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Abstract: There is a need for monitoring air pollution associated with black carbon (BC) using
a passive monitor is required in remote areas where the measurements are absent. In this pilot
study, we developed a quantitative method to determine dry deposition submicron BC using dual-
wavelength ultraviolet–visible spectroscopy. Furthermore, we measured the levels of dry deposition
BC on plant leaves from 30 plant species located in urban Nanjing using the established method.
The oxidative potential of BC on plant leaves as passive bio-monitoring samplers was assessed.
The concentrations of black carbon (BC) on tree leaves varied from 0.01 to 1.6 mg m−2. Signifi-
cant differences in levels of BC across leaves from different tree types were observed. The values
of oxidative potential in deposited particles of leaf samples were observed to be in the range of
33–46 nmol min−1 mg−1 using the dithiothreitol (DTT) assay and 18–32 nmol min−1 mg−1 using
the ascorbic acid (AA) assay, respectively. In comparison, the oxidative potential of BC-dominated
mass in water extracts of leaf samples was in the range of 5–35 nmol min−1 mg−1 measured using
the DTT assay and 2 to 12 nmol min−1 mg−1 using the AA assay, respectively. We found variations
in the levels of OP across the leaves of different tree types were not large, while the levels of OP
in terms of BC-dominated mass varied greatly. These results indicate that the established method
with dual-wavelength ultraviolet–visible spectroscopy could provide a simple tool to determine
submicron BC in plant leaves of the passive monitor.

Keywords: submicron black carbon; passive bio-monitoring samplers; oxidative potential; air quality

1. Introduction

The United Nations proposed Sustainable Development Goals (SDGs) of target 3.9,
which target significantly reducing the amounts of diseases and premature death due to ex-
posure to air, water, and soil pollution [1]. Black carbon (BC) is released from the incomplete
combustion of fuels such as coal, wood, and fossil fuels [2,3], which could absorb visible
light in the atmosphere and thus exert potentially negative effects on climate, which has
been regarded as an important contributor to global warming [2,4,5]. Furthermore, BC can
be transferred into the cardiovascular system of human beings and lead to many respiratory
diseases due to the presence of harmful reactive oxygen species on the surface [6–8].

Globally, BC emissions from anthropogenic sources were estimated to be 4400 Gg in
2000 [9]. China contributed to the largest emissions around the world, which accounted
for about 30% of global emissions [10]. The largest source contribution to BC in China was
residential combustion (~55%), followed by industrial emissions (~30%), transportation
(~10%) and power production (~2%) [10]. Over half of the population lives in cities in China,
and this number is expected to increase over the next several decades [10]. Thus, cities
are often hotspots of air pollution [11,12]. Urban forest parks in cities provide physical
activity spaces, as well as reduce air pollution and noise from anthropogenic sources
substantially [13,14]

Terrestrial plants can alleviate air pollution by acting as sinks of particulate matter
(PM) [15,16]. Novak et al. [17] illustrated that trees in urban areas across the United States
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can absorb 711,000 metric tons of air pollutants every year (O3, PM10, NO2, SO2, and CO).
Cai et al. [18] documented that the average deposition of PM on leaves was estimated to
be 1.71 ± 0.05 g m−2 wk−1 after summarizing 150 studies conducted in 15 countries from
1960 to 2016. Terrestrial trees can considered an effective low-cost, low-energy strategy for
removing BC from the atmosphere [19,20]. Some large-scale experiments, including the
European Cooperative Air Quality Assessment Network using Bio-indicator Plants and the
European Atmospheric Heavy Metal Deposition Survey, have been conducted in European
countries to measure the metal and particulate matter deposited on leaves in the air [21,22].
A study showed that oak trees in Denton, Texas, can accumulate BC ranging from 160
to 299 mg m−2 canopy per year [20]. Previous research has shown that submicron soot
particles emitted from traffic emissions and fuel combustions can be captured by the leaves
of Platanus acerifolia trees [19]. Furthermore, the adsorption mechanism between carbon
black serving as a model compound of soot particles and straight chain alkanes (C36H74) as
a leaf wax model was studied [23]. Our prior study found the hydrogen bonding between
hexatriacontane wax and soot resulted in the adsorption of BC on the leaf surface, and then
soot particles could be captured and penetrate the mechanical barrier of the stomata of the
sycamore leaves and ultimately migrate to the mesophyll system [23].

In the ambient environment, the current method for measuring submicron BC includes
a multi-wavelength aethalometer and soot-particle aerosol mass spectrometer [24,25]. These
two methods have been widely used to measure real-time submicron BC in the ambient
air worldwide [26]. On the other hand, the leaves of trees are commonly adopted to bio-
monitor air pollution in areas where measurement sites are scarce [19,27]. However, a
method for measuring the BC on tree leaves of bio-monitoring samplers is absent. The
water-soluble brown carbon in particulate matter contributes to the ultraviolet–visible
absorption varying from 200 to 550 nm [28]. Therefore, the measurement of BC on filter
samples is normally performed using thermo–optical methods to avoid interference from
water-soluble brown carbon [29]. Thermo–optical methods are incapable of determining
the BC on the leaves of plants [30]. These interferences may result in a large bias in the
measurements of BC collected using bio-monitoring tools. Ambient water-soluble brown
carbon mainly includes humic-like fluorescence substances and a mixture of airborne
amino acids [8,31]. Some prior studies have shown that leaves can uptake water-soluble
brown carbon and different amino acids via stomata within 30 min serving as nutrients to
maintain growth [32–35]. Our prior study also examined the interaction process between
the polycyclic aromatic hydrocarbons (PAHs) at high concentrations and tree leaves using
whole-transcriptome analysis [36]. Based on the analysis of the significant differentially
expressed genes, seven main pathways play roles in absorbing high concentrations of PAHs
on the surface of plant leaves [36]. Consequently, the tree leaves could retain the BC on their
wax layers [23]. Due to the characteristic of selective adsorption on water-soluble brown
carbon by leaves, ultraviolet–visible spectroscopy may serve as an option to measure the
BC in tree leaves [37]. During the periods of leaf development and expansion, leaves could
emit methanol in the range from 10.0 to 26.8 µg g−1 [38]. Zhang et al. [39] also found that
the leaves of four plants could emit a great amount of nanoparticles with sizes ranging
from 50 to 300 nm, which are composed of sulfate, phosphate, and metals. In contrast, few
studies illustrated that inorganic carbon (e.g., BC) could be emitted from the leaves of plants
to date. Thus, it is supposed that the leaves of trees could retain BC in the environment and
not emit BC due to the physiological functions of leaves.

The health risks associated with reactive oxygen species on the surface of BC can be
assessed using oxidative potential (OP) assays [40]. Two common assays (i.e., the DTT
assay and AA assay) are widely used to characterize the OP of carbonaceous particles
and are linked to various health effects [6,41]. Previous studies have shown that the OP
of aged soot particles increases by 2 to 7 times compared with fresh particles [42]. Soot
particles originate from the incomplete combustion of fossil fuels and biomass, which are
composed of spherical carbon particles, including internal carbon nuclei and externally
bound organic matter [42]. The enhancement of aging particle OP can be attributed to the
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structural changes in nanoscale soot particles after visible light irradiation, which is linked
with the formation of single-bond oxygen groups on aging particles [42]. Considerable
studies have investigated the OP levels of ambient particles across the world [40]. Limited
studies have been conducted to illustrate the OP levels of dry-deposited BC on leaves.
Since it is not documented that BC is emitted from the leaves of trees due to physiological
functions, the measurements of OP levels in this study refer to the OP levels associated
with dry-deposited BC from the environment.

This study aims to measure the submicron BC collected from the leaves of bio-
monitoring trees. We used dual-wavelength ultraviolet–visible spectroscopy to determine
the submicron BC in water extracts of leaves. Then, the OP of water extracts was measured
using DTT and AA assays. The OP levels in water extracts of leaves were compared with
OP levels of submicron BC, which can identify the contribution of submicron BC to the
OP levels of deposited PM on leaves. This pilot study could provide a robust method to
bio-monitor BC from the atmosphere to reduce the air pollution associated with BC for
achieving the 2030 Agenda for Sustainable Development.

2. Methods
2.1. Sample Collections

The leaf samples were collected in the urban area of Nanjing from June to July (Sum-
mer) 2023, respectively. The collection of leaf samples was conducted based on previous
studies and under the National Atmospheric Deposition Programme (NADP) monitoring
initiative protocol [19,20]. Briefly, the leaf samples were taken from 30 species of plants,
which are Eucommia ulmoides, Koelreuteria paniculata, Osmanthus fragrans, Buddleja Davidii,
Platanus acerifolia, Fatsia japonica, Hedera Helix, Eriobotrya japonica, Cerasus yedoensis, Sapin-
dus mukorossi Gaertn., Hydrangea macrophylla (Thunb.) Ser., Euonymusalatus (Thunb.) Sieb.,
Pittosporum tobira (Thunb.) Ait., Photinia serrulata Lindl, Aucuba japonica, Cercis glabra, Iris
tectorum Maxim, Aucuba japonica Variegata, Canna indica, Liriodendron tulipifera, Ligustrum lu-
cidum, Cinnamomum camphora,, Sinojackia xylocarpa Hu, Yulania denudate, White Mulberry,
Hederanepalensis var. sinensis (Tobl.) Rehd, Pseudasasa japonica, Hosta ventricosa., Trachycarpus
fortune, and Viburnum awabuki K. Koch. A respective sample was created from a mixture of
four parallel leaves in one tree throughout the growing season. For each species, we sam-
pled three respective trees separately. The duplicate tree is 3–5 m in height and 30–50 cm
in trunk diameter and lives in environmental conditions with similar conditions of water,
soil, and wind. Leaves were sampled from the south-facing side of each tree between 135
and 225 degrees, where dominant emission sources (mobile source) of BC are located. The
sampling periods exclude rainy days because rain could wash off the deposited BC on
leaves and add new materials contained in raindrops [20]. The collection of mature leaf
samples with similar leaf ages starts three days after the rain. All the sampled trees were
situated in the same location for three years or longer [19]. We harvested the leaves from
different types of trees using the same selection criterion. We collected approximately 20 g
of leaves for analysis in each leaf sample. A total of 90 samples were collected from each
species for analysis.

2.2. Water Extracts

Before extraction, the area of the leaf was measured using a leaf-area meter (Yaxin,
Beijing). Additionally, the leaf samples were extracted with mixtures of 50 mL de-ionized
water and 0.1 g of ammonium dihydrogen phosphate (NH4)2H2PO4. The extraction was
carried out three times using a centrifuge table with 200 rpm. Each time lasts for 15-min.
The water extracts were stored at 4 ◦C for 24 h. Then, the micrometer-size particles in the
extracts were removed from water extracts using a 0.22 µm PTFE syringe filter before the
analysis [20]. In addition, we prepared an environmentally relevant water-soluble brown
carbon solution (5 µg mL−1) using humic acids and a mixture of amino acids (i.e., glycine,
alanine, valine, leucine, isoleucine, proline, aspartate, glutamate, serine, and threonine) at a
mass ratio of 1:1. The humic acid solution was dissolved in 100 mL of sodium hydroxide
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with the use of 0.005 g of humic acid. Then, the solution was adjusted to pH 7.0 using
10 mM hydrochloric acid.

2.3. Measurements of Submicron Soot and BC

The extraction solution was then aliquoted into two equal portions. The levels of sub-
micron soot in water extracts were determined using a Multi N/C3000 analyzer (Analytik
Jena, Jena City, Germany). The details of the method are illustrated in a prior study [19].
In brief, the submicron soot in water extracts was pumped into a Multi N/C3000 ana-
lyzer and then converted to CO2 at 150 ◦C with a mixture of 10% H3PO4. The CO2 was
then quantitatively measured using a non-dispersive infrared detector in a Multi-N/C
3000 analyzer. The detection limits for soot samples were found to be 0.05 µg mL−1, and
the relative standard deviation (RSD) was 3.2 ± 0.4%. A quality control experiment was
carried out with the spiked experiments. The average recoveries of soot on leaves ranged
from 90–95%, and the relative standard deviation was lower than 4%.

The determination of submicron BC in water extracts was performed using the Chi-
nese national standard method (GB34323-2017) [37]. First, the standard solutions were
prepared using 0.5–200 µg mL−1 of nanoscale carbon black. The nanoscale carbon black in a
diameter ranging from 3 nm to 5 nm at N234 grade is commercially produced by Alfa Aesar
Chemical., (Haverhill, MA, USA), which is used as an additive to rubber tires [43]. We used
the nanoscale carbon black at N234 grade as a proxy for the BC to prepare the standard
solution in this study because carbon black at N234 grade pertains to BC [44,45]. Then, we
recorded the ultraviolet–visible light absorbance of submicron BC at an interval of 0.1 nm
from 400 nm to 410 nm using a Perkin-Elmer Lambda950 spectrophotometer (Waltham,
MA, USA). We adopted a dual-wavelength ultraviolet–visible method to eliminate the
background interferences [46]. The differences in the ultraviolet–visible absorption spectra
at 405 nm and 410 nm versus the levels of submicron BC in the extraction solution were
plotted (Figure 1). Under optimal conditions, the coefficients of BC determination were
found to be higher than 0.99 with the linear range from 0.5 to 200 µg mL−1. The relative
standard deviations (RSDs) measured varied from 1.8 to 5.0%, and the limit of detection
was 0.1 µg mL−1. We carried out the spiked experiments for the quality control of the
established method. The average recoveries of BC on leaves varied from 87% to 97%, and
the relative standard deviation was lower than 5%.
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2.4. OP Assay

The DTT depletion rate was investigated using water extracts of leaf samples using
10 mM DTT. The 10 mM DTT was prepared in a phosphate buffer (100 mM) at a pH of
7.4, which was stored in a water bath at 37◦C. The depletion rate of DTT was measured
within 30 min. After that, 100 µL of DTT mixed with water extracts of leaf samples was
added to 25 mL of 10% trichloroacetic acid for quenching the reaction. Then, we added
5,5′-dithiobis-2-nitrobenzoic acid (DTNB) at 0.24 mM and ethylenediamine tetraacetic acetic
acid (EDTA) at 20 mM to 100 mL of 0.4 M Tris-HCl solution. The pH was maintained at
8.9 to react with the massive DTT [6]. The concentration of products between DTNB and
massive DTT was determined at 412 nm. The mean depletion rate of DTT over a 30 min
course was calculated using Equation (1).

DTTm = (Co − Ct)/30 × m (1)

where DTTm is the average consumption rate (nmol min−1 m−3); Co is the beginning
concentration of DTT; Ct is the concentration of DTT after the 30 min reaction; m refers to
sample mass added in the reaction system. We used naphthoquinone at 0.2 µg mL−1 as a
positive control to verify the DTT depletion experiment [6]. The average levels of positive
controls (n = 7) were found to be 0.02 ± 0.01 nmol min−1 mg−1. In addition, 0.1 µg mL−1

of nanoscale BC was measured for OP using a DTT assay. The final DTTm in the water
extracts of leaf samples was calculated with the differences between the levels measured by
the DTTm of the sample and the blank samples.

We determined the depletion rate of AA with the water extracts of leaf samples. The
loss rate of the experiment was performed with 10 mM AA and 100 mM phosphate buffer
(pH = 7) at 37 ◦C [41]. The depletion rate of AA was measured at 265 nm within 30 min.
The mean depletion rate of AA in 30 min was estimated using Equation (2).

AAm = (Co − Ct)/30 × m (2)

where AAm refers to the mean consumption rate (nmol min−1 m−3); Co refers to the begin-
ning concentration of AA; Ct refers to the concentration of AA after a 30 min reaction; m is
the sample mass added in the reaction system. We chose 0.2 µg mL−1 of naphthoquinone as
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a positive control to verify the AA depletion experiment. The average levels of the positive
controls (n = 7) were found to be 0.05 ± 0.01 nmol min−1 mg−1. We also determined OP
levels of 0.1 µg mL−1 of nanoscale BC for comparisons.

2.5. Statistical Analysis

The measured levels are shown as the mean and standard deviation with three in-
dependent experiments. We used the ANOVA test to compare these differences in mean
concentrations across different groups [47]. We expressed the significant differences at an
adjusted p-value of <0.05. All statistical analyses were performed with SPSS V26.0 (IBM
SPSS Statistics, Armonk, NY, USA)

3. Results and Discussion
3.1. Determination of BC onLeaves

Figure 1 presents the linear equation between BC ranging from 0.5–200 µg mL−1 and
absorbance of ultraviolet–visible spectroscopy. As shown in Figure 1a, the concentrations
of BC were linear with the absorbance of ultraviolet–visible spectroscopy at 405 nm and
410 nm (R2 = 0.99), respectively. Notably, the ultraviolet–visible absorption of water-
soluble brown carbon ranged from 200 to 550 nm [28]. We adopted a wavelength range
of 400–410 nm to determine the levels of BC on leaves because tree leaves serve as the
specific samplers for absorbing water-soluble brown carbon (i.e., humic acids, glycine,
alanine, valine, leucine, isoleucine, proline, aspartate, glutamate, serine, and threonine)
and retaining the ambient BC (Figure S1). To minimize the matrix effects, we adopted the
dual-wavelength ultraviolet–visible spectroscopy method to quantify the BC on leaves
(Figure 1b) [46]. The differences between 405 nm and 410 nm were associated with the levels
of BC in the range of 0.5 to 200 µg mL−1 in water extracts. The coefficient of determination
was found to be higher than 0.99, and the limit of detection was 0.1 µgmL−1.

3.2. Concentration of BC onLeaves across Species

Using the established method, we measured the BC and soot in water extracts of
leaves from 30 types of plants. The concentration of BC was observed to vary from 0.01
to 1.6 mg m−2, while the levels of soot were found to range from 0.02 to 1.8 mg m−2

(Figure 2). The levels of soot in water extracts of leaves using a Multi N/C3000 analyzer
were greater than the levels of BC in water extracts of leaves using an ultraviolet–visible
light analyzer because the method to determine soot using a Multi N/C3000 analyzer could
not avoid the interference from the organic layer on the surface of BC. Therefore, the values
derived from a Multi N/C3000 analyzer were comparably higher than those derived from
an ultraviolet–visible light analyzer. The average level of BC on leaves of Platanus acerifolia
was 0.5 mg m−2, which was comparable with our measured results of dry deposited BC
on leaves of Platanus acerifolia [19]. Rindy et al. determined the concentration of elemental
carbon in leaves of Oak species in Texas, United States, with the use of a thermal optical
carbon analyzer [20]. The findings from our study are incapable of comparing with the
level of elemental carbon in leaves conducted by Rindy et al. [20] because the methods for
quantifying the levels of soot particles are different. We observed the significant differences
between BC and soot on leaves across types of plants. The average levels of BC and soot
on leaves of some types of plants, including Pittosporum tobira (Thunb.) Ait., Cercis glabra,
Canna indica and Liriodendron tulipifera were found to be lower than 0.02 mg m−2, while
the average levels of BC and soot on leaves of some types of plants, including Eucommia
ulmoides, Hedera Helix, Cerasus yedoensis, Euonymus alatus (Thunb.) Sieb., Sinojackia xylocarpa
Hu, and Viburnum awabuki K. Koch. were observed to be greater than 1.4 mg m−2. The large
variations in BC and soot on leaves across species may be ascribed to the differences in
the accumulation of wax layers in leaves across species [23]. This finding indicated that
some types of trees with relatively greater amounts of dry-deposited BC and soot may be
properly used as bio-monitors of BC and soot relative to other types of trees with a small
amount of dry-deposited BC and soot.
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Figure 2. The average concentration of deposited BC and soot on the leaves of 30 species of plants.

The levels of BC on tree leaves in this study are unable to quantitatively assess the
BC emission near the studied sites because concentration data regarding ambient BC in
the air is absent. The associations between the levels of BC on tree leaves and the ambient
level of BC could provide an insightful understanding of the transfer amounts of BC from
the ambient environment to the tree leaves [48–50]. In addition, the transfer amounts
of BC from the ambient environment to tree leaves will also be influenced by multiple
environmental and meteorological factors (rain, wind speed, and direction), as well as the
physiological condition of plants [48,50,51]. The limitation of this study is that it is incapable
of elucidating the influences of multiple environmental and meteorological factors, as well
as the physiological condition of plants on the transfer amounts of BC from the ambient
environment to the tree leaves [48,50,51]. Our study strives to compare the levels of BC
on leaves across the species under relatively same conditions. The findings showed that
some types of plants (Eucommia ulmoides, Hedera Helix, Cerasus yedoensis, Euonymus alatus
(Thunb.) Sieb., Sinojackia xylocarpa Hu, and Viburnumawabuki K. Koch.) could be used as the
bio-monitoring tree for assessing the concentration of dry deposition of BC.

3.3. Oxidative Potential

As shown in Figure 3, we measured the OP of water extracts of leaves. The levels
of OP in the extract solution determined using the DTT assay were observed to be from
33 to 46 nmol min−1 mg−1. The levels of OP measured using the AA assay varied from
18 to 32 nmol min−1 mg−1. The studies about the OP of deposited particles on leaves
are scarce. Therefore, our study is unable to compare the OP results with other prior



Atmosphere 2024, 15, 127 8 of 12

studies. While some studies have documented the OP of ambient fine particles, our results
were comparable with the results in cities of China (~20–100 nmol min−1 mg−1) and other
regions (~1–80 nmol min−1 mg−1) around the world [52–54]. For example, Daellenbach
et al. [55] found that OP levels of PM10 determined using the DTT assay ranged from 1 to
5 nmol min−1 m−3 over Europe. Xu et al. [56] show that OP levels of PM2.5 measured using
the DTT assay varied from 10 to 150 pmol min−1 m−3, and OP levels of PM2.5 determined
using the AA assay in the range from 5 to 20 pmol min−1 m−3 over Canada.
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To estimate the oxidative potential of BC-dominated mass in the water extracts, we
measured the OP of BC using the DTT and AA assays, respectively. The OP associated
with BC was 70 ± 4 nmol min−1 mg−1 and 25 ± 3 nmol min−1 mg−1 with the DTT and AA
assays, respectively. Using the measured values of BC, we calculated the OP associated with
BC mass in the extract solution across species. For the DTT assay, the levels of BC-dominated
mass ranged from 3 to 37 nmol min−1 mg−1, which accounted for 5–95% of the OP of water
extracts. The levels of OP in terms of BC mass determined using the AA assay were in the
range of 1–12 nmol min−1 mg−1, which contributed to approximately 7–42% of the OP of
water extracts. The acellular assays, including the DTT assay and AA assay, target different
reactive oxygen species and diverse sensitivities to specific chemical compounds [57]. It
is reported that the DTT assay is sensitive to carbonaceous compounds and some soluble
transition metals, while the AA assay mainly responds to transition metals [57]. We
adopted two acellular assays to assess the OP of deposited particles on leaves because it
could provide more comprehensive information to understand the health risks of deposited
particles on leaves [57]. The levels of OP in terms of BC mass using the AA assay were
found to be lower than those determined using the DTT assay because the DTT assay is
more sensitive to carbonaceous compounds than the AA assay [57]. Since the OP was
influenced by the mixtures of chemical compounds, including carbonaceous compounds,
water-soluble ions, metals, and carbonaceous aerosols in ambient particles [40,54], the large
differences in the levels of OP in terms of BC mass between the AA assay and DTT assay
demonstrated large variations in the chemical compositions of deposited BC particles on
leaves across tree species. Since the heterogeneity of sources obtained with the different OP
assays for a given ambient PM exposure, the combination of OP methods characterized
by different chemical mechanisms must be rationally evaluated as part of the health risk
assessment strategy [57].

4. Conclusions

To our knowledge, this study is the first to determine the dry deposition of BC on
leaves using a low-cost method and measure the associated oxidative potential using two
in vitro assays. Our findings indicate that large differences in the levels of BC were found
on leaves across tree species, indicating different dry-deposited characteristics of leaves
across species. Some types of plants (Eucommia ulmoides, Hedera Helix, Cerasus yedoensis,
Euonymus alatus (Thunb.) Sieb., Sinojackia xylocarpa Hu, and Viburnum awabuki K. Koch.)
could be used to monitor the dry deposition of BC as bio-monitor. The oxidative potential
in terms of the dry deposited mass of leaves measured using the DTT and AA assays was
comparable across tree types in this study. This result may indicate that similar public
health risks exposed to dry deposited particles existed. In contrast, the large differences in
oxidative potential based on BC-dominated mass on leaves were observed across tree types,
demonstrating that different leaves of trees exhibited specific characteristics in adsorbing
the chemical components of ambient particles. The findings of this study could be used as
passive bio-tools of BC in areas where routine measurements of BC are lacking.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos15010127/s1, Figure S1: The concentration of humic acids
and a mixture of amino acids (i.e., glycine, alanine, valine, leucine, isoleucine, proline, aspartate,
glutamate, serine, and threonine) at 5 µg mL−1 against time in leaves of three trees.
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