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Abstract: The modeling and processing of vectorial electromagnetic (EM) waves in inhomogeneous
media are important problems in physics and engineering, and new methods need to be developed
to incorporate novel vector sensor technology. Vectorial phenomena of EM waves in stratified atmo-
spheric layers can be incorporated into governing equations by retaining the gradient of the refractive
index when deriving the Maxwell Vector Wave Equation (MVWE) from Maxwell’s equations. The
MVWE, as opposed to the scalar wave, Helmholtz, and paraxial equations, couples the EM field
components in inhomogeneous media and thus captures important physics phenomena such as
depolarization. Here, recent developments are reviewed on using sensor time series data to recon-
struct electromagnetic waves that propagate through stratified media. In modern applications, often
many sensors can be deployed simultaneously to observe electromagnetic waves. These networks of
sensors can be used to improve the quality of the reconstructed EM wave fields and cross-validate
the observed sensor time series. Lastly, the effects of noisy current densities on sensor time series are
considered. Generally, as the sensor observes for longer periods of time, the variance of estimates of
the wave field obtained from sensor time series data increases. As a result, longer sensor observation
times do not always result in better estimates of the EM wave fields, and an optimal observation time
can be obtained.

Keywords: Maxwell’s equations; vectorial electromagnetic waves; stratified atmospheric layers;
stochastic electrodynamics; sensor networks

1. Introduction

With the development of modern vectorial EM sensor technologies, new vectorial
methods for modeling and processing EM waves, derived from fundamental Maxwell’s
equations, need to be created. New methods also need to be developed for processing
signals observed from a network of sensors. For example, CubeSats are inexpensive and
can be quickly deployed, making it practical to utilize networks of antennas and sens-
ing equipment to detect electromagnetic waves. The National Research Council stated
that the deployment of satellite constellations was a priority for the coming decades [1].
Satellite constellations will greatly advance our scientific understanding of the interactions
of atmospheric layers through the collection of environmental data. Placement condi-
tions to optimize the design of CubeSat constellations for communication networks are
discussed in [2]. Additionally, CubeSat missions are being developed with vector sensor
technology [3,4]. New imaging techniques have also been developed to remotely capture
3D structures in the ionosphere from the ground [5].

In this review, we discuss how the Maxwell vector wave equation (MVWE), an equa-
tion modeling vectorial EM propagation derived directly from Maxwell’s equations, has
been utilized in recent advancements to more accurately model EM wave propagation in
inhomogeneous and random media. The MVWE, as opposed to the scalar wave, Helmholtz,
and paraxial equations, models vectorial EM waves by retaining the gradient of the refrac-
tive index, and, as a result, the MVWE captures important physics phenomena associated
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with the coupling of electric field components such as depolarization, which occurs in EM
waves propagating through inhomogeneous media.

Application of the MVWE has been demonstrated for the important case of stratified
media. Examples of stratified media include the ionosphere and sharp layers such as
air–sea and Rayleigh–Taylor interfaces [6–8]. For a broad overview of Rayleigh–Taylor
instabilities and turbulence, see [9]. In these cases, the permittivity gradient is large and
affects propagating EM waves. When waves propagate to the Karman line (at 100 km
above the Earth’s surface), a portion of the wave penetrates into the ionosphere and another
portion reflects back into the mesosphere, and as a result of the permittivity gradient,
the electric fields are coupled in this region and EM waves can become depolarized. This
phenomenon is related to the temperature gradient ∇T and the angle between the electric
field E and the gradient. The thermodynamic structure of the atmosphere in the vertical
direction affects communication and the propagation of EM waves [10]. NASA’s Iono-
spheric Connection Explorer (ICON) mission, launched in 2019, seeks to understand how
space weather interacts with the weather on Earth. Radio and GPS signals that propagate
through the ionosphere can be disrupted by dense pockets of charged particles [11,12]. Fast
winds in this region power electric fields that can affect satellites [11,13]. The ICON mission
provided direct measurements of the Karman layer.

This paper is dedicated to Dr. Jackson Rea Herring. Jack was a Senior Scientist at the
Mesoscale and Microscale Meteorology Division at the National Center for Atmospheric
Research (NCAR) at Boulder, Colorado, a position he had held since 1978. Jack made
fundamental contributions to research on stratified turbulence [14,15]. The Craya–Herring
decomposition is widely used by researchers in the field. Stably stratified flows appear in
many areas of physics and engineering and are fundamental to the study of geophysics.
Stable stratification occurs in the Earth’s atmosphere and planetary flows more generally.
He was a leader in the Geophysical Turbulence Program (GTP) at NCAR [16]. Over the
years, our scientific community benefited greatly from Jack’s generosity and the GTP
scientific activities including workshops and a special collection of articles on geophysical
turbulence which he edited [17,18]. Jack Herring contributed to atmospheric and oceanic
flows, and his work influenced many publications in stratified flows more generally [19,20].

The present review is narrower in scope, focusing on electromagnetic wave prop-
agation through inhomogeneous stratified media and processing of sensor observation
time series in random media. Sensor time series data can be used with an eigenfunction
decomposition of the EM wave field obtained from general PDE theory to reconstruct the
EM field at any other location (the procedure is described in Section 3). Sensor networks
can also be utilized to obtain better estimates of EM fields.

This paper is organized as follows. In Section 2, the Maxwell vector wave equation is
derived for electromagnetic wave propagation in inhomogeneous media and the important
case of a stratified layered medium is discussed. In Section 3, work on electromagnetic
wave field reconstruction from sensor network data is reviewed. In Section 4, the stochastic
Maxwell vector wave equation is introduced and studied. Finally, concluding remarks are
made on wave propagation through stratified layers.

2. Vectorial Electromagnetic Wave Propagation through Stratified Layers

In their most fundamental form, electromagnetic waves are described by Maxwell’s
equations. Often, approximations are made to simplify these equations to decoupled scalar
wave equations. This approximation, however, neglects important vectorial phenomena
such as depolarization. Thus, it is important to study the vectorial wave equation derived
directly from Maxwell’s equations, which is referred to here as the Maxwell vector wave
equation (MVWE). This equation can be derived from the differential form of Faraday’s
law of induction and Ampére’s law:



Atmosphere 2023, 14, 1451 3 of 12

∇× E = −∂B
∂t

(1)

∇×H = J +
∂D
∂t

(2)

with the constitutive relations D = ε(x)E and H = µ−1B, where J is the current density, E
is the electric field, H is the magnetic field, D is the electric displacement, B is the magnetic
induction, x = (x1, x2, x3) represents the Cartesian spatial coordinates, ε(x) is the spatially
varying permittivity, and µ is the permeability constant. Differentiating Ampére’s law with
respect to time gives

∇×
(

µ−1 ∂B
∂t

)
=

∂J
∂t

+ ε(x)
∂2E
∂t2 . (3)

Finally, using Faraday’s law gives the Maxwell vector wave equation

ε(x)
∂2E
∂t2 +∇×

(
µ−1∇× E

)
= −∂J

∂t
. (4)

For constant µ, the vector identity ∇×∇× E = ∇(∇ · E) − ∆E can be applied to
obtain the alternate form

∂2E
∂t2 − c2(x)∆E + c2(x)∇(∇ · E) = −[ε(x)]−1 ∂J

∂t
(5)

where c2(x) = (µε(x))−1. This equation clearly resembles a standard wave equation with
the additional term c2(x)∇(∇ · E). To reduce Equation (5) to a standard wave equation,
it is often assumed that ∇ · E = 0 using Gauss’s Law ∇ · D = 0. This assumption,
however, neglects vectorial and depolarization effects of electromagnetic propagation in
inhomogeneous media since

∇ ·D = ε(x)∇ · E +∇ε(x) · E = 0, (6)

which implies that

∇ · E = −[ε(x)]−1∇ε(x) · E 6= 0. (7)

Thus, Equation (5) can alternatively be written in terms of the parameter
γ(x) := [ε(x)]−1∇ε(x) = 2∇ log(n(x)), where n is the refractive index, to represent the
coupling of the components of the electric field via the permittivity gradient:

∂2E
∂t2 − c2(x)∆E− c2(x)∇(γ · E) = −[ε(x)]−1 ∂J

∂t
. (8)

The inverse of the magnitude of γ, i.e., Lε = |γ|−1, is the length scale that characterizes
the inhomogeneity of the medium. Without the coupling of the electric field components,
depolarization effects are neglected.

Simpler models than Equation (8) that preserve coupling effects can be obtained in
special cases. One important such case is when the medium is vertically stratified, which
can be represented by a permittivity ε(x3) that depends only on the vertical coordinate
x3. In practice, a vertically stratified permittivity can be obtained via ensemble averages
of permittivity data observed at different times, horizontal averages of permittivity data
observed at different horizontal locations, or using a standard profile (for example, see [21]).
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The gradient of the permittivity points in the x3 direction, and therefore, γ = (0, 0, γ3(x3)).
The coupled Equations (4) become an upper-triangular system:

∂2E1

∂t2 − c2(x3)∆E1 − c2(x3)γ3(x3)
∂E3

∂x1
= −[ε(x3)]

−1 ∂J1

∂t
(9)

∂2E2

∂t2 − c2(x3)∆E2 − c2(x3)γ3(x3)
∂E3

∂x2
= −[ε(x3)]

−1 ∂J2

∂t
(10)

∂2E3

∂t2 − c2(x3)∆E3 − c2(x3)
∂(γ3(x3)E3)

∂x3
= −[ε(x3)]

−1 ∂J3

∂t
. (11)

In this system, the field component parallel to the direction of stratification acts as a
forcing term for the orthogonal field components. The orthogonal field components solve
forced scalar wave equations. As a result, a wave source that is initially linearly polarized
parallel to the direction of stratification will depolarize and activate orthogonal components
of the electric field. Depolarization can be defined, as in [22], as the ratio of the complex
electric field that is orthogonally polarized to the transmitted wave (E⊥) to the field that is
copolarized to the transmitted wave (E‖):

depolarization = E⊥/E‖. (12)

Depolarization effects have been studied in the context of evaporation ducts at the air–
sea interface [23]. Evaporation ducts are refracting layers where humidity sharply decreases
near water–air interfaces such as boundaries of clouds, the marine boundary layer, and the
air–sea interface. At the air–sea interface, the permittivity changes sharply, which results in
depolarized electromagnetic waves. The effect of evaporation ducts on radio frequency (RF)
propagation was studied in the Coupled Air–Sea Processes and Electromagnetic Ducting
Research (CASPER) project [24]. The effect of random, inhomogeneous media on wave
propagation has also been studied using a simpler scalar wave equation approach [25–28].

Other types of layers encountered in electromagnetic applications are discussed in
the conclusion. Jack Herring made fundamental contributions to the study of stratified
layered media characterized by the Brunt–Väisälä frequency, N2 = gθ−1 dθ

dx3
, where θ(x3) is

the potential temperature and g is the acceleration of gravity [14,15].

3. Robust Reconstruction of Wave Dynamics Using Data from Noisy Sensors and
Heterogeneous Sensor Networks

In this section, the results for the wave equation

∂2u
∂t2 − c2(x)∆u = F(x, t) (13)

are reviewed. Equation (13) has the form of (9) and (10) in the stratified upper-triangular
system and is also a fundamental equation in acoustics. In [29], Equation (13) is studied from
a signal processing perspective. An important problem in signal processing is understanding
how and when to use information obtained from multiple sources. When an approximation
of an electric wave field in some region of space is needed, a network of electric field sensors
can be utilized. In [29], the problem of constructing wave fields from a network of sensors
is analyzed. Each sensor obtains a time series of observations Rs(t) of the wave field at a
fixed spatial location s, i.e., Rs(t) = u(s, t), where u is the wave field. The sensor location s is
represented by the fixed Cartesian coordinates (s1, s2, s3) relative to the frame of reference.
Natural questions to ask are (1) how large the sensor network should be to construct the wave
field and (2) what the level of error in such approximations is.

The solutions of (13) can be described in terms of eigenfunctions Φ of the weighted
Laplace operator

c2(x)∆Φ + λΦ = 0 (14)
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with suitable boundary conditions along with initial conditions

u(x, 0) = f (x) = ∑
n

f̂nΦn(x) (15)

∂u
∂t

(x, 0) = g(x) = ∑
n

ĝnΦn(x). (16)

The general solution can then be written as a sum

u(x, t) = ∑
n

An(t)Φn(x) (17)

An(t) = f̂n cos(
√

λnt) +
ĝn√
λn

sin(
√

λnt) (18)

which is written here and throughout in the real, as opposed to complex, form. The eigen-
functions Φn(x) can be thought of more generally as “features” of the problem (13) together
with boundary and initial data. For (13), the features are eigenfunctions of the weighted
Laplace operator, and for the Maxwell vector wave Equation (4), the features are eigenfunc-
tions of the weighted curl-squared operator (discussed in the next section). Importantly,
the only requirement for the analysis that follows is that the features be orthogonal. Thus,
different boundary conditions and differential operators can be substituted whenever the
eigenfunctions are orthogonal. The general features framework is used in many other
areas of research, including machine learning, compressed sensing, and dynamic mode
decomposition [30,31].

The sensor time series Rs(t) is almost periodic in time, i.e., a sum of trigonometric
functions

Rs(t) = ∑
n

cn cos(ωnt) + dn sin(ωnt). (19)

Although each term is periodic, the sum is not periodic, because the frequencies ωn
are noncommenserate, which is the case in the processing of signals in practice. The space
of almost periodic functions is a Hilbert space with the inner product

(h(t), k(t)) = lim
τ→∞

1
τ

∫ τ

0
h(t)k(t) dt. (20)

Therefore, the frequencies ωn and coefficients cn and dn can be obtained using the
inner products:

α := (Rs(t), cos(ωt)) (21)

β := (Rs(t), sin(ωt)). (22)

When every eigenvalue uniquely identifies an eigenfunction (i.e., every eigenvalue
has multiplicity one), the wave field u can be fully reconstructed from one sensor.

Given a sensor time series Rs(t) at spatial location s, the time series of the wave field
at any other location x0 can be obtained via [29]

Rx0(t) = ∑
n

Φn(x0)

Φn(s)
cn cos(ωnt) +

Φn(x0)

Φn(s)
dn sin(ωnt) (23)

when F = 0. Thus, in this framework, the form of the solution (17) obtained from general
PDE theory can be used together with the time series data Rs(t) of the wave field at a fixed
spatial location s to obtain the wave field solution at any other location x0. In general,
the single time series Rs(t) does not provide enough information to construct u because
one frequency ω may correspond to multiple eigenfunctions Φn. Instead, the information
obtained is a sum over all eigenfunctions Φi that correspond to the same eigenvalue λj:
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αj = ∑
i∈Ij

Φi(s)
f̂i
2

. (24)

Thus, a single time series Rs(t) cannot generally be used to obtain the amplitudes f̂i
and one needs a network of sensors. The data obtained from a network of sensors give a
linear system:

2


αs1

j
...

αsn
j

 =


Φi1(s1) . . . Φimj

(s1)

...
Φi1(sn) . . . Φimj

(sn)




f̂i1
...

f̂imj

 (25)

and a method such as ordinary least squares must be chosen to obtain an estimate of the
coefficients f̂i. This linear system can be written more succinctly as αJ = ΦJ f̂ J . In practice,
only finitely many eigenfunctions are of interest and the signals are bandlimited, but some
eigenvalues will still correspond to many eigenfunctions. In Figure 1, least squares recon-
struction is applied to the systems (25) for a two-dimensional case. The spatial domain
is D = [0, π]× [0, 1], and the boundary conditions are periodic. In the case of periodic
boundary conditions, multiple sensors are always required because there are eigenvalues
with a multiplicity greater than one, i.e., in one dimension:

Φn(x) = sin(nπx/L) and Φ−n(x) = cos(nπx/L). (26)

In Figure 1, a network of seven sensors is used to construct approximations of the
system. In the first panel, the initial state f (x) of the system, which is an off-center Gaussian
bump, is displayed and the location of two additional sensors is shown in red. In the second
and third panels of Figure 1, the time series of the two additional sensors are approximated.
In both cases, the frequencies and amplitudes of the signal are recovered.

When the method of least squares is used, the error in the estimates f̃ J of the coefficients
f̂ J can be written in terms of the matrix ΦJ . Suppose the system is contaminated with
Gaussian noise so that αJ = ΦJ f̂ J + εJ where εJ ∼ Nn(0, σ2 In) for some σ > 0. The best
linear unbiased estimate f̃ J of f̂ J and its covariance are

f̃ J = (ΦT
J ΦJ)

−1ΦT
J αJ (27)

σ2
J = E[( f̃ J − f̂ J)( f̃ J − f̂ J)

T |ΦJ ] = (ΦT
J ΦJ)

−1σ2. (28)

To see how the error depends explicitly on the number of noisy sensors n in the
network, the entries of the matrix ΦJ must be given a distribution. In the simplest case
where [Φi1(sk), . . . , Φimj

(sk)] is normally distributed N (0, Σ), then

(ΦT
J ΦJ)

−1 ∼ W−1
mj

(Σ−1, n) (29)

whereW−1 denotes the inverse Wishart distribution. Alternatively, if the eigenfunctions
are known, then a distribution is given to the sensor placement such as

s ∼ Unif(D). (30)

In Figure 2, the variance (28) is shown on a log–log plot for different distributions of
Φi(sk). For the first three, the sensor is placed uniformly at random in the domain, and the
eigenfunctions



Atmosphere 2023, 14, 1451 7 of 12

Φ1(x) = sin(4x) D = [−π, π] (31)

Φ2(x) = sin(7x) cos(12πy) D = [−π, π]× [−1, 1] (32)

Φ3(x) = cos(16x) cos(23πy) sin(28πz) D = [−π, π]× [−1, 1]× [−1, 1] (33)

are used. The variance (28) is also plotted for the case where Φi(sk) ∼ N (0, 1). On this
log–log plot, the slope of each line is approximately −1, meaning that the variance in each
case decays as O(n−1), where n is the number of sensors. Figure 3 shows how the relative
error depends on the number of sensors and the noise level σ of the sensors. In this figure,
the error is the L2([0, 100]) error in approximating the time series of an additional sensor.

0 2 4 6 8 10 12 14t
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

u

exact
reconstructed

(b)

0 2 4 6 8 10 12 14t
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

exact
reconstructed

(c)

Figure 1. Time series data from a network of seven sensors are used to approximate the wave field
u by solving the systems (25). (a) The locations of an eighth and ninth sensor in red plotted on the
initial state of the system (15). (b,c) Comparisons of time series of the eighth and ninth sensors to the
reconstructions of the time series at those locations using the network of seven sensors.
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Figure 2. The variance of the least squares estimate (28) of a coefficient f̂i plotted against the number
of sensors used. Each line displays the variance for a different assumption for how the data Φi(Sk)

are obtained.
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0.4

0.6

0.8

1
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1.4

L
2  R

el
at

iv
e 

E
rr

or

8 sensors
12 sensors
16 sensors
20 sensors

Figure 3. The L2([0, τ]) relative error in approximating the time series of a sensor plotted against the
sensor noise level σ and the number of sensor time series used for approximation. The final time is
τ = 100.

4. 3D Stochastic Maxwell Vector Wave Equation and Optimal Observation Time

In this section, the signal processing of vectorial electromagnetic waves in the pres-
ence of a noisy current density J(x, t) is discussed (see [32], chapter 3). In this context,
the medium parameters, permittivity ε(x) and permeability µ(x), are general functions of
space or are stratified and the current density is stochastic.

The electric field E satisfies the Maxwell vector wave equation:

ε(x)
∂2E
∂t2 +∇×

(
[µ(x)]−1∇× E

)
= −∂J

∂t
. (34)

The electric field solutions can be written in the form

E(x, t) = ∑
n

An(t)Φn(x) (35)

where Φ(x) are eigenfunctions of the weighted curl-squared operator:

∇×
(
[µ(x)]−1∇×Φ

)
− λε(x)Φ = 0. (36)
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Stochasticity is introduced to the problem via the current density

∂J
∂t

:= ε(x)
√

Q
∂W
∂t

(37)

whereW is a cylindrical Wiener process and Q is a self-adjoint trace-class operator defined
by QΦn = σ2

nΦn (see [33,34] for more details). The Wiener process
√

QW can be written in
terms of independent one-dimensional Wiener processesWn(t):√

QW = ∑
n

σnWn(t)Φn(x). (38)

Using the orthonormality of the eigenfunctions Φn(x), a sequence of ODEs for the
An(t) terms is obtained:

A′′n(t) + λn An(t) = σn
∂Wn

∂t
(t). (39)

The solution is

An(t) = f̂n cos(
√

λnt) +
ĝn√
λn

sin(
√

λnt) +
∫ t

0

σn√
λn

sin(
√

λn(t− r)) dWn(r)

and its variance grows linearly with time:

VAR[An(t)] =
σ2

n

4λ3/2
n

(
2
√

λnt− sin(2
√

λnt)
)

. (40)

In the framework of the Maxwell vector wave equation, as in the last section, the inner
products (21) can be utilized to reconstruct the electric field from sensor time series data; in
this context, however, the time series data are bombarded with noise from the stochastic
current density. Because the variance of the solution grows with time as a result of noise
and a minimum-noise reconstruction is desired, sensor time series observed for a shorter
time interval [0, τ] can provide a better reconstruction of the noiseless electric field.

This can be made explicit by calculating the mean squared error (MSE) of each coeffi-
cient f̂ j as a function of the sensor observation time τ:

MSE(τ; j) = [BIAS(τ; j)]2 + VAR(τ; j). (41)

The error resulting from the noisy current density is then described in terms of the
variance term VAR, and the deterministic error is described in terms of the squared-
bias term [BIAS]2. The variance can be computed explicitly in simple cases and grows
linearly with respect to the length of the time series τ, i.e., VAR(τ; j) ∼ O(τ). As a result,
there is a bias–variance tradeoff. In Figure 4, the mean squared error of a coefficient
f̂ j is displayed. The MSE initially decreases as a result of the decreasing squared bias.
After reaching a minimum, the MSE begins to grow roughly linearly as a result of the
variance term. The observation time τ that minimizes the MSE is the “optimal” observation
time. In Figure 4, the dominant variance term VARres which can be calculated analytically
is displayed along with the squared bias and MSE. This optimal observation time τ can be
utilized to estimate each of the coefficients f̂ j and reconstruct the electric field E.
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0 5 10 15 20
0

0.5

1

M
S

E

simulated MSE

[BIAS]2 + VAR
res

min

0 5 10 15 20
0

0.5

1

1.5 [BIAS]2

VAR
res

(a)

(b)

Figure 4. The decomposition of the relative mean squared error (41) of a coefficient f̂ j into squared-
bias and variance terms. (a) The mean squared error (41) versus sensor observation time τ. (b) The
squared-bias and variance terms versus τ.

5. Concluding Remarks

In this review, we discussed recent advancements in the modeling and process-
ing of vectorial electromagnetic signals propagating in inhomogeneous, stratified media.
With new developments in vector sensor technology and the development of cheaper
satellites, corresponding advancements in signal processing need to be made. The Maxwell
vector wave equation, the governing equation for vectorial EM waves derived directly
from Maxwell’s equations, incorporates relevant fundamental physics phenomena that are
absent in scalar wave equation approaches. In applications involving EM wave propagation
through media with sharp refractive index gradients, the modeling of vectorial effects is
essential. Beyond the incorporation of vectorial effects, we reviewed new results on the
importance of sensor networks for the accurate reconstruction of electromagnetic signals as
well as modeling noisy environments via stochastic currents.
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