combination of data analysis, numerical modeling, and scientific
interpretation to assess the effects of the urban canopy on extreme rainfall and other weather
parameters using the WRF model.
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2.4. Observational Data

The satellite-based precipitation data utilized in this study are derived using the
Climate Prediction Centre (CPC)’s morphing technique (CMORPH), which comprises
global high-resolution satellite precipitation estimates [42]. The dataset has undergone
bias correction and reprocessing. Initially, global precipitation data taken solely from
satellites are integrated, drawing from all available passive microwave measurements
aboard low-Earth orbiting platforms. To rectify biases, these integrated precipitation data
are compared with the CPC daily gauge analysis over land and the Global Precipitation
Climatology Project (GPCP) analyses conducted over the ocean [43]. The CMORPH data
are then reprocessed on a global grid with a spacing of 8 km × 8 km and a temporal
interval of 30 min, covering the period from January 1998 to the present. This dataset
has previously been employed in studies focusing on the rainfall climate in cities and
in numerical modeling evaluations [44–46]. In specific instances related to Africa, the
daily data are downscaled to a spatial resolution of 0.25◦ × 0.25◦. This reduction in the
spatial resolution is undertaken to facilitate and enhance support for land-surface modeling
activities. Downscaling allows for a more detailed representation of geographical features
and local conditions, providing valuable input for land-surface models operating at a
finer scale.

ERA5, on the other hand, constitutes the fifth-generation ECMWF reanalysis, pro-
viding global climate and weather data for the past eight decades [47,48]. The data are
available from 1940 onward, replacing the ERA-Interim reanalysis. ERA5 offers hourly
estimates for various atmospheric, ocean-wave, and land-surface quantities.

2.5. Statistical Metrics for Model Evaluation

The predominant approach for assessing the model involves employing statistical
analysis with observed data. While the evaluation process aligns with validation method-
ologies in several respects, its primary objective is to gauge the model’s capacity to replicate
observed phenomena. The utilized statistical indices are shown in Appendix A, and the
contingency table was formulated as shown in Table 3. Below.

Table 3. Contingency table derived from WRF rain availability and observations.

Contingency Table

OBS YES OBS NO

WRF/RAIN YES Hits (HH) False alarms (FAs) Total events forecast

WRF/RAIN NO Missed events (MMs) Correct negatives
(CNs)

Total non-events
forecast

Total events observed Total non-events
observed Sample size

2.6. Calculation of the Moisture-Flux Convergence

Regarding the vertically integrated moisture-flux convergence (VIMFC), we define
VIMFC as the horizontal moisture-flux convergence integrated between 1000 hPa and
500 hPa to measure the lower tropospheric forced lifting, as most water vapor exists below
500 hPa, i.e., as shown in Appendix A.

2.7. Observation Minus Reanalysis Method

The “observation minus reanalysis” (OMR) method is a valuable technique employed
in meteorology and climate science to evaluate the precision and reliability of atmospheric
observations, particularly within the realms of climate research and numerical weather
predictions [49,50]. The widely used OMR method serves to explore the influence of
urbanization and land-use changes on climate dynamics [51].
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In the context of this study, simulations without urban physics (non-urban) were
utilized as the control simulation. This was because we aimed to investigate the impact of
the urban canopy on extreme weather events and radiation fluxes, providing insight into
the effects of urbanization on these climatic factors.

3. Results and Discussion
3.1. Simulation of Rainfall Intensity and Related Factors in a Control Experiment
3.1.1. Rainfall distribution

Figure 3 depicts the spatial distribution of a rainfall event occurring between the 24th
and 25th of April 2022. Initially, the observation data from CMORPH and the two control
experiments (denoted as b and c) exhibited a comparable pattern, indicating substantial
precipitation over the lake and the western regions of the study domain. Nevertheless, we
observed that, when compared to simulations with the urban canopy (urban), the simula-
tions incorporating the building effect parameterization demonstrated a more dispersed
rainfall pattern. Urban areas often experience higher temperatures than surrounding rural
areas due to the urban heat island effect. This localized warming is caused by the con-
centration of buildings, pavements, and other heat-absorbing materials [52]. The higher
temperatures can lead to increased atmospheric instability, which can enhance convective
processes and potentially lead to more localized rainfall.
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3.1.2. Diurnal Variation

Figure 4 illustrates the diurnal variation in the study area, showing elevated rainfall
during the daytime on the 25th and 26th and during the nighttime on the 24th. Notably,
the pattern was not consistent, suggesting that factors other than changes in the urban
environment influence extreme rainfall. The study indicated that the urban building effect
parameterization (BEP) tended to overestimate the maximum rainfall during the night
while underestimating it during the day.

An inconsistent diurnal pattern was identified, with high levels of rainfall observed
during the night extending into the daytime; meanwhile, on the 25th and 26th, high levels
of rainfall were predominantly observed during the daytime. During the day, urban areas
tend to experience the urban heat island effect, where temperatures are higher than in
the surrounding rural areas. This localized warming can lead to increased atmospheric
instability, which, in turn, can enhance convective processes and potentially lead to more
localized rainfall during the day. Daytime heating from solar radiation can also lead to
the development of thermal and local circulations within urban areas. These processes can
contribute to the lifting of air and the formation of clouds, potentially leading to increased
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rainfall during the day. Anthropogenic heat sources contribute to the release of heat into the
atmosphere. These anthropogenic heat sources can further enhance the urban heat island
effect and contribute to increased convective activity and rainfall during the day [53,54].
This variation suggests that meteorological factors beyond changes in experimental physics
may influence the diurnal pattern.
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3.2. Evaluation of the Model

Low bias, a small normalized root mean square error (NRMSE), and a higher positive
correlation coefficient (CC) are generally indicative of a well-performing model [55]. The
model’s performance is evaluated by comparing the simulated results with the satellite
product CMORPH. The initiation and evolution of rainfall over the Lake Victoria basin
are tracked and compared between CMORPH and the simulations. To objectively assess
the evolution of the extreme rainfall event in time and space, we utilize bias, the RMSE,
and Pearson correlation coefficients to compare the two datasets. In the evaluation, we
employ the Grell 3D cumulus scheme in the mother and second domains, considering its
dualistic performance and relevance to the experiments [41]. The rain event is reproduced
using CMORPH data, taking into consideration the fact that rainfall modeling is highly
sensitive to the initial conditions, especially for short simulation periods to the scale of
days. It is widely understood that, in numerical weather forecasting, the initial conditions
(particularly the amount and instability of moisture) significantly impact the outcomes.

We evaluated the model’s spatial capacity to replicate rainfall patterns across the
Lake Victoria basin, and the outcomes are presented in a visual form in Figure 2. The
analysis reveals that the WRF model exhibits a robust performance when compared to the
observed datasets (CMORPH). Figure 5a,b illustrates the RMSE of the model within the
study region, while (c, and d) depict the model’s bias outcomes for the same area. The
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model tends to overestimate rainfall in the Lake Victoria area and underestimate it in the
corresponding regions. The instances of the model overestimating precipitation in specific
areas are highlighted. Specifically, high-positive-bias values (bias > 25 mm) are identified
over Lake Victoria and certain western regions, while lower bias values (bias < −25 mm)
are observed elsewhere.
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The bias and RMSE during the rainfall event were further analyzed using time series
analysis, and the results are presented in Figure 5e,f. The findings indicate that BEPurban
outperformed non-urban and urban in terms of bias and RMSE in the rainfall time series
analysis. Bias measures the systematic error in the model’s predictions, indicating whether
the model consistently overestimates or underestimates the observed values. A lower bias
value for BEPurban indicates that the model’s predictions are closer to the true values
on average, with less systematic deviation. A lower bias value indicates that the model’s
average predictions are more accurate and closer to the true values, which is a positive
indicator of the model’s performance [56]. The RMSE measures the average magnitude of
the errors between the predicted values and the observed values [57]. A lower RMSE for
BEPurban indicates that the model’s predictions are closer to the observed data points on
average. In other words, the model’s simulations are more accurate and exhibit smaller
deviations from the actual data. This result also indicates that the model is better at
capturing the variability and patterns in the observed data, which is a positive indicator of
the model’s performance.

The correlation of our model’s simulation of the rainfall event using the CMORPH
dataset in Figure 6a,b illustrates the relationship between the predicted values generated
from the model and the actual values in a scattered plot and regression line. It measures
the strength and direction of the linear relationship between the predicted and actual
values for non-urban, urban, and BEPurban, with correlation coefficients of R = 0.7984,
0.78, and 0.83, respectively. In this context, our evaluation model, which showed a higher
correlation, reveals that the BEPurban results exhibited a strong linear relationship between
the simulated data and the observed data. This constitutes a strong positive indicator of
the model’s performance and its ability to simulate the behavior of the extreme rainfall
being studied [58].
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Figure 6. Scatter plot showing the correlation coefficient results between the control simulations
(urban and BEPurban) and the observations (CMORPH dataset) (a) represents the Urban and (b) is
the BEP–urban.

To realistically compare the model’s performance against observations, we added
more statistics, such as the false alarm ratio (FAR), the frequency bias index (FBI), the
probability of detection (POD), and the critical success index (CSI) for the amount of
rainfall experienced in the region, as shown in Table 4. The results of the two control
experiments, the urban canopy model (urban), and the multiple-canopy model of building
effect parameterization (BEPurban) show higher scores for POD, FBI, and CSI, along with a
lower FAR score. This indicates that the WRF model exhibited a better spatial performance
than CMORPH rainfall.



Atmosphere 2024, 15, 226 12 of 21

Table 4. Statistics related to the performance of the model for rainfall during the extreme event.

Score Urban BEPurban

24th 25th 26th 24th 25th 26th

False alarm ratio (FAR) 0.01 0.11 0.05 0.01 0.12 0.04

Frequency bias index (FBI) 0.99 1.03 1.01 1.00 1.02 1.03

Probability of detection (POD) 0.98 0.92 0.96 0.99 0.90 0.98

Critical success index (CSI) 0.97 0.83 0.92 0.98 0.80 0.94

The FBI index for the three experiments is one or almost equal to one, suggesting
that the WRF model’s results are spatially well-located compared to CMORPH rainfall.
However, for the two experiments, BEPurban performed better than urban on days when
there was extreme rainfall.

3.3. Effect of the Urban Canopy on Meteorology
3.3.1. Rainfall

To better understand the differences between the simulated experiments, a further
analysis was conducted using the differences in simulated rainfall, as is shown in Figure 7. It
can be observed that BEPurban has more significant modifications, especially over the lake
and western locations. This implies that buildings have a more pronounced impact on the
intensity of rainfall over the study domain. Generally, in urban locations, there is an urban
thermal effect, whereby the heat from buildings can directly reinforce convective processes
by attracting and converging moisture from the surrounding area, consequently enhancing
extreme rainfall events over urban areas [59–61]. Changes in the surface runoff can lead to
increased surface runoff and the reduced infiltration of water into the soil. As a result, less
water is available for groundwater recharging and natural moisture storage, potentially
affecting the availability of water for sustaining local ecosystems and contributing to
rainfall patterns.
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Figure 7. Rainfall simulations from the model, where (a) represents the simulation without urban
physics (non-urban), (b) represents the simulation with building effect parameterization (BEP–urban),
and (c) shows the comparison between the non-urban simulation (non-urban) and the control
BEPurban (non-urban–BEPurban).

3.3.2. Moisture-Flux Convergence (MFC)

Figure 8 displays the vertically integrated moisture flux and wind fields. A noticeable
contrast is observed in the non-urban and BEPurban simulations, indicating that strong
convergence is induced by the urban canopy over the urban–rural interface. In comparison
to the non-urban simulations, the BEP simulations exhibit enhanced convection over urban
areas. This enhanced convection is mainly attributed to increased surface roughness over
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urban areas, which decelerates wind speeds and leads to the expansion of the convergence
zone from the urban–rural interface toward the urban areas [19–21].
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Figure 8. Shows the moisture convergence from (a) non-urban areas and the control simulation;
(b) BEPurban; and (c) the difference between the non-urban experiments and the control simulations
(non-urban–BEPurban).

3.3.3. Temperature

Figure 9 shows the spatial distribution of temperature across two meters during the
extreme rainfall event (a, b, and c), along with the difference between the non-urban
simulation and the control experiment (BEPurban). The simulated temperature in all
environments, both non-urban and BEPurban, indicates an increase in temperature over
the lake and a decrease as one moves further away from the lake.
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Figure 9. Spatially distributed 2 m temperature: (a) non-urban, (b) control (BEPurban), and (c) the
difference between the non-urban experiments and the control simulations (non-urban–BEPurban).

Further analysis that utilizes the difference between non-urban and urban reveals
negative values ranging between −0.4 K and 0 K. These values suggest an increase in
temperature in the northern and western locations of the study domain, while the positive
values indicate a decrease in temperature, particularly in the southern locations. This
implies that higher temperatures were observed for urban areas in most northern and
western locations, with the opposite trend observed in southern locations. The thermal
influence appears to be limited, as contrasts in the surface temperature are relatively
small in the BEPurban simulation, indicating an increase in temperature in the urban
areas. Many building materials, such as concrete and asphalt, have good heat-absorption
properties. This means that they absorb and retain heat from the sun, leading to higher
surface temperatures and contributing to overall warming in urban areas [62–64]. Overall,
the presence and characteristics of buildings in urban areas can significantly impact local
temperatures, leading to higher temperatures compared to the surrounding rural areas.
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3.3.4. Relative Humidity

In Figure 10, the spatial characteristics of relative humidity (RH) reveal the highest RH
in western and some northern locations of the Lake Victoria basin for both the non-urban
and the control simulations (BEPurban). In comparative terms, relatively larger variations
were observed between BEPurban and non-urban. For instance, the differences ranged
between −1 and −4 for non-urban and BEPurban, dominating central and some western
locations. This indicates that the magnitude of the difference was observed to be high for
non-urban and BEPurban, signifying the high-level influence of BEPurban on RH. Based
on these results, this study concludes that there is generally an increase in temperature and
a decrease in RH due to the effects of roughness and buildings. As temperatures rise, the
air’s capacity to hold moisture also increases, potentially leading to lower relative humidity
levels. This effect is particularly noticeable in densely built-up areas with significant
heat generation from buildings, industrial processes, and transportation. Buildings can
influence local airflow patterns, potentially impacting the distribution of moisture in the air.
In some cases, buildings can also obstruct natural airflow, which may affect the dispersion
of moisture and lead to variations in relative humidity levels in different parts of the urban
environment [65].
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3.3.5. Sensible Heat

As shown in Figure 11, the sensible heat flux is dominated by positive fluxes (0–75 W/m2)
over the land, with a few locations showing negative fluxes. The magnitude of the difference
is notable for non-urban and BEPurban, with the highest values observed over the eastern
locations. For sensible heat, in the comparison between non-urban and BEPurban (hfx
non-urban, hfx BEPurban), high magnitudes of negative values, indicating an increase
in sensible heat flux due to urbanization, can be seen over the southern locations, while
positive values (decreased sensible heat flux) are observed over the lake and western
locations. An increase in surface temperatures around the buildings contributes to a higher
sensible heat flux. The stored heat is then released back into the atmosphere, impacting the
local heat exchange between the surface and the air [66].
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and (c) the difference between the non-urban experiment and the control simulation (non-urban–
BEPurban).

3.3.6. Latent Heat

The latent heat flux was observed to be highest over Lake Victoria (in a, b, and c),
primarily because there is less impervious coverage in the urban grid in the urban and
BEPurban simulations, which promotes a greater latent heat flux due to evapotranspiration
over Lake Victoria. This pattern is particularly evident in eastern locations (Figure 12). Ac-
cording to the model, latent heat was consistently high over the lake throughout the study
period. In terms of magnitude, the disparities between urban and non-urban parametriza-
tions seemed to have less of an impact on surface energy fluxes across the entire lake
basin. However, this contrasted with the significant influence of non-urban and BEPur-
ban parametrizations on surface energy fluxes in the same region. The presence of the
buildings causes the rate of evapotranspiration to decrease, leading to a reduction in the
latent heat flux. Heat retention and redistribution lead to elevated surface temperatures in
urban areas, which, in turn, affect the local water cycle and can influence the availability of
moisture for evaporation, potentially reducing the overall latent heat flux in the vicinity of
buildings [67,68].
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difference between the non-urban and control simulations (non-urban–BEPurban) and time series of
the average diurnal spatial variation across l h over the Lake Victoria basin.

3.3.7. Vertically Integrated Moisture Flux

Figure 13 shows the results for the integrated moisture flux, indicating a clear conver-
gence of air moisture over the urban area. An increase in the moisture flux implies a rise in
the amount of water vapor being transported in a specific direction. This can occur due
to various atmospheric processes, including changes in atmospheric circulation patterns,
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temperature, and humidity gradients, or the availability of surface moisture. In regions
with high levels of humidity, an elevation in the moisture flux can lead to more frequent
and intense precipitation events, potentially causing flooding and landslides.
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The water vapor flux (WVF) shown in Figure 13 reveals the transportation of moisture
from the southeast to the study domain, with a pronounced influence over the eastern loca-
tions. The study also observed a variation in the moisture concentration when comparing
non-urban with BEP-urban (Figure 13c). BEP-urban demonstrated a more pronounced
effect on moisture transportation compared to the non-urban experiment. The study noted
an increase in moisture over the central locations of the study domain due to the influence
of buildings, as indicated by negative values. This suggests that the urban heat island
(UHI) not only enhances convergence over the urban area (due to the additional sensible
heat flux) but also amplifies the land/lake temperature contrast. This contrast, in turn,
reinforces the lake breeze, bringing in additional moisture. Changes in the vertical distribu-
tion of moisture due to urban development can influence local precipitation patterns. The
altered moisture flux resulting from the presence of buildings can impact the formation
and behavior of clouds and precipitation processes [69,70].

4. Summary and Conclusions

The study investigated the impact of the urban canopy on an extreme rainfall event in
the Lake Victoria basin. Utilizing the Weather Research and Forecasting (WRF) model, three
sets of experiments were conducted over three days in this East African region. The model
verification, employing metrics such as the false alarm ratio (FAR), the frequency bias index
(FBI), the probability of detection (POD), and the critical success index (CSI), indicates
that the WRF model performed well, aligning closely with both CMORPH and ERA5 in
capturing spatial patterns during the extreme event. In terms of the model’s performance,
the study indicates that WRF simulations effectively represent the extreme event, with
BEPurban outperforming the urban experiment. Therefore, WRF can be regarded as a
reliable tool for forecasting weather parameters during such extreme events.

Comparisons between the well-performing control run (BEPurban) and the non-
urban run simulations, where the urban area is replaced with forest, reveal that the urban
environment amplifies extreme rainfall events. The control run generates 30 mm more
rainfall over the city compared to its non-urban counterpart. This enhancement is attributed
to urban factors such as reduced evapotranspiration, resulting in an increased sensible heat
flux (by 75 W m2) and an elevated urban heat island effect (0.4 K increase in air surface
temperature). These factors trigger horizontal convergence and enhance the sea breeze,
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leading to the convergence of moisture from the southern sea area over built-up areas. This
creates favorable conditions for convection and rainfall processes.

Understanding the impact of the urban canopy on extreme rainfall events is crucial
for policymakers and urban planners. It helps in the development of strategies to mit-
igate flood risks and promote sustainable urban development. The WRF model serves
as a valuable tool for assessing and predicting the influences of urbanization on rainfall
patterns, facilitating informed decision making amid increasing urbanization in the region.
This type of research helps to improve our understanding of how urbanization affects
meteorology and hydrometeorology, providing a foundation for enhancing the resilience
of future cities to weather- and climate-related hazards. As far as the community is con-
cerned, this study contributes to safeguarding the well-being of communities in the Lake
Victoria basin by providing knowledge that can improve preparedness and responses to
extreme rainfall events, including the implementation of early-warning systems, disaster
risk reduction measures, and community-based adaptation strategies. The robustness of
the validation and verification of the study using the WRF model is reduced due to the
restricted availability of in situ observational data. These data are characterized by frequent
gaps, limited accessibility, and high costs, and they are often less accurate due to a variety
of influencing factors.
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Appendix A

Appendix A.1 Statistical Equations

Bias =
1
n∑n

i=1(mi − Oi) (A1)

Normalized bias =
1
n ∑n

i=1(mi − Oi)

O′ × 100 (A2)

RMSE =

√
1
n

n

∑
i=1

(mi − Oi)
2 (A3)

Normalised RMSE =

√
1
n ∑n

i=1(mi − Oi)
2

O′ × 100 (A4)

R =
∑n

i=1 (mi − m′)(Oi − O′)√
∑n

i=1(mi − m′)2
√

∑n
i=1(Oi − O′)2

(A5)
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False alarm ratio (FAR) =
HH

HH + FA
(A6)

Frequency bias index (FBI) =
HH + MM
HH + FA

(A7)

Probability o f detection (POD) =
HH

HH + MM
(A8)

Critical success index (CSI) =
HH

HH + MM + FA
(A9)

where n is 4 days, mi is the simulation, Oi is the observation, and m′ and O′ are the
average values of the simulated data and observed data (ERA5 data), respectively. HH
represents the hits, MM represents the missed events, and FA is the false alarm, as shown
in the contingency table in Table 4. FAR indicates the grids of the WRF simulated rainfall
that have no rainfall compared to the observation data grids. It ignores the misses and
is sensitive to the frequency of rainfall occurrence during the event. FBI indicates the
tendency for overestimation (FBI > 1) or underestimation (FBI < 1) of WRF simulated
rainfall occurrence. POD indicates the grid that correctly simulated rainfall, compared to
the observation grid’s rainfall; it is sensitive to the frequency of rainfall occurrence during
the event and ignores false alarms. CSI indicates how the grid rainfall simulated by WRF
corresponds to the estimates based on observation data. It penalizes both misses and false
alarms and is sensitive to hits; the perfect scores are 0, 1, 1, and 1, as described in more
detail in [71].

Appendix A.2 Moisture-Flux Convergence Equation

MFC = −
∫ ps

0
∇P.(uq)dp/g = P − E +

∂w
∂t

(A10)

where MFC is the horizontal moisture-flux convergence integrated from the surface to
the top of the atmosphere. ∇P.() is the horizontal divergence in pressure coordinates,
u = (u, v) is the horizontal wind vector, q is the specific humidity, P is the precipitation
rate, E is the evaporation rate, and w =

∫ ps
0 qdp/g is the total precipitable water with

negligible storage ∂w
∂t . Thus, the positive (negative) values of MFC correspond to the

positive (negative) net precipitation [23,72].
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