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Abstract: Global temperatures are continuing to rise as atmospheric carbon dioxide (CO2) concen-
trations increase, and climate warming has become a major challenge to global sustainable develop-
ment. The Cross-Track Infrared Sounder (CrIS) instrument is a Fourier transform spectrometer with
0.625 cm−1 spectral resolution covering a 15 µm CO2-absorbing band, providing a way of monitoring
CO2 with on a large scale twice a day. This paper proposes a method to predict the concentration
of column-averaged CO2 (XCO2) from thermal infrared satellite data using ensemble learning to
avoid the iterative computations of radiative transfer models, which are necessary for optimization
estimation (OE). The training data set is constructed with CrIS satellite data, European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) meteorological parameters, and
ground-based observations. The training set was processed using two methods: correlation signif-
icance analysis (abbreviated as CSA) and principal component analysis (PCA). Extreme Gradient
Boosters (XGBoost), Extreme Random Trees (ERT), and Gradient Boost Regression Tree (GBRT) are
used for training and learning to develop the new retrieval model. The results showed that the R2 of
XCO2 prediction built from the PCA dataset was bigger than that from the CSA dataset. These three
learning models were verified by validation sets, and the ERT model showed the best agreement
between model predictions and the truth (R2 = 0.9006, RMSE = 0.7994 ppmv, MAE = 0.5804 ppmv).
The ERT model was finally selected to estimate the concentrations of XCO2. The deviation of XCO2

predictions of 12 TCCON sites in 2019 was within ±1 ppm. The monthly averages of XCO2 concen-
trations in close agreement with TCCON ground observations were grouped into four regions: Asia
(R2 = 0.9671, RMSE = 0.7072 ppmv), Europe (R2 = 0.9703, RMSE = 0.8733 ppmv), North America
(R2 = 0.9800, RMSE = 0.6187 ppmv), and Oceania (R2 = 0.9558, RMSE = 0.4614 ppmv).

Keywords: CrIS; XCO2; PCA; ensemble learning; extremely randomized trees

1. Introduction

Since the beginning of industrialisation, humanity’s pursuit of sustainable develop-
ment has led to increasing greenhouse gas emissions. This significant rise in worldwide
atmospheric carbon dioxide concentrations has escalated from 280 ppmv before the indus-
trial revolution to 413.2 ppmv in 2020 [1]. The present extent of human-induced pollution
and the unregulated release of greenhouse gases into the atmosphere have the potential to
exacerbate signs of global climate change such as global warming, shifts in precipitation
patterns, the thawing of glaciers, and the escalation of sea levels [2]. These issues have
caused significant concern in the international community. In response to the challenge of
climate change, the United Nations Paris Agreement was adopted at the 2015 Paris Climate
Change Conference. The primary aim of the agreement is to restrict the rise in global
average temperature, keeping it well below 2 ◦C, or even 1.5 ◦C [3]. Concerted efforts must
be initiated to reduce carbon emissions and increase carbon sequestration through a range
of socio-economic and technological interventions [2].
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Concentrations of atmospheric trace gases are observed using spectrometers or air-
sampling instruments. However, column-averaged concentrations are usually retrieved
from spectrometers on the ground or onboard space aircraft. Ground-based measurements
are effective in precisely determining trace gas concentrations. Nonetheless, the assessment
of CO2 levels is limited by sparse spatial and temporal coverage [4]. In contrast, spaceborne
measurements characterized by high spatiotemporal resolution are widely regarded as the
most efficacious means of capturing spatial and temporal variations in CO2 distributions [5].
Satellite observations are suitable for “bottom-up” inversion to improve the accuracy of
carbon sink estimations [6].

Thermal infrared (TIR) detectors [7] and near-infrared (NIR) detectors [8] are two
primary methods of monitoring the concentration of CO2 in space. Thermal infrared hyper-
spectral sensors receive thermal radiation from the Earth’s surface, and are sensitive to the
CO2 absorption in the mid to upper troposphere. In contrast, short-wave infrared detectors
receive solar radiation reflected from surfaces, having sensitivities to CO2 absorption near
the surface, but being affected by clouds and water vapour [9]. CrIS onboard NOAA-20,
launched in 2017 and featuring accurate radiometric and spectral calibration, can provide
observations in long time series. When considering a machine learning model to estimate
CO2 concentrations, a sufficient number of samples can improve the model’s ability to
generalize, reduce the risk of overfitting, and consequently improve the model’s predictive
accuracy [10]. CrIS has much wider range than these SW IR sensors, and can provide more
observations for modelling.

The physical retrieval model has commonly been used to estimate the concentrations
of CO2 from satellite measurements. Zhang et al. [11] conducted a CO2 optimal estimation
using CrIS full resolution spectral data, with an R2 of 0.72 and an RMSE of 0.45 ppmv when
compared with measurements from the Civil Aircraft for the Regular Investigation of the
Atmosphere Based on an Instrument Container (CARIBIC). The iterative inverse process is
prone to nonconvergence due to the nonlinear radiation transfer equation and the difficulty
of obtaining accurate atmospheric state parameters [12]. Zhao et al. [13] proposed a two-
step machine learning model based on Greenhouse gases Observing SATellite (GOSAT)
clear sky radiances, achieving a mean error (ME) of 0.09 ppmv and an RMSE of 3.13 ppmv,
compared to GOSAT Level 2 product data. David et al. [14] proposed a neural network
model (NN) for CO2 concentration estimation, with a precision of 0.8 ppmv, indicating
that when trained on a representative dataset, the NN model offers slightly superior
accuracy compared to the fully physical algorithm. This work demonstrated that both
machine learning and neural network models can achieve high accuracy in predicting
CO2 concentrations.

Ensemble learning is a meta-method that improves the performance of a model by
combining multiple machine learning models, and mitigates the risk of overfitting often
seen in machine learning algorithms when dealing with challenges like imbalanced, multi-
dimensional, and noisy data [15]. This approach can improve the overall forecast accuracy
and stability. In this paper, we employed three models to predict the concentration of XCO2
from thermal infrared satellite data using ensemble learning. The dataset used for training
was constructed using CrIS satellite data, ERA5 meteorological parameters, the normalised
difference vegetation index (NDVI), surface parameters, DEM, and ground-based observa-
tions; the training set was processed using two methods: correlation significance analysis
and principal component analysis (PCA). Comparing between model predictions and the
truth in three ensemble learning algorithm models, we identified the most suitable model
for estimating CO2 concentrations using thermal infrared data. This research provides a
precise and efficient model algorithm for CO2 concentration estimation.

2. Data Sources and Processing
2.1. Data Sources

We used column-averaged concentrations of CO2 from TCCON sites as reference
benchmarks to build the dataset and validate the accuracy of the model [16]. Param-
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eters were derived from CrIS, ERA5, and products from other satellites for describing
representative features in spectral, spatial-temporal, meteorological and surface domains.

2.1.1. TCCON Data

The Total Carbon Column Observing Network (TCCON) is a global observational
network that gathers high-precision atmospheric greenhouse gas (primarily CO2 and
CH4) concentrations from ground-based Fourier transform spectrometers. TCCON was
established in 2004, and has expanded from its initial 3 sites to the current 26 official
sites [17]. Figure 1 illustrates the distribution of TCCON sites, primarily located in North
America, Europe, and the East Asia.
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Figure 1. Distribution of TCCON stations.

The concentrations of XCO2 were processed with the Gas Fit (GFIT) algorithm, a non-
linear least-squares fitting method [18], which involves generating a synthetic spectrum
by fine-tuning a priori profiles to achieve the closest match with the observed spectrum.
The total column amounts of CO2 were integrated from the adjusted CO2 profile, and the
concentrations of XCO2 were divided by the total column amount of dry air [19]. This
study used the latest version of the TCCON data (GGG 2020) [20], from all 26 sites in 2019.
The detailed information of TCCON sites is listed in Table 1.

Table 1. Information for TCCON stations used for validation.

Name Lon Lat Number Name Lon Lat Number

Xianghe 116.96 39.8 16,075 Rikubetsu 143.77 43.46 3976
Hefei 117.17 31.91 3002 SaintDenis 26.63 67.37 9825

Zugspitze 10.98 47.42 3567 Paris 2.36 48.85 21,442
Wollongong 150.88 −34.41 19,508 ParkFalls −90.27 45.94 21,986

Tsukuba 140.12 36.05 13,990 Trainou 2.11 47.97 15,753
NyAlesund 11.92 78.92 4736 Lamont −97.49 36.6 28,766

Lauder 169.68 −45.04 42,984 Eureka −86.42 80.05 7652
Karlsruhe 8.44 49.1 8229 EastTrout −104.99 54.36 39,992

Saga 130.29 33.24 15,147 Edwards −117.88 34.96 57,555
Izana −16.48 28.3 12,940 Darwin 130.89 −12.43 12,838

Garmisch 47.48 11.06 8803 Caltech −118.13 34.14 36,000
Bremen 8.85 53.1 1451 Burgos 120.65 18.53 32,649

Sodankyla 26.63 67.37 13,050 Nicosia 33.38 35.14 10,476
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2.1.2. CrIS

The Joint Polar Satellite System-1 (JPSS-1) satellite was successfully launched into
space from Vandenberg Air Force Base on 18 November 2017. Mounted on the satellite, the
CrIS (Cross-track Infrared Sounder) is a Fourier-transform infrared spectrometer equipped
with a total of 2211 infrared detection channels. ATMS (Advanced Technology Microwave
Sounder) is a microwave sensor with 22 channels, operating within a frequency range from
23 GHz to 183 GHz. The CLIMCAPS (Community Long-Term Infrared Microwave Coupled
Product System) algorithm was employed for the analysis of the infrared and microwave
well-calibrated radiance of this CrIS/ATMS. Due to the significant impact of clouds on
observations from the infrared detector, cloud-clearing processing was applied, yielding
cloud-cleared radiance L2 products, which provides radiation that is free of cloud and fog
interference. The data are generated at 6 min intervals, covering 30 positions horizontally
and having 45 data points along the orbit. With a spatial resolution of 50 km, this dataset
has one of the highest spatial and temporal resolutions of the data sets currently available
for meteorological analysis [21–23].

2.1.3. ERA5

The European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis
v5 (ERA5) is a fifth-generation global climate reanalysis dataset. It provides high-spatial-
resolution and high-temporal-resolution meteorological fields worldwide, including vari-
ous meteorological and cloud parameters such as temperature, precipitation, wind speed,
and atmospheric pressure. ERA5 features a spatial resolution of 0.25◦ and a temporal
resolution of 1 h, establishing its status as the most high-resolution global meteorological
reanalysis dataset available to date [24].

To further investigate the influence of cloud and meteorological features on CO2
concentration, this study acquired meteorological parameters including temperature, wind
components (U and V), and vertical velocity within the pressure range of 100 to 1000 hPa.
Additionally, data related to cloud features were collected, including boundary layer
height (blh), cloud base height (cbh), total cloud cover (tcc), and total precipitation (tp).
Furthermore, gas-related data, such as total ozone column concentration (tco3) in the
atmosphere, were also obtained.

2.1.4. Other Parameters

The normalized difference vegetation index (NDVI) is an indicator used to assess
the extent of vegetation coverage and its growth conditions. The concentration of CO2 is
highly affected by the condition of surface vegetation [25]. In this work, NDVI values were
extracted from MODIS (MOD13Q1 [26]) with a spatial resolution of 250 m and a temporal
resolution of 16 days.

Surface parameters such as surface emissivity and skin temperature are crucial for
upward atmospheric radiation [27,28]. In this work, the surface reflectance was extracted
from MODIS (MOD09GA [29]), in the infrared band (620–670 nm) with a spatial resolution
of 500 m.

There is also a certain relationship between site elevation and XCO2 concentration.
Additionally, the elevation was extracted from Global Land One km Base Elevation (GLOBE)
(GLOBE Topography [30]) with a spatial resolution of 1 km.

2.2. Data Processing

TCCON carries out continuous measurements of data at 90 s intervals on a daily
basis. For each TCCON site, we calculated the mean and standard deviation of XCO2
concentrations. Then, we removed the data that exceed three times the standard deviation.
Finally, we recomputed the mean of the remaining values to obtain the corrected daily
XCO2 concentration for each site [13]. The processing of parameters as trained by CrIS
included the following operations. (1) The reciprocal of the cosine of the solar zenith angle
and the zenith angle were found, respectively, and the sine of the difference between the
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solar azimuth angle and the satellite azimuth angle was found. (2) The spectral channels
were selected in the range of 648.75 cm−1 to 1096.875 cm−1, giving a total of 717 channels.
Due to variations in the temporal and spatial resolutions of the parameters involved in the
modelling process, it was necessary to perform spatiotemporal matching. This involved
standardizing the data to a daily temporal resolution and a spatial resolution of 1◦ [17]. We
performed daily averaging on the hourly data provided by ERA5 meteorological reanalysis.
The MODIS NDVI and surface reflectance data have different temporal resolutions (16 days
and daily, respectively). These parameters used daily column-averaged CO2 concentrations
from TCCON sites as reference benchmarks to build the dataset. The specific information
of the features used for model training is listed in Table 2.

Table 2. The specific feature information used in model training.

Variable
Abbreviation Full Name of the Variable Unit Temporal

Resolution
Spatial

Resolution Data Sources

XCO2
Column-averaged CO2 dry air

mole fraction ppmv - - TCCON

lon Longitude

6 min 50 km × 50 km Cloud-cleared
radiances V2

lat Latitude
month Month m

dd Days d
band Radiance mw/(m2 sr cm−1)
sza Solar zenith angle -
saa Solar azimuth angle degree
za Zenith angle -
aa Azimuth angle -

P1 * 100 hpa hPa

1 h 0.25◦ × 0.25◦ ERA5

T1 * Temperature at 100 hpa K
U1 * U-component of wind at 100 hpa m/s
V1 * V-component of wind at 100 hpa m/s
W1 * Vertical velocity at 100 hpa pa/s
blh Boundary layer height m
cbh Cloud bottom height m
tp Total precipitation -
cl Lake cover -
tcc Total cloud coverage -
skt Skin temperature K
t2m 2 m Temperature K
tco3 Total column ozone kg/m−2

NDVI Normalized difference
vegetation index - 16 d 250 m × 250 m MOD13Q1

SR Surface reflectance % 1 d 500 m × 500 m MOD09GA

DEM Digital elevation model m - - GLOBE
Topography

* T, U, V, and W at different vertical air pressures from 100–1000 hPa.

3. Methodology

Machine learning is a branch of artificial intelligence whose primary aim is to enable
computers to automatically learn from data and use the acquired knowledge for prediction
or decision making [31]. Models in machine learning are mathematical algorithms that
learn from data to make predictions, classifications, or decisions on unseen data by identi-
fying patterns and relationships in the information; many machine learning models have
been developed and are widely used, including neural networks (NNs), random forest
(RF), support vector machines (SVMs), convolutional neural networks (CNNs), etc. [32].
Ensemble learning has shown good consistency in gas concentration inversion studies [33].
This study analyses and compares three ensemble learning algorithms: Gradient Boosting
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Decision Trees (XGBoost), Gradient Boosting Regression Trees (GBRT), and Extremely
Randomized Trees (ERT), with the aim of selecting the optimal estimation model.

3.1. Ensemble Learning Methods

Ensemble learning is a machine learning approach whose core idea is to enhance the
overall performance and robustness of a model by combining the predictions of multiple
individual models [34]. Ensemble learning methods are primarily divided into two main
categories: bagging and boosting. Bagging involves the creation of many subsamples
through random sampling with replacement. Each of these subsamples is then utilized
to train an individual base model. The final prediction results from these models are
combined through averaging or voting [35]. By contrast, boosting modifies the weights of
the samples in each iteration, based on the prediction errors from the previous stage; the
final ensemble model is ultimately obtained by aggregating the predictions of all the base
models through weighted combination [36]. By combining predictions from several models,
ensemble learning can efficiently employ different models’ strengths, address individual
models’ weaknesses, and improve prediction accuracy and generalization capabilities. This
approach has been demonstrated in practical applications to significantly enhance model
performance, making it adaptable to a broader range of data and problems [37].

Extreme Gradient Boosting (XGBoost) stands out as an optimized distributed gradient
boosting algorithm, notable for its expedited computational performance compared to
contemporary popular machine learning models. This model incorporates a regularization
term within the loss function to manage the model’s complexity. The adjusted loss function
is elucidated through the utilization of the two-dimensional Taylor formula. This strategic
refinement effectively addresses the issues of overfitting inherent in conventional gradient
boosting models, concurrently augmenting the model’s accuracy and its generalization
capabilities [38]. Gradient Boosted Regression Trees (GBRT) constitute a supervised ma-
chine learning technique that was first conceptualized by Friedman in 2001. It embodies
the concept of a robust learner, weighted by an ensemble of multiple weaker learners. Each
of the weaker learners is represented as an individual regression decision tree, and every
subtree is oriented toward learning in the direction of the negative gradient associated with
the residuals from the preceding tree. Through continuous iterations aimed at minimizing
the loss function, the GBRT prediction model is systematically forged. The algorithm
predominantly comprises the stages of expanding regression decision trees, judiciously
pruning these trees and harmoniously amalgamating them into a coherent ensemble [39].
Compared with traditional random forest, Extremely Randomized Trees (ERT) employ the
entire dataset to train individual decision trees. This ensures the effective utilization of
training samples and contributes to a reduction in the final prediction bias. To maintain dis-
tinct structural variations among each decision tree, ERT introduces increased randomness
to node splitting. Specifically, it involves the random selection of division thresholds for
each feature from the sub-dataset, and the optimal partition attribute is chosen based on
the best division according to the specified threshold feature [40].

3.2. Model Evaluation Methodology

The model’s performance was evaluated using the squared coefficient of determina-
tion (R2), which determines the extent to which the model explains the variance in the
observations [41]. Furthermore, the root mean square error (RMSE) was used to illustrate
the standard deviation of residuals (prediction error) [42], whereas the mean absolute
error (MAE) calculated the average absolute difference between model predictions and
observed values [43]. The TCCON observation was set as yi, yi is the mean of the TCCON
observation, ŷi is the model prediction, and n is the number of samples.

R2 is computed as follows:

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (1)
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The RMSE is the square root of the mean of the squared deviations between predicted
values and observed values. The formula is as follows:

RMSE ==

√
∑n

i=1 (yi − ŷi)
2

n
(2)

The MAE is the mean of the absolute disparities between predicted values and obser-
vation values. The formula is as follows:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

3.3. Technical Flowchart

The estimation process of the concentration of XCO2 from thermal infrared satellite
data based on ensemble learning in the thermal infrared is shown in Figure 2. Firstly, the
data were standardized to a daily temporal resolution and a unique spatial resolution of 1◦.
Due to the large number of features, two methods were employed to construct datasets
to select the optimal feature parameters: correlation significance analysis and principal
component analysis. The datasets were randomly divided into training sets (80%), testing
sets (10%), and validation sets (10%). Three different ensemble learning models (ERT,
XGBoost, GBRT) were employed and compared over two datasets. The final objective is to
choose the model with the lowest RMSE in the estimation of XCO2 concentration.
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4. Feature and Model Experiments

This study employed correlation and significance analysis and principal component
analysis (PCA) to select the characteristic variables. Improving training speed by reducing
features and reducing interference noise to reduce the risk of overfitting improves model
effectiveness, we chose a training set that is more suitable for building an ensemble learning
model. The experiments were carried out using XGBoost, GBRT, and ERT with two datasets.
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4.1. Correlation and Significance Analysis

Correlation and significance analysis can be employed to filter out unimportant fea-
tures, reduce the number of features, enhance model accuracy, and reduce runtime. The
Pearson correlation coefficient is typically denoted as “r”, and is used as a statistical
measurement to assess the strength of the linear relationship between two continuous
variables [44]. Significance is commonly represented using p-values and is also used to
filter out unimportant features [45].

In Figure 3, the heat map of correlation coefficients shows a positive correlation in red
and a negative correlation in blue, and the number of stars shows the level of significance.
Sensitivity was assessed in each case by examining the correlation coefficient® and its level
of statistical significance (p-value). XCO2 showed a positive correlation with lat, DEM, blh,
cl, and tco3, with a significance of 0.01. Among these factors, tco3 has the highest positive
correlation, which is 0.27. XCO2 showed a negative correlation with lon, month, dd, NDVI,
skt, and t2m, and NDVI showed the highest negative correlation of −0.21. Other features
exhibited low or no correlation with XCO2, so they were all removed. Ultimately, lat, lon,
month, dd, NDVI, skt, t2m, DEM, blh, cl, and tco3 were retained. The selection of spectral
bands involved choosing two channels around 15 µm that are sensitive to CO2 but not
sensitive to other variables, based on the Jacobian function, as mentioned in [11]. Figure 4
illustrates the selected bands, denoted by red lines. The final selected two spectral bands
corresponded to radiance at wavelengths of 668.75 cm−1 and 701.875 cm−1.
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4.2. Principal Component Analysis

Principal component analysis (PCA) is a widely used method for data dimensionality
reduction and extracting essential information [46]. This process involves finding a new
set of orthogonal feature vectors, also known as principal components, that capture the
variability in the original data in a particular way, allowing for an efficient representation of
the data in lower dimensions while maximising the retention of information in the data. By
selecting an appropriate number of principal components, it is possible to achieve dimen-
sionality reduction in the data, reducing redundancy and enabling a deeper understanding
and analysis of the data [47].

In this work, principal component analysis was conducted on 717 channels within the
spectral range of 648.75 cm−1 to 1096.875 cm−1 which had information on CO2 absorption,
and the first three principal components scores were computed to represent the information
from 717 channels. Similarly, principal component analysis was conducted on meteorolog-
ical data on ten pressures (100–1000 hPa), and temperature (T), vertical wind speed (U),
horizontal wind speed (V), vertical wind speed (W) on these ten pressures, and the first
three principal components were selected to represent meteorological data. Additionally,
one principal component was chosen to represent satellite observed geometry information.
Additionally, surface parameters such as NDVI, SR, and DEM have become crucial for the
upward atmospheric radiation. The initial dataset was constructed by employing spatial–
temporal and spectral characteristics as reference benchmarks. This study investigates the
influence of additional parameters on model correctness through the utilization of the ERT
model. Figure 5 illustrates the values of R2, RESE, and MAE for the ERT model that was
trained using various features. The results demonstrated that the features such as NDVI,
SR, and PCA scores of the observed geometry information of satellites (abbreviated as
SOA) resulted in a noteworthy enhancement of the R2 value of the model. Furthermore,
a decrease in RMSE and MAE values suggested a favourable impact of these features
on the overall performance of the model. The first three principal components score of
meteorological data and DEM exhibited a minimal or negligible impact on the accuracy of
the model. Consequently, these features were excluded from the dataset.

4.3. Model Training Comparison

Three distinct ensemble learning models, namely ERT, XGBoost, and GBRT, were uti-
lized for training. The determination of the optimal selection of primary parameters for the
three ensemble learning models was achieved by optimizing model parameters. The model
parameter settings can be found in Table 3. The adjustment of parameter configurations
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will improve the performance of the model during both the training and prediction stages,
hence guaranteeing more precise and dependable forecasting outcomes [48].
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Table 3. Detailed settings of model parameters.

Model n_Estimators Max_Depth Min_Samples_Split Min_Samples_Leaf

ERT 400 30 5 1
GBRT 300 25 5 5

XGBoost 400 30 8 0.2

Figure 6 showed a scatter plot of the XCO2 concentration of the three different ensem-
ble learning models (ERT, XGBoost, GBRT), with datasets derived from the testing dataset.
Comparing these three models, the R2 of XCO2 prediction built from the PCA was found
to be significantly higher than that from the correlation and significance analysis. The ERT
model demonstrated the best agreement (as shown in Table 4), with an R2 of 0.9231, an
RMSE of 0.7552 ppmv, and a MAE of 0.5568 ppmv. The result showed that the R2 of the
ERT model was higher, and the RMSE and MAE were lower than those of the other models.
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Table 4. The various evaluation metrics of the model training results.

Model R2 RMSE (ppmv) MAE (ppmv)

ERT (PCA) 0.9231 0.7552 0.5568
ERT (CSA) 0.9029 0.8026 0.5704

GBRT (PCA) 0.9067 0.7907 0.5812
GBRT (CSA) 0.8938 0.8458 0.6163

XGBoost (PCA) 0.8995 0.8382 0.6371
XGBoost (CSA) 0.8701 0.9368 0.6777

5. Validation

Figure 7 shows a scatter plot of predicted XCO2 concentration in the validation set.
These three learning models were validated using validation sets. The results show that
the R2 values were 0.9006, 0.8720, and 0.8769 for ERT, GBRT, and XGBoost, respectively.
The RMSE values were 0.7994, 0.9068, and 0.8897, and the MAE values were 0.5804, 0.6705,
and 0.6624(as shown in Table 5). The ERT had the highest R2 and the lowest RMSE and
MAE. Combining these with consideration of three model evaluation indicators, the ERT
model showed the best agreement in model validation, with high prediction accuracy
and minimal prediction errors. Thus, the ERT model was finally selected to estimate the
concentrations of XCO2.
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Figure 7. Scatter plot of predicted XCO2 concentrations in the validation set. (The red dashed line
represents the isoproportion line, while the blue dashed line represents the fitted line. The color of
the points varies with density).

Table 5. Validation results of the three models.

Model R2 RMSE (ppmv) MAE (ppmv)

ERT 0.9006 0.7994 0.5804
GBRT 0.8720 0.9068 0.6705

XGBoost 0.8768 0.8897 0.6624

The mean and standard deviation of the XCO2 concentrations obtained from 12 TC-
CON stations in the validation set were compared with the XCO2 concentrations predicted
by the ERT model in Figure 8. The Xianghe station in China exhibited the highest concen-
tration of XCO2, as indicated by a model projected value of 412.33 ppmv and an observed
value of 412.17 ppmv. The Lauder station in New Zealand exhibited the lowest concentra-
tion of XCO2, as evidenced by the observed value of 406.86 ppmv compared to the model
projected value of 406.96 ppmv. The mean and standard deviations of XCO2 concentrations
at various stations were within ±1 ppmv. The results indicate that the XCO2 concentrations
at various longitudes and latitudes were accurately predicted by the ERT model.
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Figure 8. The mean and standard deviation of XCO2 observations and model predictions at
12 TCCON sites.

Based on the global distribution of TCCON sites, the results of ground-based observa-
tions and model predictions were categorized into four groups: such as Asia, Europe, South
America, and Oceania. The model predicted results were compared with the monthly
means and standard deviations of the TCCON measurements (as shown in Figure 9). The
R2 and RMSE values for the monthly mean values of TCCON observations and model pre-
dictions are as follows in the four regions: Asia (R2 = 0.9671, RMSE = 0.7072 ppmv), Europe
(R2 = 0.9703, RMSE = 0.8733 ppmv), North America (R2 = 0.9800, RMSE = 0.6187 ppmv),
and Oceania (R2 = 0.9558, RMSE = 0.4614 ppmv). The monthly averages of XCO2 concen-
trations of model prediction and TCCON observations are generally consistent in the four
regions. The concentration of XCO2 at the sites located in Asia, Europe, and North America
demonstrate a declining pattern throughout June to August, followed by a steady increase
in the subsequent months from August to December.
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Atmosphere 2024, 15, 118 13 of 15

The model prediction exhibits significant agreement with the TCCON observations in
most months, notably in the trends of XCO2 concentration seasonal fluctuations during the
summer and autumn. The results suggest that the model exhibits a strong ability to estimate
XCO2 concentrations on a monthly basis. However, the accuracy of model predictions in
the Oceania region is limited due to a lack of samples.

6. Conclusions

In this work, three ensemble learning models were used for the prediction of column-
averaged CO2 concentrations from thermal infrared satellite data. These estimations were
based on data obtained from the CrIS satellite, ERA5 meteorological parameters, and
ground-based observations. The study involved a comparison of datasets generated using
two methodologies in order to identify the most suitable model. Research indicates the
following conclusions:

(1) The primary determinants affecting the evaluation of the concentration of XCO2, as
studied through correlation and significance analysis, encompass latitude, NDVI, and TCO3.
The correlations between XCO2 and these variables are 0.18, −0.17, and 0.26, showing a
strong correlation between the concentration of CO2 and the seasonal variation in biomass.
The PCA showed that the features such as NDVI, SR, and PCA scores of the observed
geometry information of satellites could raise up the R2 of the model. The NDVI showed
a substantial influence on both datasets and warranted careful consideration as a pivotal
feature in forthcoming CO2 retrieval procedures.

(2) The dataset constructed using PCA leads to improved accuracy in the estimation
of XCO2 concentrations. The ERT model demonstrated the highest estimation accuracy
based on several evaluation indicators, including an R2 value of 0.9231, an RMSE value of
0.7552 ppmv, and an MAE value of 0.5568 ppmv.

(3) The model predictions agree well with the measurements from the TCCON sites in
industrial regions, including Xianghe, Saint Denis and Caltech, showing higher XCO2 con-
centrations than other sites. The examination of monthly trends indicates the existence of
seasonal variations in XCO2 levels across multiple sites in Asia, Europe, and North America.
It is worth noting that the lowest concentration of XCO2 appears in August. TCCON station
observations have high precision, but the scarcity of globally effective observation sites
results in very limited observational data. Looking ahead, as the number of observation
sites continues to grow, our model presents a valuable tool for estimating regional CO2
concentrations. Furthermore, it enables the analysis of spatiotemporal variations in CO2
concentrations, particularly focusing on key urban areas. This research contributes to the
broader understanding of carbon dioxide dynamics, aiding in the development of targeted
strategies for environmental management and policy formulation.
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