
Citation: Pan, Y.; Yin, Y. Spatial and

Temporal Evolution Characteristics

of Water Conservation in the

Three-Rivers Headwater Region and

the Driving Factors over the Past 30

Years. Atmosphere 2023, 14, 1453.

https://doi.org/10.3390/

atmos14091453

Academic Editor: Dae Il Jeong

Received: 14 August 2023

Revised: 11 September 2023

Accepted: 12 September 2023

Published: 18 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Spatial and Temporal Evolution Characteristics of Water
Conservation in the Three-Rivers Headwater Region and the
Driving Factors over the Past 30 Years
Yao Pan 1,2 and Yunhe Yin 1,*

1 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences, Beijing 100101, China; pany.17s@igsnrr.ac.cn

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: yinyh@igsnrr.ac.cn

Abstract: The Three-Rivers Headwater Region (TRHR), located in the hinterland of the Tibetan
Plateau, serves as the “Water Tower of China”, providing vital water conservation (WC) services. Un-
derstanding the variations in WC is crucial for locally tailored efforts to adapt to climate change. This
study improves the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) water yield
model by integrating long-term time series of vegetation data, emphasizing the role of interannual
vegetation variation. This study also analyzes the influences of various factors on WC variations. The
results show a significant increase in WC from 1991 to 2020 (1.4 mm/yr, p < 0.05), with 78.17% of the
TRHR showing improvement. Precipitation is the primary factor driving the interannual variations
in WC. Moreover, distinct interactions play dominant roles in WC across different eco-geographical
regions. In the north-central and western areas, the interaction between annual precipitation and
potential evapotranspiration has the highest influence. Conversely, the interaction between annual
precipitation and vegetation has the greatest impact in the eastern and central-southern areas. This
study provides valuable insights into the complex interactions between the land and atmosphere of
the TRHR, which are crucial for enhancing the stability of the ecosystem.

Keywords: water conservation; climate change; vegetation variation; InVEST model; Tibetan Plateau

1. Introduction

The Three-Rivers Headwater Region (TRHR), located in the hinterland of the Tibetan
Plateau, plays a key role in ensuring ecosystem security [1]. Renowned as the “Water Tower
of China”, the TRHR is the birthplace of the Yellow River, Yangtze River, and Lancang
River and is essential for water storage and conservation [2]. Water conservation (WC) is
a crucial ecosystem regulation service, encompassing the interception and maintenance of
precipitation by various components of the ecosystem, including vegetation canopy, litter,
soil, lakes, water reservoirs, and more [3]. The WC services of the TRHR satisfy the water
needs of the local ecosystem and provide water resources for external and downstream
areas [4,5]. However, the TRHR experiences an uneven and relatively low precipitation
distribution. Rising temperatures also contribute to the degradation of frozen soil and
increased evapotranspiration, which have a negative impact on WC [6,7]. Consequently,
accurately assessing the WC in the TRHR and determining its driving factors is crucial
to understanding of the ecosystem’s ability to maintain the stability and sustainability of
water resources.

Previous studies have revealed an increasing trend in WC within the TRHR since the
1990s [8–10]. The increase in WC results from the complex interplay between ecosystem
and hydrological processes, influenced by various factors such as ecosystem type, surface
characteristics, climate conditions, and human activities [11]. However, differences exist
in understanding the attribution of WC variations in this region. Studies suggest the
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rise in WC can be attributed to factors such as precipitation [3], potential evapotranspi-
ration [12], the combined effect of increased precipitation and vegetation growth [13,14],
or the combined effect of increased precipitation and decreased potential evapotranspi-
ration [10]. Climate, vegetation, and other factors, such as slope and altitude, also play
a significant role in shaping the spatial distribution of WC [15]. However, comprehensive
investigations into the spatial responses of WC services in the TRHR under the synergistic
influence of environmental elements are lacking. Assessing the changes in WC services
and understanding the driving factors behind temporal and spatial variations are crucial.
Moreover, further exploration is necessary for quantitatively examining of the interplay
among distinct influencing factors [16].

Currently, the main methods used to evaluate WC include the water storage capac-
ity [5] and the water balance methods [17]. The water storage capacity method is primarily
used to assess the scale of water storage capacity in sample plots, considering the contribu-
tions of vegetation, dead branches, and soil in intercepting precipitation [18]. By contrast,
the assessment of large-scale WC is typically accomplished through remote sensing inver-
sion and ecological model simulation based on water balance [19]. Remote sensing products
provide information on WC at larger time and spatial scales but may not accurately capture
local parameters such as soil water storage capacity [20]. The Integrated Valuation of
Ecosystem Services and Trade-offs (InVEST) model, based on the water balance, is widely
used for long-term WC simulation due to its relatively straightforward data preparation
and its ability to capture the physical mechanisms of soil–vegetation–atmosphere inter-
actions in terrestrial ecosystems [21]. Previous research has highlighted that neglecting
the influence of interannual changes in vegetation may result in inaccurate simulations
of hydrological models [22,23]. However, most studies that employ the InVEST model
to assess WC have overlooked the role of interannual variation in vegetation, potentially
leading to inaccuracies in estimating actual evapotranspiration [24]. Therefore, adequately
considering vegetation dynamics is crucial to accurately representing the WC response.

This study aims to simulate and analyze the temporal and spatial characteristics of
WC in the TRHR over the past 30 years. Correlation analysis and geographical detectors
are used to investigate the combined impact of climate, vegetation, and other driving
factors on WC variations. A key aspect of this study is improving the InVEST water yield
model by integrating long-term vegetation dynamics and ground-based meteorological
observations, thus highlighting the impact of interannual vegetation variation. Specifically,
considering its importance as a parameter controlling land–atmosphere interactions and
water cycling, a regional correction of actual evapotranspiration on alpine grasslands was
conducted [25]. The differences in the interaction between influencing factors on WC in
different eco-geographical regions were also emphasized. Overall, this research deepens the
understanding of land–atmosphere interactions in the TRHR, provides valuable insights for
maintaining ecosystem stability in alpine areas and offers scientific support for ecosystem
management and decision making processes.

2. Materials and Methods
2.1. Research Area

The TRHR (31◦39′–36◦12′ N, 89◦45′–102◦23′ E) is located in the northwestern part of
Qinghai Province and is renowned as the birthplace of the Yellow River, Yangtze River and
Lancang River (Figure 1a). This region has an average elevation of over 4400 m (Figure 1a)
and is characterized by predominantly low temperatures. A west-to-east elevation trend
is exhibited in this region, with altitudes ranging from 2300 to 6600 m. Slopes in the
area range from 0 to 26 degrees, with steeper slopes (>10 degrees) concentrated in the
southeastern and central-southern parts of the region (Figure 1e). The annual average
temperature fluctuates between –8 ◦C and 17 ◦C, leading to widespread permafrost in the
TRHR. Precipitation in the area is typically concentrated between June and September,
with a gradient of decreasing rainfall from southeast to northwest, ranging from over
840 mm to less than 160 mm (Figure 1b). The region also experiences high potential
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evapotranspiration, with a multi-year average of 600 mm and a range between 400 mm
and 1000 mm (Figure 1c). The ecosystem in the TRHR is relatively simple in structure
and fragile in terms of its environmental conditions, making it highly vulnerable to the
direct impacts of climate change. These unique climatic characteristics in the region have
resulted in the formation of distinct eco-geographical regions (Figure 1f, where I and
II represent sub-cold and temperate, and B, C, and D represent semi-humid, semi-arid,
and arid zones, respectively) [26]. The dominant ecosystem type in the TRHR is alpine
grassland, which covers 71.18% of the total area (Figure 1a). Thus, the region has extensive
coverage of alpine shrub meadows, alpine grasslands, alpine meadow steppes, and alpine
meadows (Figure 1f), collectively forming the alpine grassland. Additionally, the land use
distribution in the TRHR includes farmland, woodland, water bodies, built-up land, and
unused land, accounting for 0.66%, 4.26%, 5.63%, 0.1%, and 18.17% of the total land area in
2020, respectively. Unused land is located primarily in the western part of the study area,
while forest land is in the central-southern and eastern regions. The leaf area index (LAI) in
the TRHR exhibits a spatial gradient decreasing from southeast to northwest. The annual
average LAI value ranges from 0 to 2 m2 m−2. The eastern region exhibits an average
LAI value exceeding 1 m2 m−2, while the western region has an average LAI value below
0.2 m2 m−2 (Figure 1d).

Figure 1. Study area location and natural environment in the Three−Rivers Headwater Region
((a) The study area location and land use types. (b) Annual average precipitation. (c) Annual
average potential evapotranspiration. (d) Annual average leaf area index. (e) Slope, (f) Ecosystem
zones: sub−cold sub−humid Guoluo−Naqu Plateau mountain alpine shrub–meadow region (HIB1),
sub−cold semi−arid Qiangtang Plateau lake basin alpine steppe region (HIC2), sub−cold semi−arid
southern Qinghai alpine meadow–steppe (HIC1), temperate semi−arid eastern Qinghai−Qilian
montane steppe zone (HIIC2), sub−cold arid Kunlun high mountain and plateau alpine desert
region (HID1), temperate arid North Kunlun mountain desert region (HIID2), temperate arid Ngali
mountain desert region (HIID3), temperate humid/sub−humid Western Sihuan and Eastern Xizang
high mountain and deep valley coniferous forest region (HIIAB1)).
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2.2. Data Source and Preprocessing

Monthly observational data were gathered from 20 weather stations located in the
TRHR. These data cover the period from 1991 to 2020 and include parameters such as
temperature, precipitation, wind speed, and relative humidity. A thin plate spline func-
tion was employed to spatially interpolate these site-based observational data, utilizing
elevation as a covariate, to obtain regional-scale data across the entire region. Potential
evapotranspiration data were derived from the 1 km monthly potential evapotranspiration
dataset in China provided by the National Tibetan Plateau Data Center [27]. Previous
studies have demonstrated the effectiveness of this dataset in simulating the WC in the
Tibetan Plateau [16].

The vegetation dataset used in the current study included the LAI and the homog-
enized vegetation index (NDVI). The LAI datasets were utilized to calculate the annual
vegetation evapotranspiration coefficient (Kc) of the region. In contrast, the NDVI datasets
were employed to assess the explanatory power of vegetation factors regarding the spatial
distribution of WC. The Global Mapping (GLOBMAP) LAI version 3 dataset was acquired
to obtain the required LAI data [28]. This dataset provided the necessary LAI data with
a temporal resolution of 16 days before 2001 and 8 days after. The 1 km spatial resolution
NDVI data were downloaded from Zenodo (https://zenodo.org/record/6295928, accessed
on 1 September 2022). Monthly vegetation index data from 1991 to 2020 were generated
using the maximum synthesis method.

Spatial data for the velocity coefficient were obtained based on empirical values asso-
ciated with different land cover types to calculate water yield using the InVEST model [29].
Root depths for different vegetation types were determined by referring to relevant data
from the Food and Agriculture Organization (FAO). Woodland areas were assigned a root
depth of 3 m, grassland areas were assigned a root depth of 1 m, and non-vegetated areas
were not assigned a root depth.

The annual total water yields (1994–2020) in the Qinghai Water Resources Bulletin
were obtained to assess the accuracy of the model simulation. All the data used in this
study are listed in Table 1.

Table 1. Basic information regarding the datasets used in this research.

Data Type Data Format Data Source

Meteorological data
(precipitation, temperature,

relative humidity, wind speed)

Point-based, daily, from
1991 to 2020

National Climate Center of the China Meteorological
Administration (http://data.cma.cn/, accessed on 1 September

2022). A 500 m resolution grid is interpolated by using the
professional meteorological interpolation software ANUSPLINA

version 4.4 (http://fennerschool.anu.edu.au/files/anusplin44.pdf,
accessed on 1 September 2022)

LAI Grid, 5 km resolution,
from 1991 to 2020

Global Mapping (GLOBMAP) LAI version 3 dataset
(https://zenodo.org/record/4700264, accessed on

1 September 2022)

NDVI Grid, 1 km resolution,
from 1991 to 2020 https://zenodo.org/record/6295928, accessed on 1 September 2022

Soil properties Grid, 1 km resolution,
2000

Harmonized World Soil Database (HWSD) v1.2
(http://www.fao.org/soils-portal/soil-survey/soil-maps-and-

databases/harmonized-world-soil-database-v12/en/, accessed on
1 September 2022)

Soil depth Grid, 1 km resolution,
2000

Soil Data Center, National Earth System Science Data Sharing
Infrastructure, National Science and Technology Infrastructure of

China (http://soil.geodata.cn, accessed on 1 September 2022)

Land use (1990, 1995, 2000, 2005,
2010, 2015, 2020)

Grid, 30 m resolution,
2000, 2005, 2010, 2015,

and 2020

Resources and Environmental Sciences Data Center (RESDC),
Chinese Academy of Sciences (http://www.resdc.cn, accessed on

1 September 2022)

Digital elevation model (DEM) Grid, 1 km resolution,
2020

Resources and Environmental Sciences Data Center (RESDC),
Chinese Academy of Sciences (http://www.resdc.cn, accessed on

1 September 2022)

https://zenodo.org/record/6295928
http://data.cma.cn/
http://fennerschool.anu.edu.au/files/anusplin44.pdf
https://zenodo.org/record/4700264
https://zenodo.org/record/6295928
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://soil.geodata.cn
http://www.resdc.cn
http://www.resdc.cn


Atmosphere 2023, 14, 1453 5 of 19

2.3. Methods
2.3.1. Water Conservation Quantification

The WC for each grid was calculated using the water yield obtained from the InVEST
model. This calculation considers various factors, including soil permeability, topography,
and flow velocity coefficients, which were specific to different land-use types [29]:

WCij = Min

(
1,

249
Velocityj

)
·Min

(
1,

0.9TIi
3

)
·Min

(
1,

Ksati
300

)
·Yij (1)

where WCij (mm) is the WC for each land use type (j) in each grid (i). The influence
of different land use types on surface runoff was considered by using the flow velocity
coefficient (Velocityj). The topographic index (TIi), expressed as a dimensionless parameter,
was used to assess the topographic characteristics of each grid (i). The Cosby model [30] was
utilized to calculate the soil-saturated hydraulic conductivity (Ksati) (cm/d) in centimeters
per day. Additionally, the water yield (Yij) was determined using the InVEST model and
measured in millimeters (mm).

TI = log

(
Darea

Soildepth ∗ Pslope

)
(2)

where Darea is the number of grids in the catchment area (dimensionless), Soildepth is the soil
depth (mm), and Pslope is the percentage slope (%) calculated using the suite of Hydrology
Tools (Arc Hydro) in ArcGIS 10.5.

Ksat = 60.96 ∗ 10(−0.6+0.0126sand−0.0064clay) (3)

where sand and clay represent the content of sand and clay in the soil (%), respectively.
Water yield in InVEST is defined as the amount of water that runs off the landscape. It

calculates water yield by applying the water balance principle at the sub-watershed level.
The conceptual diagram of the water balance model is illustrated in Figure 2.

Figure 2. Conceptual diagram of the water balance model used in the InVEST water yield model [31].
Only parameters shown in color are included, and parameters shown in grey are ignored.
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The water yield model is based on the Budyko curve and annual average precipitation.
The annual water yield for each pixel was calculated as follows:

Y(x) =
(

1− AET(x)
P(x)

)
P(x) (4)

where AET(x) is the annual actual evapotranspiration of grid x and P(x) is the annual
precipitation of grid x.

In the water balance formula, the vegetation evapotranspiration is calculated based
on the Budyko hypothesis proposed by Zhang et al. [32]:

AET(x)
P(x)

= 1 +
Kc(lx)·ET0(x)

P(x)
−
[

1 +
(

Kc(lx)·ET0(x)
P(x)

)w]1/w

(5)

where ET0(x) is the potential evapotranspiration of grid x. Kc(lx) represents the evapotran-
spiration coefficient of vegetation for land use type j and grid x. An estimation of Kc values
for farmland and woodland was obtained using the relationship Kc = LAI/3 (Kc equal to
1 for LAI > 3). The Kc values for water bodies, built-up land, and unused land were set
to 1.1, 0.3, and 0.5, respectively [31]. Kc for grassland was estimated using the method in
Section 2.3.2. w(x) is an empirical parameter proposed by Donohue et al. [33]:

w(x) = Z
AWC(x)

P(x)
+ 1.25 (6)

where Z is the Zhang coefficient, which corresponds to the number of precipitation occur-
rences every year. When Z = 3.5, the error between the simulated water yield and actual
runoff is the smallest (7.9%) [34]. AWC(x) represents the available water content of soil
(mm), which is used to determine the total water stored and provided by soil for plant
growth. AWC(x) is calculated as follows:

AWC(x) = Min(root restricting layer depth, root depth)× PAWC (7)

where AWC(x) is estimated as the product of the plant available water capacity (PAWC) and
the minimum of root-restricting layer depth and vegetation rooting depth. The calculation
of AWC is performed using the following formula for PAWC:

PAWC = 54.509 − 0.132sand%− 0.003(sand%)2 − 0.055silt%
− 0.006(silt%)2 − 0.738clay% + 0.007(clay%)2

− 2.688OM% + 0.501(OM%)2
(8)

Actual evapotranspiration (AET) for other land use types (water bodies, built-up land,
unused land) is calculated directly with ET(x):

AET(x) = Min((Kc(lx)·ET(x), P(x) ) (9)

where ET represents potential evapotranspiration and Kc(lx) represents the evapotranspira-
tion coefficient for the land use type without vegetation cover. The value of Kc(lx) is taken
in accordance with a fixed value (x) [35]: the value of the water body is 1.1, the value of
built-up land is 0.3, and the value of unused land is 0.5.

2.3.2. Calibration Method of Evapotranspiration Coefficient in Grassland Based on
Interannual Variation in Vegetation

Alpine grassland covers more than 70% of the total area of the TRHR, making it
the dominant terrestrial ecosystem type. Therefore, the main objective of this study is
to calibrate the Kc coefficient specifically for alpine grasslands. Capturing the dynamic
evapotranspiration patterns of alpine grasslands within the InVEST model accurately is
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crucial. The growth process of alpine grassland can be categorized into different stages,
which exhibit interannual variability influenced by climatic changes.

Monthly grid data of LAI were employed to estimate the Kc coefficient for each grid.
Subsequently, the monthly average Kc coefficient was calculated for the entire study area
by averaging the grid-based Kc coefficients. Finally, the 12 monthly regional average Kc
coefficients for each year were combined to generate the annual value of Kc coefficients
for grassland, following the approach recommended by the InVEST model. The specific
procedure is as follows.

First, the monthly average Kc coefficients of grassland were computed based on
the different growth stages of vegetation. Previous research and actual meteorological
conditions identify three distinct stages for the growth season of alpine grasslands: the
initial growth season (May), the middle growth season (June, July, and August), and the
late growth season (September and October) [36]. Following the FAO-56 guidelines, the
recommended values for Kc during the initial, middle, late, and non-growing stages of
grassland are 0.4, 1.05, 0.85, and 0.4, respectively [35]. However, these coefficients can be
adjusted to reflect the actual climatic conditions of the study area. The Kc coefficients for
the middle and late growth stages were modified. Notably, the Kc coefficients for the early
growth and non-growth stages remained unadjusted. The adjustment equation employed
in this study is as follows:

Kc = Kc(reco) + [0.04(u2 − 2)− 0.004(RHmin − 45)](h/3)0.3 (10)

where RHmin is the mean value for the daily minimum relative humidity (%), u2 is the
wind speed at 2 m height (m/s), and Kreco is the recommended Kc value in FAO-56. h is
the mean plant height (m), fitted by wind speed, relative humidity, and LAI [37]:

h = exp
[

2
3
[LAI− 5.5]

]
(11)

Second, the annual vegetation evapotranspiration coefficients (Kc_annual) was deter-
mined using the calculation formula recommended by the InVEST model. Each month’s
regional average Kc coefficients was calculated by averaging the grid-based monthly Kc
coefficients across the entire study area. Then, each month’s regional average potential
evapotranspiration was computed. Finally, the annual Kc coefficient was derived by using
the following formula:

Kc_annual =
∑12

m=1 Kom × ETom

∑12
m=1 ETom

(12)

where Kom represents an average Kc coefficient of month m (1–12) and ETom is the corre-
sponding ETo.

The differences between the observed yearly total water yield (TWY) and the simulated
TWY were evaluated to investigate the accuracy of the simulations by the improved
InVEST model using the regionally calibrated Kc coefficient, including the coefficient of
determination (R2) and the root mean square error (RMSE). The differences between the
observed and simulated TWY obtained through three different methods of calculating Kc
are further compared to illustrate the effectiveness of the improved model (Figure 3).

The approach proposed in Section 2.3.2 was utilized in the first method to estimate the
Kc coefficients (Figure 3a). In the second method, the Kc coefficient was determined using
the relationship Kc = LAI/3 (where Kc equals 1 when LAI > 3) (Figure 3b). This method is
mentioned in the InVEST model manual. The calculation process involves synthesizing the
monthly values of LAI using the maximum value synthesis method, followed by averaging
the values for each month across each year to derive the annual average LAI. The Kc value
for each grid is computed based on this relationship Kc = LAI/3, and the overall Kc value
required by the model operation is obtained by averaging across the entire region. The
third method uses a fixed Kc coefficient of 0.65, corresponding to the recommended Kc



Atmosphere 2023, 14, 1453 8 of 19

value for grassland in the InVEST model (Figure 3c). The observed TWY data are obtained
from the Qinghai Water Resources Bulletin, covering 1994 to 2020. Comparatively, the
simulation results of TWY based on the improved model display better performance, with
an increase in the R2 ranging from 0.51% to 14.6% and a reduction in RMSE ranging from
0.478 × 1010 m3 to 2.193 × 1010 m3. The improved model enhances the performance of the
InVEST water yield model by incorporating information on interannual vegetation changes.

Figure 3. Evaluation of simulated total water yield (TWY) versus observed TWY (TWY was simulated
by the InVEST model using (a) calibration Kc values with interannual variation in vegetation, (b) Kc
values obtained using the relationship Kc = LAI/3, or (c) Kc coefficients estimated at Kc = 0.65.
Shadow represents a 95% confidence interval).

2.3.3. Geographical Detector

The geographical detector method is a powerful tool for analyzing the driving forces
by detecting the heterogeneity of the spatial stratification of elements [38]. Factor detectors
and interaction detectors were utilized to examine the driving factors of WC. This study
focused on two important aspects: identifying the factors that significantly influence WC
and investigating the interactions between these factors.

The factor detector is employed to detect the spatial differentiation of dependent
variables and assess the explanatory power of independent variables for WC. The q-value
quantifies the strength of this explanatory power. The specific calculation formula is
as follows:

q = 1− ∑L
h=1 Nhσh

2

Nσ2 = 1− SSW
SST

(13)

SSW = ∑L
h=1 Nhσh

2 SST = Nσ2 (14)

where h is the stratification of the dependent or independent variable, with values ranging
from 1 to L. Nh and N are the number of cells within stratum h and the whole region,
respectively. σ2

h and σ2 are the variances of the values of the dependent variable in the
stratum and the whole region, respectively. SSW is the sum of the variances within the
stratum, and SST is the total variance of the whole region. q indicates the explanatory
power of independent variables for dependent variables, with a value range between 0 and
1. A higher value of q indicates a stronger explanatory power of independent variables for
dependent variables. The main influencing factors of WC can be determined by examining
the value of q. The q value can be tested for significance using the geographic detector
method because it follows a non-central distribution after a simple transformation.

This study assesses whether the two factors have an interaction. It determines the
strength and characteristics of the interaction by comparing the values obtained from
individual factors and the interaction values obtained from the geographic detector. For ex-
ample, if q(X1∩ X2) < Min(q(X1), q(X2)), it indicates that the interaction is characterized
by nonlinear weakening. If Min(q(X1), q(X2)) < q(X1∩ X2) < Max(q(X1), q(X2)), the
interaction shows the characteristics of one-factor nonlinearity weakening. If q(X1∩ X2) >
Max(q(X1), q(X2)), the interaction displays the characteristics of two-factor enhancement.
If q(X1∩ X2) = q(X1) + q(X2), it signifies that the interaction is characterized by two-
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factor independence. Finally, if q(X1∩ X2) > q(X1) + q(X2), it indicates the interaction is
characterized by nonlinear enhancement.

The objective of this study is to examine the factors that influence the spatial hetero-
geneity of WC. These factors include climatic factors such as annual average precipitation
and annual average potential evapotranspiration, topographic factors such as slope and
digital elevation model, and vegetation factors such as annual average growing season LAI.
Continuous variables need to be converted into classified data to meet the requirements
of the geographic detectors. Therefore, the natural breakpoint method in ArcGIS 10.5 was
utilized to divide altitude, slope, annual average precipitation, annual average potential
evapotranspiration, and LAI into nine categories. The analysis process of the geographic
detector using NDVI as the vegetation factor was repeated to ensure the reliability of
the results.

2.3.4. Trend Changes and Correlation Analysis

Simple linear regression analysis was initially employed to examine the interannual
variation trends within the TRHR at regional and grid scales. Subsequently, Pearson
correlation analysis was used to investigate the impact of individual environmental factors
on the interannual variability in WC.

2.3.5. Total Research Approach

The specific research schemes are outlined as follows: (1) first, the monthly Kc co-
efficients are calculated using the monthly LAI grid data to correct for the grassland’s
middle and late growth stages. The method recommended in the InVEST model manual
is used to synthesize the monthly Kc coefficients into an annual value. Other parameter
values necessary for model execution can be found in Sections 2.3.1 and 2.3.2. (2) Next,
the InVEST model is utilized to simulate the water yield of the TRHR from 1991 to 2020.
The TWYs obtained from the model output are compared with the recorded TWYs in
the water resources bulletin to verify the accuracy of the simulation results. Once the
verification is complete, we estimate the WC based on the grid-scale water yield results.
(3) The influence of vegetation and climate on the temporal changes in WC is analyzed
using correlation analysis. Additionally, the geographic detector method is employed to
explore the effects of climate, vegetation, and topography on the spatial differentiation of
WC and the interactions among these factors (Figure 4).

Figure 4. Implementation flow chart of this study (Formula a is derived from Zhao, et al. [37].
Formula b is derived from Allen, et al. [35]. Formula c is derived from Sharp, et al. [31]).
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3. Results
3.1. Characteristics of Interannual Variation in Water Conservation

After regional correction, the multi-year average Kc coefficient for the grassland is
0.72, which is higher than the recommended value of 0.65 suggested by the InVEST model
(Figure 5). Overall, the Kc coefficient showed a slight downward trend over the years,
which was not very pronounced. The coefficient of variation of Kc from 1990 to 2000
was 0.018, indicating significant fluctuation of the Kc coefficient of grassland during that
period. By contrast, the overall coefficient of variation from 1990 to 2020 decreased to 0.013,
indicating decreased fluctuation in the 2000s and 2010s. Among the years analyzed, the
evapotranspiration coefficient of grassland reached its maximum value of 0.75 in 1997 and
its minimum value of 0.71 in 1993.

Figure 5. Regional corrected Kc coefficient of grassland in the Three-Rivers Headwater Region from
1990 to 2020.

WC in the TRHR exhibited a significant increase (p < 0.05) from 1991 to 2020, with an
annual growth rate of 1.4 mm (Figure 6). A series of ecological projects have been imple-
mented, and the ecological environment in the TRHR has improved since 2000. Accordingly,
WC has changed from a weak increase to a strong increase since 2000. Specifically, WC
demonstrated a nonsignificant upward trend (1.16 mm/yr) from 1991 to 1999. However,
a significant increase was observed in WC, with a growth rate of 1.74 mm/yr (p < 0.05) from
2000 to 2020. Over the past 30 years, the average annual WC in the TRHR was 77.82 mm.
During the 1990s, the average annual WC in this region was 65 mm. The annual average
WC has increased to 83.31 mm since 2000, representing an overall growth of 28.17%. The
change trend of WC is similar to that of precipitation, with a change rate of 3.71 mm/yr
before 2000 and 3.8 mm/yr from 2000 to 2020. The lowest value for WC occurred in 2015
(46.31 mm), while the highest was observed in 2019 (114.76 mm). The average annual total
WC over the years was 2.79 × 1010 m3. The overall trend of total WC aligns with the trend
of WC over time.

3.2. Spatial and Temporal Distributions of Water Conservation

The spatial distribution of WC in the TRHR shows significant heterogeneity (Figure 7a).
The areas with high WC were found mainly in the southeast of the Yellow River and the
source area of the Lancang River, specifically in Banma County, Nangqian County, and
Jiuzhi County. The average value of WC over the years was 77.82 mm. Among the sub-
regions, the mean value of WC was highest in the HIB1 region (125.32 mm), followed by
the HIIC2 (112.97 mm) and the HIC1 regions (71.97 mm). The HIB1 region is characterized
by lower altitude and a more humid climate favorable conditions for WC. Moreover, this
area boasts relatively high vegetation coverage, pivotal in regulating runoff and increasing
water yield, making it a promising region for WC.
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Figure 6. Temporal variation in water conservation in the Three-Rivers Headwater Region from 1991
to 2020 (relative to the 1991–2020 anomaly).

Figure 7. The spatial distribution (a) and trend (b) of water conservation in the Three-Rivers Headwa-
ter Region from 1991 to 2020 (the inset panels in the bottom right of (a) display the water conservation
values in different ecosystem zones using a violin diagram. The inset panels in the bottom right
of (b) indicate the significance level (p < 0.05). The percentages of increasing (I) and decreasing (D)
trends (percentage of significant trends in parentheses) are shown at the bottom of (b)).

WC exhibited an increasing trend in 96.12% of the region during the study period,
and among these trends, 78.17% were statistically significant (p < 0.05) (Figure 7b). These
findings highlight substantial WC improvements across most TRHR over the past three
decades. Notably, the southeastern region of the TRHR exhibited an even more pronounced
trend, demonstrating a rate exceeding 2 mm/yr. However, approximately 3.87% of the
region still faces challenges maintaining WC efforts. Moreover, approximately 1.72% of
the total area of the TRHR experienced a significant decrease in WC throughout the study
period, with a rate of –2.77 mm/yr (p < 0.05).

3.3. Spatial and Temporal Driving Factors of Water Conservation
3.3.1. Drivers of Interannual Change

The TRHR experienced an increase in average annual precipitation during the period
from 1991 to 2020, with a rate of 3.6 mm/yr (p < 0.5) (Figure 8a). Before 2000, the increase in
precipitation was not statistically significant, with an annual increase of only 3.71 mm/yr.
However, the rate of precipitation increase has noticeably accelerated since 2000, with an
annual increase of 3.80 mm/yr. By contrast, potential evapotranspiration demonstrated no
significant change throughout the study period, with a rate of 0.48 mm/yr (Figure 8b). The
rate of increase in potential evapotranspiration slowed after 2000. Additionally, the average
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annual LAI from 1991 to 2020 exhibited an upward trend, indicating improved vegetation
growth (Figure 8c). The TRHR generally had a low baseline LAI, but a fluctuating upward
trend was observed from 1991 to 2020, with a growth rate of 0.0008 m2 m−2/yr (p < 0.05).
In particular, the annual fluctuation in LAI was more pronounced during 2000–2020 than
in the 1991–2000 period.

Figure 8. Interannual variability of climatic and vegetation elements from 1991 to 2000 ((a) Average
annual precipitation. (b) Average annual potential evapotranspiration. (c) Annual average leaf
area index).

Table 2 shows a significant positive correlation between precipitation and WC. The in-
crease in precipitation in the study area over the past 30 years has played an important role
in improving WC. However, no significant correlation between potential evapotranspira-
tion and WC was observed throughout the study. Before 2000, potential evapotranspiration
and WC had a positive correlation, but this relationship was not statistically significant.
However, this correlation changed to a significant negative correlation after 2000. The
increase in potential evapotranspiration indicates that meteorological factors such as tem-
perature, radiation, and wind speed have a stronger ability to demand atmospheric water,
ultimately leading to an increase in actual evapotranspiration and a decrease in WC. The
increase in LAI also promotes greater WC. After 2000, the influence of LAI on WC increased.

Table 2. Correlation between climate, vegetation, and water conservation.

Driving Element 1991–2000 2000–2020 1991–2020

Precipitation 0.92 ** 0.97 ** 0.97 **
Potential evapotranspiration 0.13 –0.5 * –0.19

LAI 0.07 0.36 0.33
Note: ** indicates a significant correlation at the 0.01 level (bilateral); * indicates a significant correlation at the 0.05
level (bilateral).

3.3.2. Drivers of Spatial Heterogeneity

The geographical detector method was employed to identify the primary factors
influencing the spatial distribution of the annual average WC in the region, given the
significant spatial variability of WC within the TRHR. Analysis of the q values of each
factor indicated that annual average precipitation had the highest explanatory power for
WC (0.73), followed by LAI (0.582), annual average potential evapotranspiration (0.207),
digital elevation model (DEM) (0.221), and slope (0.109), as determined. These factors were
statistically significant (p < 0.01) (Table 3). The annual average precipitation accounted 73%
of the spatial distribution of WC, which was the primary driving factor in the region. LAI
demonstrated moderate explanatory power for WC, while potential evapotranspiration
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and altitude had weak influences. The slope had the weakest influence on the spatial
heterogeneity of WC, contributing only 10.9%. A multi-year average NDVI from 1991 to
2020 was used as a vegetation factor, yielding consistent findings with those obtained using
LAI to ensure the reliability of the results.

Table 3. The q values of influencing water conservation factors in the Three-Rivers Headwater Region.

(1) Influencing Factors Annual Average Precipitation Annual Average Potential Evapotranspiration LAI Slope Altitude
q value 0.73 ** 0.207 ** 0.582 ** 0.109 ** 0.221 **

(2) Influencing Factors Annual Average Precipitation Annual Average Potential Evapotranspiration NDVI Slope Altitude
q value 0.746 ** 0.185 ** 0.568 ** 0.116 ** 0.242 **

Note: ** represents significance level p < 0.001.

An interaction detector was used to analyze the interaction between two factors in the
TRHR and various ecological regions to explore further the impact of different factors on
the spatial variation in WC (Figure 9). The NDVI data were applied to replicate the entire
interaction detection process and validate the reliability of the interaction detection findings.
The entire interaction detection process was also replicated using NDVI data to validate the
reliability of the findings. The interaction between two factors provided a better explanation
for the spatial differentiation of WC compared to a single factor. In particular, the interaction
between precipitation and other factors played a key role in the spatial differentiation
pattern of WC. The interaction between precipitation and potential evapotranspiration had
the strongest influence on WC in the north-central and western regions (HIC1) (explaining
at least 63.1% of the spatial distribution of WC), where the background value of LAI was
relatively low. Precipitation and vegetation together accounted for 72.8% and 60% of the
distribution of WC in regions HIIC2 and HIB1, respectively.

Figure 9. Explanatory power of interactive influencing factors on water conservation in the Three-
Rivers Headwater Region and its sub-regions ((a–d): LAI represents vegetation factor, (e–h): NDVI
represents vegetation factor).

4. Discussion
4.1. Interannual Variation in Water Conservation

Vegetation dynamics affect the regional WC through their influence on rainfall-runoff
capacity [39] and evapotranspiration [40]. Thus, considering the impact of vegetation
dynamics is crucial in quantifying WC services. Some hydrological models, including the
Soil and Water Assessment Tool (SWAT), Water and Energy transfer Processes in Large
river basins (WEP-L), and Water and Energy Budget Distributed Hydrological Model
(WEB-DHM), also consider the effects of vegetation growth on precipitation distribution,
soil moisture, and groundwater recharge [41–43]. This study focused specifically on the
influence of vegetation on WC and improved the InVEST model to reflect interannual
variation in vegetation and enhance the accuracy of the simulation.



Atmosphere 2023, 14, 1453 14 of 19

The grassland growth and actual evapotranspiration in the Tibetan Plateau exhibit evi-
dent stage and interannual variations [44]. An empirical coefficient called the Kc coefficient
is commonly used to determine vegetation water requirements. This coefficient is typically
calculated by dividing actual evapotranspiration (AET) by reference evapotranspiration
(ETo). Previous studies have employed this ratio to estimate the annual Kc coefficient.
However, obtaining AET data in advance is necessary for the corresponding research,
which limits the generalizability of this approach [45]. The Kc coefficient for a specific
region can be determined by establishing an empirical relationship between vegetation
indexes, such as LAI and NDVI, and the corresponding Kc coefficients. However, collect-
ing and obtaining the observed Kc coefficients beforehand to establish this relationship
is crucial [46]. This study first categorized grassland Kc coefficients into three growth
stages to better understand the variations in grassland evapotranspiration in this research.
Then, the Kc coefficients recommended by FAO-56 for each specific stage of grassland
growth were utilized. The Kc coefficients for the middle and late growth stages were also
refined by incorporating local climate data. These adjusted coefficients were combined to
derive annual-scale grassland Kc coefficients. The methodology developed in this study
enables rapid and accurate estimation of Kc coefficients across a wide range of temporal
and spatial scales. However, when estimating the Kc coefficient, the absence of extensive
plant height data requires estimating plant height using LAI and an empirical formula.
However, this approach is specific to alpine grasslands because of the regional nature of
the empirical formula employed and may not be apply to other regions. If simulated or
observed plant height data become available for a broader range of times and locations, the
method proposed in the current research could potentially be applied to grassland areas on
a global scale.

4.2. Factors Affecting Temporal and Spatial Differentiation of Water Conservation

In the past 30 years, the WC in the TRHR has increased significantly, which is consis-
tent with previous studies [8,13,47]. WC is a complex process influenced by various factors.
Climatic factors, including precipitation, temperature, and humidity directly impact on
the hydrological cycle and the ability to conserve water [48,49]. The relationship between
interannual variations in WC and climatic factors was examined in the TRHR. The results
indicated a significant positive correlation between precipitation and WC over the past
30 years, in line with previous research [3,13,16]. Precipitation emerged as the primary fac-
tor influencing the spatial variation in WC in the TRHR, followed by vegetation (measured
by NDVI or LAI) consistent with previous studies in the region [14,16]. The evapotranspi-
ration capacity of the terrestrial ecosystem, indicated by potential evapotranspiration, has
a great effect on WC in the TRHR, along with vegetation. The TRHR displays significant
spatial variations in WC, demonstrating high WC values found in areas with abundant
precipitation and well-developed vegetation. Topography regulates WC by impacting
vegetation structure, soil properties, and water and heat conditions [50]. Nevertheless,
slope has a weaker effect on WC than other influencing factors.

The implementation of ecological projects in the TRHR also contributes to enhancing
WC. Grassland degradation has been observed in this region since the 1980s, reducing
effectiveness in intercepting runoff and storing water [51]. Since 2000, the government has
initiated several ecological projects to address this issue, including the grassland ecological
reward mechanism, the grazing withdrawal project, and the first and second stages of
ecological conservation and restoration projects [52,53]. These projects transformed approx-
imately 1.98 × 104 km2 of unused land into grassland in the TRHR by 2020. Furthermore,
a remarkable increase in vegetation coverage has been observed in the entire region over the
past 30 years, stabilizing surface temperature and enhancing soil moisture conditions [54].
Implementing ecological projects has effectively improved WC in the TRHR, strengthening
its ecological security barrier function [55].

A single factor alone is often insufficient to comprehend the entire ecosystem’s com-
plexity fully. The complexity of geographical processes typically involves the interplay of
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multiple factors. While the interaction between precipitation and vegetation enhances their
explanatory power for WC, the degree of interaction may vary across eco-geographical
regions. In the TRHR, HIC1 experiences relatively low precipitation and has a low back-
ground value of vegetation. Therefore, the interaction between precipitation and potential
evapotranspiration effectively explains the distribution of WC in this area. By contrast,
HIB1 and HIIC2 are relatively moist and have abundant vegetation. Vegetation plays
a crucial role in regulating the distribution of precipitation and ensuring WC through tran-
spiration and interception [56]. Thus, the interaction between vegetation and precipitation
in these areas has a high explanatory capacity for WC.

4.3. Adaptation to Future Climate Change

The Tibetan Plateau is predicted to experience increased precipitation in the future,
which will positively impact WC in most areas of the TRHR, such as the Yangtze River
and Lancang River sources [3,57]. However, certain areas, particularly some counties at
the source of the Yellow River, face a decline in WC because of reduced precipitation and
increased potential evapotranspiration resulting from a weakening summer monsoon. This
increase in rainfall is accompanied by higher rainfall erosivity, leading to soil erosion and
uncertainties in WC [58]. The Tibetan Plateau is recognized as one of the most sensitive
regions to global climate change, with its warming rate twice exceeding the global aver-
age [59]. The TRHR, located in the hinterland of the Tibetan Plateau, has observed even
more significant warming changes. The increasing frequency of extreme heat events in the
future will have a profound impact on the terrestrial ecosystem balance in this region [60].
Rising air temperatures lead to a decrease in soil moisture [61] and an increase in the
saturated vapor pressure deficit [62], thereby increasing the vulnerability of WC services in
this region. Climate change is anticipated to intensify vegetation expansion (greening) in
the TRHR [63]. The development of grasslands is closely linked to WC services [64]. This
large-scale vegetation greening will cause changes in evapotranspiration and precipitation
patterns [65]. Permafrost in the TRHR has also been declining since 1980, while the thick-
ness of the active layer has been increasing [51,66]. Hence, future research should monitor
the impact intensity of vegetation greening and permafrost degradation on WC. Changes in
WC also affect the terrestrial ecosystem in alpine regions [67]. Therefore, understanding WC
services and their interactions with various environmental factors is crucial to developing
effective measures to adapt to climate change.

4.4. Limitations and Future Work

WC requires a comprehensive understanding of the ecohydrological processes within
a basin, including factors such as precipitation interception and evaporation. It also involves
exploring the interaction between multiple hydrological processes and the ecosystem, such
as runoff timing, water quality, flood protection, and temperature regulation. Runoff timing
can indicate the capacity for WC. If the surface and groundwater systems have a strong
water storage capacity, runoff from rainfall or snowmelt will slowly enter rivers or lakes,
delaying runoff formation. In such cases, the runoff time will be relatively late [68]. WC
processes reduce soil erosion and prevent pollutants from entering water bodies. For
example, vegetation slows down the flow of rainfall, allowing more time for water to
permeate the soil, which reduces surface runoff and helps decrease the risk of soil erosion
and the introduction of pollutants into water bodies [69]. Additionally, a basin with a good
WC capacity mitigates the likelihood of natural disasters such as floods and droughts by
intercepting rainfall and storing soil water [70,71]. These aspects of WC function will be
considered to further enhance the understanding of WC in future research.

Research methods employed in this study have several limitations. First, the WC sim-
ulation does not differentiate between the Kc coefficients at grid scales. Instead, a regional
average Kc coefficient is utilized, which may introduce certain uncertainties to the results.
Second, the InVEST model does not account for the influence of runoff in the calculation
of regional WC, which is another limitation [31,72]. the model also fails to consider the
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impact of freezing and thawing on WC [14]. Therefore, future research should focus on
developing more precise methods for simulating vegetation evapotranspiration coefficients
at the grid scale and exploring ways to optimize WC models in plateau regions.

The environment in the TRHR is highly complex, and this study has not delved
deeply into the various factors contributing to changes in WC. Human activities such as
overgrazing, expansion of agricultural land, road construction projects, and ecological
project initiatives alter the surface, directly or indirectly affecting the WC services of the
region [73–75]. Future studies should focus on quantitatively analyzing the positive and
negative impacts of human activities on WC to gain a more comprehensive understanding.
Differentiating between the effects of human activities and natural environmental factors
on WC is crucial.

5. Conclusions

In this study, we improved the InVEST model by integrating the long-term series
of LAI data to capture the interannual variation in vegetation. The temporal and spatial
distribution characteristics of WC in the TRHR were assessed quantitatively from 1991 to
2020. Trend and correlation analyses were used to examine the temporal variation trend
and driving factors of WC. We also employed the geographical detector method to explore
the influencing factors and their interactions in the spatial distribution of WC. The main
findings are as follows:

(1) WC in the TRHR exhibits a spatial pattern with high values in the south and low
values in the north. WC significantly increased (1.4 mm/yr, p < 0.05) from 1991 to 2020.
Compared with 1991–1999, the annual average value of WC in 2000–2020 increased
by 28.17%. Over the past 30 years, WC improved in 78.17% of the regions (p < 0.5).

(2) The increase in precipitation over the past three decades has had a significant positive
impact on WC (R = 0.97, p < 0.01). However, the growth in potential evapotranspira-
tion has had a significant inhibitory effect on WC since 2000 (R = –0.5, p < 0.05).

(3) The spatial variation in WC is influenced primarily by precipitation, followed by
vegetation and potential evapotranspiration. The interaction among these factors
has a stronger explanatory power for WC than individual factors alone. The interac-
tion between precipitation and other influencing factors demonstrates the greatest
explanatory power. The combined influence of precipitation and vegetation accounts
for approximately 79.1% of the WC distribution across the study area. However, the
dominant interaction factors for WC vary in different eco-geographical regions. In the
north-central and western regions (HIC1) with low vegetation, the interaction between
annual precipitation and potential evapotranspiration explains 65% of the variation
in WC, making it the dominant interaction factor in the region. In the eastern and
central-southern areas (HIB1 and HIIC2), the interaction between annual precipitation
and vegetation exhibits the strongest influence.

The method proposed provides valuable insights into simulating WC. Incorporating
processes such as permafrost degradation is crucial for the accurate assessment of WC in
plateau regions in future work.
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