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Abstract: Air pollutants adversely affect human health, and thus a global improvement in air
quality is urgent. A Geostationary Environment Monitoring Spectrometer (GEMS) was mounted
on the geostationary Chollian 2B satellite in 2020 to observe the spatial distribution of air pollution,
and sequential observations have been released since July 2022. The reliability of GEMS must be
analyzed because it is the first payload on the geostationary Earth orbit satellite to observe trace
gases. This study analyzed the initial results of GEMS observations such as the aerosol optical depth
and vertical column densities (VCD) of ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2),
and formaldehyde (HCHO), and compared them with previous studies. The correlation coefficient
of O3 ranged from 0.90 (Ozone Monitoring Instrument, OMI) to 0.97 (TROPOspheric Monitoring
Instrument, TROPOMI), whereas that of NO2 ranged from 0.47 (winter, OMI and OMPS) to 0.83
(summer, TROPOMI). GEMS yielded a higher VCD of NO2 than that of OMI and TROPOMI. Based
on the sources of O3 and NO2, GEMS observed the maximum VCD at a different time (3–4 h) to
that of the ground observations. Overall, GEMS can make observations several times a day and is a
potential tool for atmospheric environmental analysis.

Keywords: air quality; remote sensing; geostationary environment; monitoring spectrometer;
geostationary environment monitoring spectrometer; GEMS

1. Introduction

Outdoor air pollution adversely affects health and can cause carcinogenicity [1–5].
According to the World Health Organization, air pollutants caused approximately seven
million premature deaths worldwide in 2012, with low- and middle-income countries ac-
counting for 91% [6]. Particularly, due to the deteriorating air quality due to rapid economic
growth, the East Asian region has recently reported high levels of air pollutants and is
therefore striving to improve the air quality. The effects of both the long-range transported
and locally emitted air pollutants need to be considered for an effective improvement in air
quality. Studies have attempted to elucidate that the mutual effects between air quality and
air pollutants are not linear due to secondary aerosols, among other factors [7–13].

Most studies have used numerical modeling to analyze these mutual effects, and
various complementary methods to resolve the uncertainty yielded by the model results
have been reviewed and introduced [14–16]. As the concentration of trace gases in the
atmosphere can be observed using remote sensing technology, several low Earth orbit
(LEO) satellites have been used [17–21]. Recently, it has become feasible to observe from
geostationary orbit satellites [22]. The Geostationary Environment Monitoring Spectrometer
(GEMS) was mounted on Chollian 2B (GeoKOMPSAT-2B), a geostationary Earth orbit (GEO)
satellite launched in 2020. GEMS can observe the atmospheric environment of East Asia
6–10 times a day, thereby reducing the space–time limitation of the satellite [23,24]. The
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verification of various methods for reliability analysis is essential because GEMS is the first
air quality species observation payload operated in GEO.

In this study, to ensure the reliability of GEMS observations, the spatial distribution
of the East Asian region was analyzed using the initial data of the pilot operation and
compared with that reported in previous studies [25–42]. The reliability was analyzed by
comparing it with the data observed from an existing LEO satellite.

2. Materials and Methods
2.1. GEMS

GEMS was mounted on a geostationary satellite, the Chollian 2B satellite (GeoKOMPSAT-
2B; GK2B), to target a spatial region (in the 5◦ S–45◦ N, 75◦ E–145◦ E directions). Spatial
resolution ranges from 4.8 to 25.6 km, depending on the latitude; the farther away from the
equator, the lower the spatial resolution [24]. Specifically, GEMS has a ground sampling
distance at a resolution of 8 km E–W and 7 km N–S with respect to Seoul, Korea. GEMS
observes a spectral region of 300–500 nm input data for Level 2 [23] at 0.2 nm with a sampling
ratio of 3 (resolution full-width half maximum of 0.6 nm). It has more than 20 products
including the vertical column densities (VCDs) of ozone (O3), nitrogen dioxide (NO2), sulfur
dioxide (SO2), and formaldehyde (HCHO) as well as the aerosol optical depth (AOD). The
Geostationary Ocean Color Imager-II (GOCI-2) [43] was also mounted on the same satellite;
GEMS/GOCI-2 alternately records hourly observations, with 30-minute intervals between
every 30 min of observation. The specifications of GEMS are listed in Table 1.

Table 1. Specifications of the Geostationary Environment Monitoring Spectrometer (GEMS).

Item Main Specification

Main product group Aerosol effective height, AOD, total O3, O3 profile, NO2, SO2,
HCHO/CHOCHO, UV index, cloud, surface reflectance

Spectral range 300–500 nm

Spectral resolution 0.6 nm (FWHM)

Spectral sampling resolution 0.2 nm

Spatial range 5◦ S–45◦ N, 75◦ E–145◦ E

Ground resolution 7 × 8 km2 at Seoul

Time resolution 1 h (30 min observation, 30 min rest)
Note: AOD, aerosol optical depth; FWHM, full width at half maximum.

GEMS creates a data cube containing three-dimensional data for a single observation.
One axis is in the E–W direction, another in the N–S direction, and the last is in the spectral
range. GEMS moves the scan mirror 695 times within 30 min from west to east, each time
comprising two-dimensional data using one slit. Each slit has spatial information composed
of 2048 pixels in the N–S direction, whereas the other direction is divided into 1000 pieces of
spectral information. As the solar zenith angle (SZA) changes over time, the number of scan
mirror movements in the E–W direction of the GEMS observation domain changes, whereas
the number of observations per day varies (Figure 1). When the signal is low due to the
low solar altitude such as during winter, GEMS records relatively fewer observations over
a relatively small area; when the daytime becomes longer such as in summer, it records
more observations. GEMS calculates the change in the SZA every 15 d in the domain,
predicts change in the signal-to-noise ratio (SNR) according to the SZA, and establishes the
observation schedule (Table 2). Accordingly, GEMS reordered the observations six times in
January and 10 times from April to September, per day. Spatially, the scan areas from west
to east were divided into either full-disk observations (full central [FC], full west [FW]),
which entailed observing 695 slits for 30 min, or half-disk observations (half east [HE], half
Korea [HK]), where one slit was observed twice to increase the SNR.
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Figure 1. Classification of observation areas of the Geostationary Environment Monitoring Spectrom-
eter (GEMS). The purple box in (a) indicates half east (HE), the yellow box in (b) indicates half Korea
(HK), the green box in (c) indicates full central (FC), and the blue box in (d) indicates full west (FW).
The arrows indicate the scanning direction.

Table 2. Observation schedule according to each month.

07:45–
08:15

08:45–
09:15

09:45–
10:15

10:45–
11:15

11:45–
12:15

12:45–
13:15

13:45–
14:15

14:45–
15:15

15:45–
16:15

16:45–
17:15

Number of
Observa-

tions

January HE HK FC FW FW FW 6
February HE HK FC FW FW FW FW 7
March HE HK FC FC FW FW FW FW 8
April HE HK FC FC FC FW FW FW FW FW 10
May HE HK FC FC FW FW FW FW FW FW 10
June HE HK FC FC FW FW FW FW FW FW 10
July HE HK FC FC FW FW FW FW FW FW 10

August HE HK FC FC FW FW FW FW FW FW 10
September HE HK FC FC FW FW FW FW FW FW 10
October HE HK FC FC FW FW FW FW 8
November HE HK FC FW FW FW 6
December HE HK FC FW FW FW 6

Local standard time at Seoul (KST, UTC + 09); HE, half east; HK, half Korea; FC, full central; FW, full west.
The colorless times indicate inactivity.

2.2. Datasets

Regarding the observation results of GEMS, Levels 0, 1a, 1b, 2, and 3 were generated,
similar to the general satellite data, and 1c and value-added product (VAP) data were
also produced. Level 0 represents the original observed spectral data, 1a the wavelength
correction, 1b the geographic correction, and 1c the spectral correction performed on 1b
data. Level 2 represents various outputs such as the concentration of trace gases in the
atmosphere and the ultraviolet (UV) index. Level 3 represents the average length, and VAP
represents general Level 4. In this study, the pilot calculation results for Levels 1c and 2
observed by GEMS were disclosed, and their characteristics were analyzed.

Total column observations of O3 and NO2 observed by GEMS during the pilot opera-
tion were compared with the observations by the Ozone Monitoring Instrument (OMI) [18]
onboard Aura and the TROPOspheric Monitoring Instrument (TROPOMI) [20] onboard
Sentinel-5P. O3 measurements were also compared with the ones from the Ozone Mapping
and Profiler Suite (OMPS) [21] onboard the Suomi National Polar-orbiting Partnership.
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OMI Level 3 data, which are gridded, were used; however, Level 2 data for the other
satellites were used because the Level 3 data were not available. The test operation period
of GEMS was from November 2020 to June 2022, and data from 1 March 2021 to 28 Febru-
ary 2022 were considered for the analysis. The GEMS observation domain described in
Section 2.1 was the study area. The data from each LEO satellite excluded data outside the
GEMS observation area. To analyze the diurnal changes in the GEMS observation results,
the average ground observation data in Seoul were used for comparison. The satellite data
were removed when the viewing zenith angle was over 60◦.

To validate the observed O3 VCD from GEMS, the total column O3 data observed
by the Dobson O3 spectrophotometer located at Yonsei University in Seoul, Korea, were
used. The vertical O3 concentration data observed by the Dobson O3 spectrophotometer
were used, and the hourly mean concentration was determined by selecting the represen-
tative value of the concentration observed from 30 min before to the corresponding hour,
considering that GEMS observes for 30 min every hour starting at 45 min past the hour.
Values observed below 200 DU or above 500 DU were considered outliers and excluded
from the analysis. Additionally, times with fewer than five observations were excluded
from the analysis.

2.3. Methods
2.3.1. GEMS Algorithm

The GEMS system utilizes algorithms to retrieve parameters such as O3, NO2, SO2,
AOD, HCHO/CHOCHO, UV index, surface reflectance, and cloud detection. In this
section, the O3, NO2, SO2, AOD, and HCHO algorithms are briefly discussed. For more
comprehensive information, additional details can be found in the algorithm technical basis
documents available on the website of the National Institute of Environmental Research
(NIER), which operates GEMS [http://nesc.nier.go.kr (accessed on 18 September 2023)].

GEMS observes solar irradiance daily at an angle of incidence of 29◦ [23]. The nonlinear
least squares method is used to correct the spectral response function (SRF) of the daily
observed solar irradiance with solar irradiance data observed at 0.01 nm intervals at the
Smithsonian Astrophysical Observatory in the United States [44]. After SRF correction,
polarization correction is applied to Level 1c data [45] calculated using optimal convolution
variables based on a stable observation schedule following the launch of GEMS. Next,
surface reflectance is computed, and based on this information, the calculations for clouds
and aerosols are performed. Subsequently, O3 is calculated, followed by the computation
of other substances such as SO2, NO2, HCHO/CHOCHO, and the UV index.

The GEMS O3 profile algorithm uses the optimal estimation method, a well-established
technique employed by OMI and LEO satellites and adopted as a GEMS operational
algorithm. The GEMS total ozone algorithm is based on the NASA TOMS, version 9,
algorithm [46] and is composed of a forward model and an inverse model. The forward
model calculates radiance and Jacobians at various wavelengths (312.5, 317.34, 331.02,
340, 380 nm) at the top of the atmosphere using VLIDORT [47]. The inverse model is
employed to convert measured radiance into geophysical parameters for remote sensing
and comprises a three-step process. In Step 1, measurements at 340 and 380 nm are used to
calculate reflectivity. Then, from the radiance calculated by the VLIDORT, the observed
radiance at 317.34 nm is determined, and subsequently, the total column of O3 (TCO)
is estimated. Finally, a temperature correction is applied. In Step 2, using the variables
derived in Step 1, optimal estimation [48] is applied to calculate ozone profiles at three
wavelengths (312.34, 317.34, 331.02 nm), and TCO is obtained by summing the ozone
profiles. In Step 3, cloud corrections are performed, but these corrections are applied under
certain conditions. Cloud corrections are not performed if there are no clouds, if snow/ice
is present, or if the R is lower than Rs. For other cases where RS < R < RC, a linear
correction factor ( fc) is calculated as fc = (R − Rs)/(RC − RS), where 0 ≤ f c ≤ 1. Here,
R represents the Lambertian equivalent reflectance (LER) at 340 nm, and RS and Rc are
assumed to be 0.05 and 0.4, respectively. In cases where there is no snow/ice and R > Rc,

http://nesc.nier.go.kr
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fc is estimated from LER at 340 nm, assuming RS and Rc, then the following correction
is applied.

x̂corrected,l = x̂l(1 − fc) + xa,l fc ; wcorrected,l = wl × (1 − fc)

In these equations, x̂l represents the O3 value of layer l computed in Step 2, xa,l is
the O3 value of layer l from the a priori profile used in Step 2, and w represents the layer
efficiency. The corrected the total O3 value is then expressed as:

(O3)corrected = (O3) +
[
∑lOCP

l=0 x̂corrected,l(1 − wcorrected,l)− ∑lOCP
l=0 x̂l(1 − wl)

]
The NO2 algorithm calculates the slant column density (SCD) using a wavelength

ranging from 432 to 450 nm as a fitting window via differential optical absorption spec-
troscopy (DOAS) and air mass factor (AMF) to calculate the vertical integral concentration;
afterward, the VCD can be obtained.

The SO2 algorithm uses the principal component analysis method that calculates the
concentration based on the observation data at the point where SO2 is expected not to exist,
and the DOAS algorithm uses the 325–335 nm-wavelength range as a fitting window.

The spectral observation region of GEMS ranges from 300 to 500 nm. Therefore, the
550-nm wavelength region, which generally produces AOD, cannot be observed. GEMS
calculates AOD using the lookup table determined in advance using spectral information for
six wavelengths (354, 388, 412, 443, 477, and 490 nm). One of three options is used: 30-day
composite GEMS surface reflectance using the minimum reflectance method obtained
from the GEMS AERAOD algorithm, or GEMS climatology surface reflectance using the
minimum reflectance method. The OMI climatology LER (OMLER v003) dataset is utilized
only when GEMS data are unavailable for surface reflectance correction [37].

The GEMS HCHO algorithm utilizes the wavelength range of 328.5–356.5 nm and
employs the BOAS method. It estimates clean regions and uses the measured radiance
values from those regions as reference data. After applying the HCHO algorithm of GEMS
using the Level 1b data of OMI, the correlation coefficient for SCD was calculated to be
0.74 [49].

2.3.2. Data Processing

As GEMS records more observations in summer and fewer in winter, seasonal char-
acteristics can be reflected in the spatial distribution. Therefore, only the data observed
between 12:45 and 13:15, near the observation time of the LEO satellites, were used. How-
ever, to analyze the temporal changes in VCD for O3 and NO2, the data observed in the
Seoul area at all times were used.

For a comparison with the data obtained by the LEO satellites, the Level 2 data of
GEMS, TROPOMI, and OMPS were gridded at 0.25◦ × 0.25◦ (OMI Level 3 grid). The
median value (i.e., the number at the center when the observations of the entire group are
arranged in order of size corresponding to each grid) was used for gridding.

3. Results
3.1. Level 1c Product Assessment

Regarding the corresponding observation results, data in the spring and autumn
equinoxes were similar regardless of the north–south direction (Figure 2). However, the
solar irradiance values were lower in the northern region (Seoul) of the focal plane than in
the opposite side (equator), with opposite trends during the winter solstice.

Figure 3 shows the spatial distribution showing the difference between the short
(350 nm) and long (455 nm) wavelength of GEMS Level 1c observed at the solstice (12:45–
13:15) in the spring/autumn/summer/winter equinox. Wavelengths that seemed to have
the least absorption of trace gases were selected according to the results of the atmospheric
radiation transfer model [45]. Because the long-wavelength radiation of Level 1c is twice the
short-wavelength radiation, a simple comparison is difficult. Accordingly, the maximum
value of the radiation amount of the two wavelengths was normalized to 1, and the
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normalized value of the short wavelength was compared with that of the long wavelength.
Generally, pixels with numerous clouds appeared blue with a large radiance at a short
wavelength as the amount of reflected radiation from the upper part of the atmosphere.
Conversely, as the amount of radiation reflected from the ground was observed in pixels
without clouds, the amount of absorption and scattering by the atmosphere of the short
wavelength exceeded that of the long wavelength; thus, the long wavelength was expressed
as a strong red.
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Figure 3. Level 1c ratios of the 350 nm and 455 nm normalized radiance observed in (a) vernal
equinox, (b) summer solstice, (c) autumn equinox, and (d) winter solstice at 03:45–04:15 (UTC) in
2021. The region in blue indicates that the change width of the short wavelength (350 nm) was larger
than that of the long wavelength (455 nm) in the red region.
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3.2. Level 2 Product Analysis
3.2.1. Spatiotemporal Distribution of Ozone

Figure 4 displays the seasonal mean spatial distribution of the TCO and O3 between
the cloud optical centroid pressure and the surface, observed using FW in clear skies. The
spatial distribution of the TCO remains relatively consistent due to the prevalence of O3
in the stratosphere, with higher concentrations at high latitudes during spring and winter
seasons [25]. However, O3 between the cloud optical centroid pressure and the surface
exhibits distinct spatial and temporal variations. Particularly, the eastern region of India
shows relatively high values during spring and relatively low values during summer,
autumn, and winter [26]. In the region of Northeast Asia, O3 levels increase from spring,
reach their peak in summer, decrease in autumn, and reach their lowest values in winter.
These O3 variations are attributed to anthropogenic pollutant emissions in the Northeast
Asian region and intensified ultraviolet radiation during summer [27,28]. Additionally, in
the Indochina Peninsula, ozone concentrations are higher in spring than in summer. This is
attributed to the fact that during spring, the region reports increased emissions of ozone
precursors due to biomass burning activities such as wildfires, creating conditions favorable
for ozone production. In contrast, reduced biomass burning activities and the monsoon
season during summer lead to decreased emissions of ozone precursors, resulting in less
favorable conditions for ozone production than those during spring [29,30]. GEMS’ ability
to observe variations in O3 concentrations caused by anthropogenic pollutants emitted at
the ground level makes it a valuable tool for analyzing anthropogenic O3 production and
depletion in these regions.
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Figure 4. Spatial distribution of the average seasonal total column O3 and O3 between the cloud
optical centroid pressure and the surface is shown. The panels depict O3 concentrations for (a,e)
spring (1 March 2021–31 May 2021), (b,f) summer (1 June 2021–31 August 2021), (c,g) autumn
(1 September 2021–30 November 2021), and (d,h) winter (1 December 2021–28 February 2022). Panels
(a–d) represent the total column O3, while panels (e–h) represent O3 between the cloud optical
centroid pressure and the surface.
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To compare the data obtained using the GEMS and LEO satellites (OMI and TROPOMI),
the absolute values and correlation coefficients between GEMS and OMI, and GEMS and
TROPOMI were calculated (Figure 5). The correlation coefficient (r) of the VCD of the O3
concentrations obtained using OMI and GEMS was 0.90, and that obtained using TROPOMI
and GEMS was 0.97. These results imply that the values obtained by the three satellites
were similar.
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Figure 5. Spatial distribution using the median O3 concentrations observed via GEMS, Ozone
Monitoring Instrument (OMI), and TROPOspheric Monitoring Instrument (TROPOMI) for one year
(1 March 2021 to 28 February 2022): (a) (GEMS-OMI)/GEMS and (b) (GEMS-TROPOMI)/GEMS. The
distributions between the two results: (c) GEMS vs. OMI and (d) GEMS vs. TROPOMI.

In the spatial distribution of the O3 VCD using GEMS and OMI, the values of GEMS
were generally higher than those of OMI. However, the values of OMI were higher in
western India, south of the equator, northern China, and Mongolia compared with those of
GEMS in these regions. Both the averaged absolute values of OMI and GEMS were 277 DU
and 278 DU and those of TROPOMI and GEMS were 278 DU and 277 DU, respectively,
which were similar. The reason for the difference in these GEMS O3 values was that the
observing points of OMI and TROPOMI were not the same; thus, the subpopulations in
GEMS were different. GEMS recorded higher O3 VCD values than TROPOMI in Laos,
Bhutan, southern China, and near the equator over which GEMS was located at 128.2◦ E.
In northern China, Myanmar, Malaysia, Bangladesh, India, Indonesia, and the oceans,
TROPOMI had higher values.
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Due to the diurnal variation in O3 VCD, a comparison analysis was performed be-
tween the Dobson data, which presents the total O3 concentration from the ground, and
the GEMS time-observation results for the analysis are presented in Figure 6a. The Dobson
data are not regularly observed periodically; the data are observed once a day or intermit-
tently several times. Thus, the observation frequency is itself less than that of GEMS and
is also irregular. The vertical O3 concentration data observed by the Dobson zenith-sky
observations for 1 year were collected, and the results were compared by excluding the
hours in which the data were observed for less than five times in total. The GEMS and
Dobson observation results showed a high correlation (r = 0.94) over the day; however, the
GEMS observation results produced lower values compared with those produced by Dob-
son (Dobson = GEMS × 1.01 + 6.73). Additionally, GEMS and Dobson showed maximum
values at 12:45–13:15 and 12:30–13:30, respectively, whereas the concentration change over
time in GEMS was not significant at 8 DU, which was only 2.49% of the maximum value;
Dobson showed a difference of about 18 DU per day, which was approximately 5.25% of
the maximum concentration.
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Figure 6. Comparison of vertical column density (VCD, molecular number /cm3) of O3 between
GEMS and Dobson from Yonsei University in Seoul from 1 March 2021, to 28 February 2022 (a), the
temporal variations of VCD of O3 from GEMS and Dobson, and ground station O3 concentration
(ppb) (b). Same as (b), but for NO2 from GEMS and the ground station (c).

The ground O3 concentration was lowest at 08:00 and reached its peak at 16:00. How-
ever, the GEMS-observed O3 VCD showed its highest values at 12:45–13:15, peaking 3 h
earlier than the ground O3 concentration. For NO2, anthropogenic pollutants generated
at the ground level undergo transport and accumulation in the troposphere. In contrast,
O3 is predominantly influenced by stratospheric O3, where temporal changes in O3 are
primarily driven by photochemical reaction mechanisms responsible for O3 production
and depletion in the stratosphere.

That is, as solar radiation was strongest at noon, the photochemical reaction was
also most active, which corresponded to the maximum value of O3 observed in GEMS
at 12:45–13:15. Thereafter, the concentration of O3 decreased as the radiation decreased.
Conversely, in the case of NO2, the contribution of NO2 emissions by means of transporta-
tion was the largest. Therefore, the ground concentration was highest at 08:00 during rush
hour traffic, and it spread vertically and accumulated at the highest value at 11:45–12:15,
which was a 4 h gap difference. Regarding LEO satellites, which recorded observations ap-
proximately once a day, analyzing such diurnal changes in the O3 and NO2 concentrations
was difficult. In contrast, GEMS could observe the same places up to 10 times a day and
observing changes based on the time of day was possible. Evidently, changes in O3 and
NO2 concentrations could be determined.

3.2.2. Spatiotemporal Distribution of Nitrogen Dioxide and Sulfur Dioxide Concentrations

Figure 7 presents the spatial distribution of the seasonal average of VCD for NO2
observed by GEMS. The Northeast Asian region has, by far, the highest NO2 concen-



Atmosphere 2023, 14, 1458 10 of 20

tration among the GEMS domains. Seasonally, the VCD of NO2 was highest in winter,
followed by autumn, spring, and summer. Seasonal changes were consistent with those
reported in previous studies that used satellite observations [31–33]. In Northeast Asia,
the NO2 concentration was highest in eastern China and the metropolitan area of Korea;
these results were similar to those observed by air quality observation satellites OMI and
SCIAMACHY [34,35]. In India, the NO2 concentration in urban areas including New
Delhi was high, consistent with existing satellite observation results [36]. In the Indochina
Peninsula, high concentration spots of NO2 were detected in Bangkok, Kuala Lumpur, and
Singapore, and the concentration was high on the shipping route to the South China Sea
through Malaysia.
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Figure 8 shows the difference in VCD for NO2 observed by GEMS, OMI, TROPOMI,
and OMPS in Beijing, Shanghai, and Seoul, which are major cities in Northeast Asia.
The observed NO2 VCD varied between the three cities, but they appeared to exhibit a
relatively correlated pattern. Furthermore, GEMS showed higher concentrations compared
to other LEO satellites. The correlation coefficient between the GEMS observations and
LEO satellite observations was relatively high in spring (OMI and OMPS) and summer
(TROPOMI) but low in winter (Table 3). GEMS had the lowest r value with OMPS and
showed high correlations with OMI and TROPOMI. The weak correlation between GEMS
and the LEO satellite, in contrast to previous findings [50], (r = 0.93–0.95 between OMI



Atmosphere 2023, 14, 1458 11 of 20

and TROPOMI), was presumed to be attributed to various factors including disparities in
orbit and algorithmic approaches. The precise causes will be thoroughly analyzed through
further research to elucidate the underlying factors. However, the averaged VCD of NO2
by GEMS was 10% (OMPS, summer) to 38% (TROPOMI and OMPS, winter), higher than
that by the LEO satellites (OMI, TROPOMI, and OMPS).
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(b) GEMS vs. OMPS at Shanghai; (c) GEMS vs. TROPOMI at Seoul.

Table 3. Correlation coefficient (r) between the VCDs of NO2 observed via GEMS and the LEO satellites.

r Spring Summer Autumn Winter

OMI vs. GEMS 0.68 0.62 0.64 0.47
TROPOMI vs. GEMS 0.80 0.83 0.76 0.55

OMPS vs. GEMS 0.61 0.55 0.48 0.47
VCDs, vertical column densities; OMI, Ozone Monitoring Instrument; TROPOMI, TROPOspheric Monitoring
Instrument; OMPS, Ozone Mapping and Profiler Suite.

A previous study reported a VCD of NO2 from OMI and TROPOMI of 30%–50% lower
than that from the terrestrial Multi AXis (MAX)-DOAS observation [51], which seemed like
an acceptable value.

The ground-level NO2 concentration exhibited a peak value at 08:00 and 20:00, primar-
ily attributed to elevated traffic emissions during rush hours and fluctuations in the height
of the planetary boundary layer. However, according to GEMS, the highest concentration
was observed between 11:45 and 12:15, peaking approximately 4 h later than that based on
the ground observation data, contrary to the O3 values (Figure 6c).

For evaluation, the GEMS SO2 algorithm was compared with the global chemical
model (GEOS-Chem) based volcanic activity cases [52]. The r values ranged from 0.82 to
0.97, indicating that the GEMS SO2 algorithm was well-calibrated.

As SO2 is emitted before and after a volcanic eruption, related studies such as observ-
ing SO2 concentration from a satellite and using it as a precursor to volcanic activity or
estimating SO2 emissions from volcanic eruptions are being conducted [41,42]. Figure 9
shows the spatial distribution of SO2 observed via GEMS in the area around Taal Volcano
in the Philippines, where there was a volcanic eruption in March 2022. The concentration of
SO2 on 5, 6, 8, and 12 June, when the eruption occurred at Mt. Bulusan, increased sharply,
resulting in a high SO2 concentration. The high SO2 concentration was attributed to the
residual concentration and continuous eruption. In particular, the Taal Volcano, located
near the Mt. Bulusan Volcano, emitted SO2 on 13 and 14, June, which was observed at
the same time, implying that the Taal Volcano, which erupted in March 2022, continued
spouting SO2.
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Figure 9. Total SO2 concentration observed during the eruption of Taal Volcano in the Philippines in
June 2022. (a) 5 June, 15:45–16:15, (b) 7 June, 08:45–09:15, (c) 8 June, 08:45–09:15, (d) 8 June, 10:45–11:15,
(e) 9 June, 10:45–11:15, (f) 12 June, 08:45–09:15, (g) 12 June, 10:45–11:15, (h) 13 June, 10:45–11:15, and
(i) 14 June, 10:45–11:15. Time is expressed in KST.

Figure 10 displays the change in SO2 concentrations at the Taal and Bulusan Volcanoes.
The observed data indicate high levels of SO2 emissions during the period of interest.
Notably, a temporal offset was observed between the Taal and Bulusan eruptions on
11 June. Furthermore, both volcanoes exhibited elevated SO2 concentrations on 13 and
14 June.
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3.2.3. AOD

According to a previous study [37], when the GEMS AOD algorithm using OMI
L1b was compared with the AERONET and OMI algorithms, the r values were 0.83 and
0.86, respectively.

Figure 11 presents the spatial distribution of the seasonal average AOD. In Northeast
Asia, Korea, and China, the AOD was low in summer but high in winter. In the Indochina
Peninsula region, it was high in spring. These results are consistent with those of a previous
study, which reported increased AOD due to biomass burning in the area [38–40]. In
addition, there were several locations in summer that are not displayed due to the lack of
valid data on the Indochina Peninsula. The AOD algorithm, utilizing UV wavelengths, is
extremely sensitive to the presence of clouds. Consequently, even minimal cloud coverage
presents a substantial obstacle in accurately estimating the AOD; therefore, the AOD
could not be calculated because it was not calculated for the Indochina Peninsula, which
experiences rainfall during summer.
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Figure 11. Full-layer concentration average of the Level 2 aerosol optical depth (AOD) was calculated
using spectral information for six wavelengths (354, 388, 412, 443, 477, and 490 nm) observed at
12:45–13:15 (KST): (a) spring (1 March 2021–31 May 2021), (b) summer (1 June 2021–31 August 2021),
(c) fall (1 September 2021–30 November 2021), and (d) winter (1 December 2021–28 February 2022).
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3.2.4. Formaldehyde

Figure 12 shows the spatial distribution of the monthly median VCD of HCHO ob-
tained by GEMS during April 2021, July 2021, October 2021, and January 2022. The data
near the oceans in Southeast Asia, where sunlight is strongly reflected, were disregarded.
Similar to other factors, if analyzed separately in Northeast Asia, South Asia, and India,
VCD was highest in the mid-latitude regions of Northeast Asia and northern India during
July, when the vegetation activity was most active among the four seasons. In the Indochina
region, the VCD of HCHO was the highest in April because HCHO was affected by the
biomass combustion that occurs during the dry season [53]. Conversely, the equatorial re-
gions of Malaysia and Indonesia showed consistently high HCHO concentrations in spring
and summer and higher concentrations in autumn and winter than the other regions.
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3.2.5. Additional Geostationary Environment Monitoring Spectrometer Products

NIER provides a total of 20 Level 2 products of GEMS including parameters not
presented in this study such as single scattering albedo, aerosol type, aerosol effective
height, UV index, vitamin D synthesis index, vegetation response index, DNA damage
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index, surface reflectance, cloud radiation index, cloud effective index, O3 profile, and
glyoxal. The NIER provides the observation results after July 2022 sequentially by item [54].

3.3. Validation and Future Implications
3.3.1. Satellite Integrated Joint Air Quality Monitoring

Korea’s Ministry of Environment has conducted intensive air quality observations [12]
together with NASA in the United States [13] and is planning to carry out a second
campaign for East Asia in 2024 after operating GEMS. In addition, the GEMS Map of
Air Pollution (GMAP) campaigns were preliminarily carried out in 2020 and 2021 [55].
Despite the COVID-19 pandemic, NASA, the Max Planck Institute in Europe, the Royal
Belgian Institute for Space Aeronomy, and the University of Bremen participated in the
GMAP campaign.

The Satellite Integrated Joint Air Quality (SIJAQ) campaign is expected to enable
in-depth research on air quality phenomena through general direct observation, terrestrial
remote sensing, and wide-area observation in East Asia using GEMS and other instruments
onboard LEO satellites such as TROPOMI. In addition, the verification of environmental
parameters observed via GEMS will be included, and related procedures such as the
recruitment of participating organizations will be implemented before the campaign.

3.3.2. Pandora Asia Network

Pandora is a ground-based observation device for observing direct sunlight and is used
to observe air pollutants such as NO2 and verify GEMS products [56,57]. Accordingly, the
Korean government is attempting to provide and install Pandora equipment in 13 countries
in Asia (Table 4) to analyze the air quality status of each country and participate in the
GEMS verification campaign. In addition, a Pandora network for sharing observed data in
Asia will be formed to support periodic quality control for accurate data production.

Table 4. Target countries of the Pandora Asia Network project.

Target Countries

Regular observation area Thailand, Vietnam, Indonesia, Mongolia, Cambodia,
Philippines, and Laos

Maximum observation area Bangladesh, Myanmar, Bhutan, Nepal, India, and Sri Lanka

4. Discussion

This study analyzed the reliability of GEMS observations using the pilot data obtained
during the test period of GEMS and attempted to establish the base for air quality analysis.

For the reliability analysis of GEMS, the spatial distributions of the solar irradiance
observations and Levels 1c and 2 (O3, NO2, SO2, AOD, and HCHO) were displayed
and compared with Level 2 for O3 and NO2, and observed by instruments (i.e., OMI,
TROPOMI, and OMPS) onboard the LEO satellites. The solar irradiance observation result
was attributed to temporal and spatial dependence, which was possibly, in turn, attributed
to the position of the Sun. During the spring and autumn equinoxes, the positions of
the Sun were the same; thus, the obtained solar irradiance values were similar. However,
the Sun was in the north at the summer solstice; thus, irradiance in the northern area
(Seoul) was higher than that in the southern area (equator). Similarly, solar irradiance in
the southern area was higher than that in the northern area at winter solstice because the
Sun was positioned in the south (Figure 6 in Choi et al. [23] illustrates the Sun’s position).
This is believed to be due to the change in the angle of incidence of the diffuser of GEMS.

The spatial distributions of O3, NO2, SO2, AOD, and HCHO over East Asia were
analyzed for consistency with previous findings [25–42]. The VCD of O3 observed via
GEMS was similar to that of all existing LEO satellites at a high level in terms of absolute
values (errors between GEMS and both satellites are less than ±1 DU) and correlation
coefficients (r = 0.90 for OMI vs. GEMS; 0.97 for TROPOMI vs. GEMS). Moreover, a
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comparison of NO2 observed via GEMS and TROPOMI showed the highest r value in
summer (0.83) and the lowest value (0.47) with OMI and OMPS in winter. The absolute
value for GEMS was higher than that for LEO satellites (10–38%). However, an in-depth
analysis of GEMS observations remains warranted because a previous study [58] reported
lower NO2 concentrations via low-orbit satellites than VCDs observed on the ground.

In addition, the diurnal change observed via GEMS was compared with in situ mea-
surements on the ground and analyzed. The maximum value of ground observation for O3
was approximately 3 h later than that of GEMS, whereas for NO2, GEMS was approximately
4 h later. This time difference was attributed to the difference in the vertical altitude at
which NO2 and O3 were generated.

Herein, we analyzed the reliability of GEMS using the existing literature and ob-
servations of LEO satellites. However, we did not include a comparative analysis with
ground-based VCD observations commonly used in the reliability analysis of existing
satellites, which is a limitation of this study. Particularly, in situ observations of the ground
are not VCDs; hence, direct comparison with GEMS is not possible. Therefore, reliability
can be assessed through direct comparison with VCDs measured via MAX-DOAS and
Pandora [51,59], similar to the verification of other satellites [57,59–61]. Additionally, to
verify the vertical concentration profile by GEMS and improve the algorithm, it is necessary
to obtain airborne and the sonde data [62,63]. Future studies should conduct ground-based
VCD comparative analysis such as the SIJAQ campaign and the establishment of PAN,
which can improve algorithms.

5. Conclusions

The pilot operation of GEMS, launched in February 2020, was completed, and the
observation data were sequentially released starting from July 2022. The spatial distribution
of GEMS observation items (O3, NO2, SO2, AOD, HCHO) was similar to those reported in
previous studies. When comparing the GEMS observations with the LEO satellites (OMI,
TROPOMI, OMPS), the O3 results were similar, but the NO2 observations from GEMS were
higher than those from the LEO satellites.

Due to its operation in the geostationary orbit, GEMS can make multiple observations
per day, enabling the monitoring of daily variations in air pollutant concentrations and in-
depth analysis of changes in air quality. To analyze the feasibility of this diurnal monitoring
method by GEMS, we presented the results of analyzing the VCD values of O3 and NO2
observed over Seoul.

Based on these results, GEMS can be used for the effective analysis of the behavior
and impacts of air pollutants. Despite its limitations such as daytime-only observations
and low accuracy compared to in situ observations, GEMS has been confirmed as a suitable
tool for atmospheric environmental analysis.

Finally, plans are underway to develop strategies to verify and improve the quality
of Level 2 data observed via GEMS such as an air quality intensive monitoring campaign
(SIJAQ) and the establishment of a ground-based remote sensing network (Pandora Asia
Network). These strategies, in conjunction with GEMS, are expected to contribute to the
comprehensive analysis of the quality of GEMS observation data and represent a crucial
turning point in the analysis and development of countermeasures for the deteriorating
atmospheric environment in East Asia [64].
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