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Abstract: Profound research on the characteristics of the long-term persistence of wind is greatly
significant for understanding the characteristics of wind speed mechanisms as well as for avoiding
disasters caused by wind. In the current study, we selected the hourly 10 min wind speed series
between 2017 and 2021 from 105 nation-level meteorological stations in Xinjiang and investigated the
spatiotemporal variations in the long-term persistence of wind speed in different regions of Xinjiang
and in different seasons using detrended fluctuation analysis. The main findings are as follows:
(1) The wind speed in Xinjiang shows noticeable annual and seasonal variations, exhibiting satisfac-
tory long-term sustainability. Winter has the best long-term sustainability, followed sequentially by
spring, autumn, and summer because of wind speed stability. (2) The long-term persistence of hourly
wind speed in Xinjiang exhibits remarkable regionality, with regions with strong wind superior to the
remaining regions. (3) The long-term persistence of wind speed within the same season is primarily
associated with wind speed magnitude and the dispersion degree between 90% and 100% of the
wind speed numerical values. A higher wind speed indicates better long-term persistence. At the
same speed, the more discrete the numerical values in the 90–100% distribution range, the better
the persistence.

Keywords: detrended fluctuation analysis; wind speed; long-term persistence; stability

1. Introduction

As the global energy crisis has emerged, the development of renewable energy has
received widespread attention [1]. Wind energy, as an important component of renewable
energy, has become a hotspot of research. Wind functions as a fundamental element in
describing atmospheric motion and is closely related to weather phenomena, such as
precipitation and strong convection [2]. Its speed can exhibit such noticeable characteristics
as nonlinearity [3], intermittency, and long-term persistence [4]. Thorough research on these
changes, which are manifested in wind, is of great significance for gaining a comprehensive
understanding of wind speed mechanisms and avoiding possible harm caused by wind [5,6].

The long-term persistence of wind speed can be defined as the characteristics of
patterns of change, where the maximum wind speed tends to occur after a high wind speed,
whereas the minimum wind speed is likely to occur after a low wind speed [7]. Long-term
persistence refers to the similarity exhibited on the time axis in the field of nonlinear science,
which means that the current or past climate state has an impact on future climate evolution
over a period; it is a feature of climate state memory based on time and is manifested by a
characteristic or state that can persist for a long time and that does not easily change [8].
Any given climate series can be divided into two parts: synoptic-scale disturbance and
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long-term cumulative signals [9]; that is, the current wind speed state is determined by
both factors.

In recent years, a series of studies on the long-term persistence of wind speed series in
different regions and temporal resolutions has been carried out. Hourly average wind speed
exhibits long-term memory in the United States, Italy, and Turkey [10–13]. In Brazil, the
maximum wind speed exhibits a similar long-term power correlation, whose performance,
however, differs under complex terrain conditions [14]. In China, the daily average wind
speed series in the Huaihe River region, the hourly wind speed series in the Northeast
region, and the 10 min average wind speed series in Yunnan Province all display noticeable
autocorrelation and long-term sustainability [15–17]. Li et al. [5] conducted research on
the wind speed time series measured from wind towers and found that wind speed time
series at different heights at the same observation point share consistent scaling behavior,
exhibiting strong long-range persistence.

Determined fluctuation analysis (DFA) is a simple and fast nonlinear analysis method
for studying the long-term persistence of time series that was first proposed by Peng
et al. [18] for analyzing DNA sequences, which provides an effective tool for analyzing the
scaling characteristics of nonstationary, long-range power-law related time series by fitting
and eliminating local trend terms. DFA overcomes the nonlinear influence of the original
data sequence and is able to provide the true scaling law of physical variables in the time
series. Therefore, it has been extensively applied in the meteorological field [19–24].

Xinjiang is located in the hinterland of the Eurasian continent, where mountains and
basins are alternately arranged. The basins are surrounded by high mountains, which are
known as “three mountains sandwiched by two basins”. The Altai Mountains rise in the
north, and the Kunlun Mountains rise in the south, with the Tianshan Mountains lying in
the middle, which divides Xinjiang into two halves: the Tarim Basin in the south and the
Junggar Basin in the north. The region to the south of the Tianshan Mountains is customarily
named Southern Xinjiang, and that to the north is Northern Xinjiang, and the Hami and
Turpan Basins are in Eastern Xinjiang. The terrains of Xinjiang are diverse and include high
mountains, basins, river valleys, plateaus, and deserts. The unique landforms bring about
diversity in wind speeds across Xinjiang and result in nine major wind energy reserve zones,
i.e., the Alashankou, Erzis River Valley, Laofengkou, Dabancheng, Santanghu, southeastern
Hami, Thirteen Rooms, Robpo, and Xiaocaohu wind zones.

The current study aimed to investigate the characteristics of the long-term persistence
of wind speed in different seasons and regions of Xinjiang based on the 10 min average wind
speed after the punctual time point during a period of five years reported by 105 national
meteorological observation stations. The characteristics of the long-term persistence of wind
speed in Xinjiang were compared at different timescales and spatial scales, i.e., from overall
to local and from year to season, and the factors influencing the long-term persistence of
hourly wind speed were also explored.

2. Materials and Methods
2.1. Study Region and Data Source

The data are sourced from the Xinjiang Meteorological Information Center. Observa-
tion data of the 10 min average wind speed from the punctual time point from 2017 to 2021
reported by 105 national ground-based meteorological observation stations were selected
(Figure 1). This selection was based on the consideration of long continuous observation
records to exclude the possible impacts of a missing high rate and poor continuity of wind
speed series upon DFA results. All data underwent systematic quality control, which
included a cutoff check, extreme value check, internal consistency check, spatiotemporal
consistency check, and manual intervention check.
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Figure 1. Spatial distribution of the national ground observation stations in Xinjiang. (The blue dots
represent the location and ID number of station).

2.2. Methodology
2.2.1. DFA

DFA was performed in accordance with the following procedures [25]:
(1) For an original sequence Xk with a given length N (k = 1, 2, . . . , N), a new recombi-

nant sequence Y(i) was constructed:

Y(i) = ∑i
k=1[xk − x], i = 1, 2, . . . , N (1)

where x represents the average of the original sequence Xk.
(2) The new sequence Y(i) was sectioned into S number of windows (Ns = int(N/S)),

which had the same time length S but did not overlap with each other. As the sequence
length N may not be evenly divided by S, another window partitioning was performed
from the tail of the sequence to ensure the integrity of the sequence. Similarly, another
nonoverlapping Ns window was obtained, and thus, a total of 2Ns windows were obtained.
The windows were labeled with v.

(3) Within each window, designated with v, the sequence Y(i) was subjected to K-order
polynomial regression fitting to obtain a local fluctuating trend sequence Pk

v (the use of
K-order polynomial fitting to remove trends is termed K-order DFA, and the value of K
was 2 in this study). Within each window, the fitted sequence Pk

v was subtracted from the
Y(i) sequence to obtain a detrended sequence Ys(i):

Ys(i) = Y(i)− Pk
v (2)

(4) For the detrended sequence, the variance function F2
S(v) within each window was

calculated as follows:
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F2
S(v) = Y2

S(i) =
1
s ∑s

i=1 Y2
s [(v − 1)s + i] (3)

(5) The variance functions obtained from the 2Ns number of windows were accumu-
lated, and the square root was calculated to obtain the wave function F(s) as follows:

F(s) =
[

1
2Ns

∑2Ns
v=1 F2

s (v)
] 1/2

(4)

In DFA, the wave function F(s) increases as the window size s increases. If the original
sequence Xk is associated with long-term conditions, the function F(s) and the size of the
window s should follow a power-law scaling relation, as follows:

F(s) ∼ sα (5)

where α < 0.5 indicates that the time sequence is negatively correlated with the long term;
α = 0.5 means that the sequence is scale-invariant and thus represents an independent
random process (corresponding to white noise); α > 0.5 indicates that the observed values
are not independent of each other and that the system presents a positive correlation with
the long term; α = 1 indicates a process of 1/f fluctuation; and α = 1.5 indicates a Brownian
signal, which is a highly correlated signal sequence.

2.2.2. Discreteness Analysis

Discreteness analysis is a method for measuring the dispersion degree of a set of data.
To eliminate the impact of the level of data values on the measurement of dispersion, the
relative dispersion degree is often measured by calculating the dispersion coefficient. For
a data sequence Zi with a given length of n (i = 1, 2, . . . , n), the dispersion coefficient is
as follows:

Vs =
s
z

(6)

where x represents the average of the data, and S represents the standard deviation of the
data, which is calculated as follows:

s =

√
∑n

i=1(xi − x)2

n − 1
(7)

The dispersion coefficient is primarily used to compare the dispersion degrees among
multiple sets of data. A larger dispersion coefficient indicates a higher dispersion degree,
and vice versa.

3. Results
3.1. Seasonal Distribution Characteristics

The 10 min wind speeds of each punctual time point observed by the 105 stations
were averaged, and the hourly wind speed sequence between 2017 and 2021 was obtained.
To verify the relationship between the distribution of the wind speed sequence and the
time sequence, the wind speed sequence was randomly reordered and then compared
with the original sequence. Figure 2a shows the distribution of the average wind speed at
different times before and after the disordering, with the x-axis representing cumulative
hours and the y-axis representing wind speed; the blue curve indicates the disordered wind
speed sequence and the red curve indicates the original sequence. Figure 2b shows the
log–log curves of the variation in the function of the fluctuation F(s) in the wind speed time
sequence according to timescale s, where the x-axis represents the logarithm of accumulated
hours of wind speed, the y-axis represents the logarithm of wind speed, and the red and
blue curves are the distribution curves of the wind speed before and after randomization
based on DFA (shown to remove trends for each window with a quadratic polynomial),
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respectively, and the gray curve is the white noise curve. The scaling exponent of each of
the curves could satisfactorily reflect the long-term persistence of the wind speed sequence
at the designated timescale (1–1500 d).

Atmosphere 2024, 15, x FOR PEER REVIEW 5 of 13 
 

 

In terms of the pattern in the wind speed variation, the hourly wind speed was 
characterized by annual amplitudes, with higher wind speeds in spring and summer and 
lower wind speeds in autumn and winter, which was consistent with that reported in the 
literature [26]. According to the DFA results, the average scaling exponent was 0.5 after 
the hourly wind speed sequence was disordered, indicating white noise. In contrast, be-
fore the treatment, the average scaling exponent was 0.91, exhibiting strong long-term 
persistence; this exponent indicated that the wind speed sequence in Xinjiang exhibited 
long-term persistence, which was caused by the fractal nature of the time sequence. A 
slight fluctuation of the scaling exponent was observed at 40 h (log10(h) = 1.6), and the 
exponent before it was more stable than that after it. 

 

Figure 2. The average wind speed sequences in Xinjiang. (a) shows the distribution of average 
wind speed before and after random disruption, and (b) shows the double logarithmic curve of 
wind speed over time. 

Figure 3 shows the distribution of the hourly wind speed sequence in spring, sum-
mer, autumn, and winter from 2017 to 2021, as well as the corresponding DFA outcomes. 
The x-axis in the left figure represents cumulative hours, while the y-axis represents wind 
speed. According to this figure, the wind speed in each season exhibited a noticeable 
annual cycle: the wind speed gradually increased in spring, followed by a gradual de-
crease in summer and autumn, and then a slight upward trend in winter (the variation in 
winter was the smallest). The scaling exponents in the four seasons are summarized in 
Table 1. The exponents in autumn and winter were higher than those in spring and 
summer, with the highest value observed in winter (up to 0.94), which indicated the best 
long-term persistence, and the lowest value in summer (0.75). 

  

Figure 2. The average wind speed sequences in Xinjiang. (a) shows the distribution of average wind
speed before and after random disruption, and (b) shows the double logarithmic curve of wind speed
over time.

In terms of the pattern in the wind speed variation, the hourly wind speed was
characterized by annual amplitudes, with higher wind speeds in spring and summer and
lower wind speeds in autumn and winter, which was consistent with that reported in
the literature [26]. According to the DFA results, the average scaling exponent was 0.5
after the hourly wind speed sequence was disordered, indicating white noise. In contrast,
before the treatment, the average scaling exponent was 0.91, exhibiting strong long-term
persistence; this exponent indicated that the wind speed sequence in Xinjiang exhibited
long-term persistence, which was caused by the fractal nature of the time sequence. A
slight fluctuation of the scaling exponent was observed at 40 h (log10(h) = 1.6), and the
exponent before it was more stable than that after it.

Figure 3 shows the distribution of the hourly wind speed sequence in spring, summer,
autumn, and winter from 2017 to 2021, as well as the corresponding DFA outcomes. The
x-axis in the left figure represents cumulative hours, while the y-axis represents wind speed.
According to this figure, the wind speed in each season exhibited a noticeable annual
cycle: the wind speed gradually increased in spring, followed by a gradual decrease in
summer and autumn, and then a slight upward trend in winter (the variation in winter
was the smallest). The scaling exponents in the four seasons are summarized in Table 1.
The exponents in autumn and winter were higher than those in spring and summer, with
the highest value observed in winter (up to 0.94), which indicated the best long-term
persistence, and the lowest value in summer (0.75).

On the right side of Figure 3, the x-axis represents the logarithm of the accumulated
hours of wind speed, while the y-axis represents the logarithm of wind speed. Slight
fluctuations in the scaling exponent were also observed at approximately 40 h in each
season (Figure 3), which was consistent with the annual distribution. This finding indicated
that the wind speed was controlled by different dominant factors at different scales, and
the scale also changed accordingly. At a small timescale, the wind speed was greatly
affected by the small eddy motion of atmospheric turbulence and featured nonstationary
signals, which were similar to molecular motion; at a large timescale, wind speed was
mainly affected by large eddy motion and exhibited excellent long-term persistence. After
disorderly treatment, the scaling exponent of the wind speech sequence at either timescale
was the same as that of the white nose sequence, i.e., α = 0.5.
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Figure 3. Wind speed data and DFA analysis in (a) Spring, (b) Summer, (c) Autumn, and (d) Winter.

Table 1. Distribution of the key wind speed elements in each season.

Season Spring Summer Autumn Winter Whole Year

Scaling exponent 0.92 0.75 0.91 0.94 0.91
Wind speed (m/s) 2.43 2.34 1.89 1.55 2.05
Number of strong

wind days (d) 5.74 5.79 2.80 1.21 15.53

Further exploration of the characteristics of the wind speed values in each season
revealed that the average minimum wind speed occurred in winter, with the smallest
number of strong wind days—that is, days on which the instantaneous wind speed reaches
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or exceeds 17.0 m·s−1 or is visually estimated as reaching or exceeding level 8—whereas the
largest number of strong wind days and the highest wind speed gustiness were observed
in summer. This finding indicates that the long-term persistence of the hourly wind speed
sequence may be linked with wind speed stability. The hourly wind speed distribution
in each season was calculated, and the violin plot of the hourly wind speeds in different
seasons is shown in Figure 4. The wind speed in winter was stable, and the values were
concentrated between 1.4 m/s and 1.5 m/s. The wind speed distributions in spring and
summer were more even than those in autumn and winter; that is, the differences in
the frequency of various wind speeds in spring and summer were significantly smaller
than those in autumn and winter. Although the boxplots of the wind speed distribution
characteristics in spring and autumn were similar to that in summer, the performances
of the long-term persistence in these seasons differed. It is reasonable to presume that
long-term persistence represents a continuous change in data, which may be related to
the degree of data concentration as well as the internal structure of the data themselves.
Therefore, further analysis of the spatiotemporal differences in wind speed variation needs
to be performed.
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3.2. Characteristics of the Spatiotemporal Distribution

According to the hourly wind speed data observed by the 105 stations, the patterns
of variation in the wind speed were basically consistent across the stations, which was
manifested by greater variations in spring and summer and the smallest variation in winter
(Figure 5a). The x-axis in Figure 5a represents the meteorological station numbers, while the
y-axis represents the average wind speed. Analysis of the variation in the function of the
fluctuation F(s) in the hourly wind speed sequence at each station according to the timescale
S showed that there were three states in the wind speed-scaling index distribution. The
first state included slight fluctuations in the scaling index that occurred at approximately
63 h (log10(h) = 1.8), and such phenomena occurred more frequently at the stations with a
relatively high average wind speed. The second state included slight fluctuations in the
scaling index that occurred at approximately 25 h (log10(h) = 1.4), and such phenomena
occurred more frequently at the stations with a relatively low average wind speed. The
third state included no significant change in the scaling index, which often occurred at the
stations where the wind speed was close to the average wind speed of the entire Xinjiang
region. Before each of the time point fluctuations, the scaling exponent was larger than 1.1,
while the value after it was smaller than 0.8; that is, the scaling exponent behaved as the
“1/f fluctuation” on the small scale, while on the large scale, the value was approximately
0.8, exhibiting long-term memory. Therefore, given the same stability, the higher the wind
speed is, the better the long-term persistence.
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The spatial distribution of the hourly wind speed sequence in Xinjiang between 2017
and 2021 was analyzed using DFA, and the results are shown in Figure 6. In terms of
the annual scale, the scaling exponent of the wind speed sequence in all of Xinjiang was
much higher than 0.5. The long-term persistence of the East Xinjiang tuyere centered
around Thirteen Rooms, the North Xinjiang tuyere centered around Alashankou, the
northern mountainous areas of North Xinjiang, and the western mountainous areas of
South Xinjiang [27] were noticeably superior to other regions, and the Taklamakan Desert
and Kumtag Desert regions also exhibited strong long-term wind speed persistence. In these
areas, the nine major wind zones had high wind speeds and unique desert environments,
which often experienced strong storm weather, indicating a good relationship between the
magnitude and long-term persistence of wind speed. In the surrounding mountainous
areas, however, variations in the wind speed were more complex, and the long-term
persistence was relatively weak due to the influence of mountainous terrain. Taking
the area along the Tianshan Mountains in northern Xinjiang as an example, the overall
wind speed is relatively low due to the blocking effect of mountain ranges, and there are
many intermittent weather events, so the long-term sustainability of the wind speed is
relatively weak.

From a seasonal perspective, the long-term persistence at different stations differed
according to season. In spring and summer, the long-term persistence was basically
the same, while in the remaining seasons, particularly in winter, great differences were
observed. In spring, the scaling exponent of the wind speed sequences in the entire Xinjiang
region showed a stronger long-term correlation compared with those in other seasons. The
wind speed in Hotan was low in winter, exhibiting poor long-term persistence. In summer,
the average wind speed in Ili was lower than that in other regions. In the meantime, during
this season, strong winds frequently occurred in this region with strong gusts, and therefore,
the long-term persistence performance was also poor.

The correlation between the wind speed and the scaling exponent was analyzed, as
shown in Figure 5b. The x-axis represents the meteorological station area number, while the
y-axis represents the annual range and scale index. For each station, the annual correlation
was poor, which indicated great seasonal differences in the wind speed. Further analysis of
the relationship between the annual range and long-term persistence of the wind speed
at each station showed that the stations with great variation in the annual wind speed
exhibited weak long-term persistence (Figure 5b). In the same season, the station with
a higher wind speed exhibited better long-term persistence (according to a test level of
0.05) (Figure 7, the marked positions of each station are shown in Figure 1). In addition,
analysis of the correlations among the average wind speeds, scaling exponents, and the
dispersion degrees of the wind speed values within the distribution range of 90-100% at
each station showed that stations with high dispersion coefficients outperformed other
stations in hourly wind speed persistence (Figure 8, the marked positions of each station



Atmosphere 2024, 15, 37 9 of 13

are shown in Figure 1). For convenient comparison, all data shown in this figure underwent
dimensionless processing.
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Based on the abovementioned results, the long-term persistence of the wind speed in a
given area was based on two factors: the magnitude and stability of the wind speed. When
the stability in the same season was comparable, the higher magnitude of the wind speed
indicated better long-term persistence; when the average wind speed was comparable, the
station with a more stable wind speed exhibited better long-term persistence. However,
for the stations with an even wind speed distribution, the more discrete the values within
the 90–100% distribution range of the wind speed are, the better the long-term persistence.
Therefore, due to unique climate conditions, a variety of subtle changes were observed
in the wind speed of Xinjiang. When conducting long-term persistence analysis, the finer
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the time frequency of the data is, the better it captures the details of future development
and changes.
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4. Discussion and Conclusions

Wind speed depends on the meteorological laws of nature and is influenced by a
variety of factors, such as temperature, atmospheric motion, air humidity, and environ-
mental conditions; wind speed is a typical nonlinear nonstationary signal [28]. Studies
on its long-term persistence characteristics can reveal the complexity of its temporal and
spatial structure more clearly and provide a deeper understanding of the sustained changes
and gust characteristics of the wind speed. Better long-term persistence means a greater
proportion of the predictable component is derived from the “product” effect of persistence
in future actual changes, which has important reference significance for forecasting. In
this study, the hourly wind speed time sequence in Xinjiang showed noticeable long-term
persistence, with seasonal characteristics mainly related to the stability of wind speed:
winter was the best season for long-term persistence, followed by spring and autumn, and
then summer. The most remarkable feature of the spatial distribution of wind speed was
that strong wind zones outperformed other zones in long-term persistence. According
to the analysis of the long-term persistence of wind speed in the same season, the main
factors affecting the long-term memory of hourly wind speed in a certain area were the
magnitude of the wind speed and the dispersion degree of the numerical values within
the wind speed distribution range of 90–100%. A higher wind speed resulted in better
long-term persistence. When the wind speed was the same, a higher dispersion degree of
the values within the wind speed distribution range of 90–100% led to better persistence.

Research on wind speed data has mostly focused on spatiotemporal changes and the
analysis of extreme wind speed values, with less attention paid to the internal structural
connections of wind speed time series. In terms of long-range persistence, Ka et al. found
in their energy spectrum studies of atmospheric turbulence that there exists a wide range of
inertial sub-ranges between the scales of energy injection and dissipation, spanning at least
30 years. As the resolution increases, the effective small-scale dissipation rate decreases.
This phenomenon exists in orbits of the same resolution and can also be observed at the
planetary scale [29,30]. Research has shown that wind speed has significant long-term
persistence, but these studies have been mostly qualitative research in different regions and
at different heights. Most previous research on wind speed has focused on spatiotemporal
changes and extreme value analysis, with less attention given to the internal structural
connections of the wind speed time sequence. For studies on long-term persistence, most
were qualitative in nature. This study set out to investigate the characteristics of the long-
term persistence of wind speed in Xinjiang and made attempts to conduct an analysis of its
influential factors, and its results could disclose the close correlation between wind speed
changes and internal structure more clearly. Based on the different manifestations of the
long-term persistence of wind speeds in different regions, this study found that future wind
speed was closely related to the wind speed in a certain period and was greatly affected
by long-term variations in the regional wind speed. Research conducted by long-term
persistence studies has extensive application prospects in predicting wind speed at tuyeres,
and the results may provide a scientific basis and decision-making reference for wind
forecasting, energy planning, power system operation, and wind disaster prevention. This
study also found that when the wind speeds were the same, a higher dispersion degree of
the numerical values within the same wind speed distribution range of 90% to 100% led to
better persistence. Nevertheless, a sufficient theoretical basis to explain this phenomenon is
lacking, which constitutes the main content of the next stage of research.
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