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Abstract: Fine dust, represented by Fe-based fine particles and emitted from the production process
of the iron and steel industry, is the primary factor causing many diseases represented by industrial
pneumoconiosis, and ultra-low dust emission has always been a thorny problem to be solved
urgently. To explore the magnetic coagulation effect of Fe-based fine particles in the magnetic field
when removing them from industrial flue gas by the magnetic field effect in the iron and steel
industry, using FLUENT software, magnetic dipole force was added between particles through user
defined function (UDF) based on the computational fluid dynamics-discrete phase model (CFD-DPM)
method so that the collision process of particles was then equivalent to their mutual trapping process.
Next, the effects of particle size, particle volume fraction, external magnetic field strength, and
particle magnetic susceptibility on the magnetic coagulation process were comprehensively studied.
Meanwhile, the proton balance equation (PBE) was solved using the partition method on the basis of
the computational fluid dynamics-population balance model (CFD-PBM) to compare the coagulation
removal effect under random and aligned orientations of magnetic dipoles, respectively. The results
showed that the magnetic coagulation strength under the random orientation of magnetic dipoles
was greater than that under the aligned orientation. When the particle size of Fe-based fine particles
increased from 0.5 µm to 1.5 µm, the magnetic coagulation coefficient decreased from 0.5414 to
0.2882, and the difference in the removal efficiency under the two different orientations of magnetic
dipoles became smaller. When the particle volume fraction increased from 0.01 to 0.03, the magnetic
coagulation coefficient increased from 0.2353 to 0.5061, and the difference in the removal efficiency
under two orientations was enlarged. When the applied external magnetic field strength increased
from 0.5 T to 1.0 T, the magnetic coagulation coefficient increased from 0.3940 to 0.5288, and the
magnetic susceptibility increased from 0.0250 to 0.0500, the coagulation coefficient increased from
0.3940 to 0.5288, and the difference under two orientations basically stayed unchanged.

Keywords: Fe-based fine particles; magnetic field effect; magnetic dipole force; magnetic coagulation;
removal efficiency

1. Introduction

China is in a rapid stage of industrial development, accompanied by deep-seated
conflicts and problems such as production overcapacity, serious repeated construction,
and increased pressure on industrial environmental protection. As a big steel producer,
China has ranked first in the world steel production since 1996 [1]. As a resource-intensive
and energy-intensive industry, the iron and steel industry shows a large amount of energy
consumption and pollutant emission in the production process. Compared with other
industries, it is a typical heavily polluting industry [2,3], becoming one of the key targets of
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air pollution control in China. Especially, the emitted fine particles with a diameter less
than or equal to 2.5 µm (PM2.5 for short) can be carriers of other pollutants because of
their large quantity, slow settling speed, and large specific surface area, having a serious
impact on the quality of the atmospheric environment [4]. It is worth noting that PM2.5
is also an important inducement for the development of various respiratory diseases [5].
Therefore, it is urgent to solve the problem of particulate pollutant emission in heavily
polluting industries such as the iron and steel industry.

The filter material filtration method has been widely used in the field of industrial
flue gas purification by virtue of its high particle trapping efficiency and a wide applicable
range of particle sizes [6]. To further improve particle trapping performance, the fiber
cross-sectional shape (profiled fiber) [7–9] and fiber diameter [10] can be changed from the
fiber level. From the level of filtering media, the internal fiber distribution density [11],
fiber axial curvature [12], fiber bending degree [13], fiber arrangement structure [14], and
the geometric structure of filtering media can be changed, in which the filtering media
mainly include flat plate type [15], fold type [16], and topological structure type [17]. From
the level of filter materials, the surface of the traditional filter material can be loaded with
nanofibers [18] or the planar filter material can be designed as folded filter material [19].
When the above methods are used for improvement, however, the particles in the range
of 0.1–0.5 µm [20–22] show an unobvious Brownian diffusion effect and inertial collision
effect, and thus fine particles escape, a problem that cannot be radically solved yet.

By analyzing the physical properties of the dust produced in the production process,
it was found that after the raw Fe ore is crushed and steam-condensed at high temperature,
there are many metal components in the particles, and the content of Fe element is much
higher than that of other elements [23,24], and Fe magnetic substances such as Fe3O4 and
Fe2O3 are the main components of the dust [25]. Therefore, it can be seen that many easily
magnetized Fe-based fine particles are produced in the production process of the iron
and steel industry, which can be magnetically coagulated by the magnetic field effect and
then removed. In the traditional flow field, the motion state of particles after collision
depends on the relative magnitude of drag force, gravity, viscous force (Van der Waals
force), and collision elastic force [26]. When dp < 30 µm, the viscous force, represented by
Van der Waals force, is dominant in this region. When particles collide or contact with
each other, the collision coagulation effect occurs [27]. When a uniform magnetic field is
added to the flow field, the particles in the flow field are not only subjected to drag force
and gravity but also to magnetic dipole force before collision. When dp < 10 µm, the ratio
of magnetic dipole force to drag force is less than 1, and the ratio to gravity exceeds the
order of magnitude of 102 [28]. Although the magnetic dipole force is smaller than the drag
force, they are in the same order of magnitude. Before particles collide with each other,
the existence of magnetic dipole force accelerates the collision coagulation effect. When
particles collide with each other, the colliding particles are subjected to the combined action
of five forces: drag force, gravity force, viscous force, collision elastic force, and magnetic
dipole force, and the existence of magnetic dipole force enhances the collision coagulation
effect. Chinese and foreign scholars have done a lot of research on the magnetic coagulation
process of ferromagnetic particles in the magnetic field.

Based on the magnetic dipole theory, Ku [29] analyzed the magnetic potential energy
characteristics of magnetic particles in the magnetic field, derived the expression of the
interaction force between magnetic particles, and simulated their dynamic characteristics.
The results showed that magnetic particles are coagulated along the direction of external
magnetic field and arranged in a chain structure. Ke [30] numerically simulated the dynamic
characteristics of magnetic particles in vertical and horizontal uniform magnetic fields. The
results revealed that the external magnetic field has a significant influence on the dynamic
characteristics of magnetic particles, and the particles form some fragmented chains along
the flow direction, which are continuously elongated and aligned, and finally approach a
stable state. Senkawa [31] studied the magnetic interaction between two magnetic particles
and obtained different expressions of the magnetic interaction between two magnetic
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particles. Karvelas [32] explored the magnetic coagulation behavior of Fe3O4 nanoparticles
in a uniform magnetic field, and the results showed that Fe3O4 nanoparticles will form a
chain structure under the action of the magnetic field. Hleis [25] investigated the particle
deposition process in a high-gradient magnetic field. The results showed that under the
conditions of low external magnetic field strength and low flow rate, the particles will form
chain structures or chain beams on the way to the magnetic filter media. It was found that
the ferromagnetic particles in the external magnetic field, no matter whether it is a uniform
magnetic field or a gradient magnetic field, will form a chain structure under the action of
the magnetic dipole force. In this study, therefore, the dynamic process of ferromagnetic
particles coagulated into chains is not discussed, and the magnetic coagulation effect and
strength of Fe-based fine particles in a uniform magnetic field were mainly studied.

When the magnetic coagulation dynamic process of Fe-based fine particles was calcu-
lated using the CFD-DPM method, the force on the two particles colliding with each other
was analyzed, and the particle motion equilibrium equation in the composite field com-
posed of flow field and magnetic field was established. The magnetic coagulation process
could be analogized to the trapping process of one particle to another. The magnetic dipole
force between particles was added by UDF, and a binary collision model was established for
calculation, aiming to explore the effects of particle size, particle volume fraction, external
magnetic field strength, and particle magnetic susceptibility on the magnetic coagulation
process. To study the effect of the magnetic dipole orientation on magnetic coagulation and
removal, moreover, the CFD-PBM method was used to calculate the dynamic process of
magnetic coagulation and removal of Fe-based fine particles, and the magnetic coagulation
kernel function was added to the PBM module through UDF, and the magnetic coagulation
removal effects under random orientation and aligned orientation of magnetic dipoles
were compared. This study has certain guiding significance for the subsequent magnetic
coagulation removal of Fe-based fine particles.

2. Physical Model and Boundary Conditions

Figure 1 shows the Fe-based fine particle collision model. The collision process of
Fe-based fine particles in a uniform magnetic field can be regarded as a particle-to-particle
trapping process, as shown in Figure 1a. It can be seen from Figure 1b that the direction of
the uniform magnetic field was consistent with the movement speed of the inlet particles,
and the gravity was in the -Z axis direction, the model inlet was a velocity inlet with uniform
velocity distribution, the model outlet was a free outflow, the air density was 1.225 kg/m3,
the periphery boundary was set as a wall, and a no-slip boundary condition was adopted
for the core particle surface [33]. When the length and height of the calculation domain
were greater than 5 times and 1.5 times of the core particle diameter, a stable flow field
was formed in the calculation area without affecting the particle trapping efficiency [34,35].
Therefore, the distance from the inlet and outlet of the model to the core particle center was
3.5D, the width and height were 3D, and the core particle size was the same as that of the
inlet particle.
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Figure 1. Collision model of Fe-based fine particles in magnetic field: (a) streamlines of particle-to-
particle trapping process; (b) physical model of Fe-based fine particles collision.
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In addition, taking converter ash and refined ash as examples, Figure 2 shows the
magnetic characteristics of Fe-based fine particles emitted during steelmaking in the iron
and steel industry. As seen from Figure 2a, Fe-based fine particle XRD testing showed that
Fe-based fine particles contained Fe2O3, Fe3O4 and other ferromagnetic substances, which
had the characteristics of easy magnetization in the magnetic field. Figure 2b shows the
VSM curve of converter ash and refined ash. The VSM hysteresis loop shows that when
the external magnetic field intensity reached 0.5 T, the specific saturation magnetization of
converter ash and refined ash was 22.5 emu/g and 3.32 emu/g, respectively. The calculated
magnetic susceptibility of the two kinds of dust was 0.1363 and 0.01989, respectively,
indicating that the magnetic properties of converter ash are greater than those of refined
ash, and it is more easily magnetized in the magnetic field.
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Figure 2. Magnetic characteristics of Fe-based fine particles emitted from iron and steel industries:
(a) XRD patterns of converter ash and refined ash; (b) VSM curve of converter ash and refined ash.

3. Numerical Calculation Equations
3.1. Governing Equations for the Fluid Phase

The Euler–Euler double-fluid model was used as the gaseous field model. The
Reynolds number was calculated as Re = ud/ν < 1, categorized as a laminar flow
(u = 0.1 m/s, 0.5 µm ≤ d ≤ 2.5 µm, ν = 15.70 × 10−6 m2/s), with the continuity
equation and momentum equation as follows [15]:

∂(αρu)
∂t

+∇·(αρu) = 0 (1)

∂(αρu)
∂t

+∇·(αρuu) = −α∇P + αρg +∇·τ − F (2)

where α is the volume fraction; ρ is the density of the fluid, kg/m3; u is the velocity of the
fluid, m/s; ∇ is the Hamilton operator; P is the pressure of the grid cell, Pa; τ is the fluid
adhesion stress tensor; g is the gravitational acceleration, m/s2; and F is the resultant force
on the grid cells, Pa.

3.2. Governing Equations for the Particles

In a gas-solid two-phase flow, the motion of discrete phase particles is described by
Newton’s second law, and the motion equilibrium equation of particles is expressed as
follows [14]:

mp
d
→
u p

dt
=
→
F D +

→
F B +

→
F g +

→
F other (3)

→
F D= mp

(
18µ

ρpdp
2Cc

(→
u −→u p

))
(4)
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→
F B= mp

(
Gi

√
πS0

∆t

)
(5)

→
F g= mp

(→
g
(
ρp − ρ

)
ρp

)
(6)

Kn = 2λ/dp (7)

Cc = 1 + Kn
(

1.257 + 0.4e−1.1/Kn
)

(8)

S0 = 216νkbT/π2ρp
2dp

5Cc (9)

where FD, FB, and Fg are respectively the drag force, Brownian force, and gravity, N; mp is
the mass of particles, kg; up is the velocity of the particle, m/s; ν is the dynamic viscosity
of the fluid, Pa·s; Gi is a Gaussian random function with a mean of 0 and a variance of 1;
S0 is the spectral intensity of noise, m2/s3; Kn is the particle Knudsen number; Cc is the
Cunningham correction factor; dp is the particle diameter, µm; kb is the Boltzmann constant;
λ is the average free path of air molecules, nm; ρp is the density of particle, kg/m3; Fother
includes negligible forces, such as pressure gradient force, Bassett force, virtual mass force,
and Magnus force, N, and Fother = 0 by default.

The force of Fe-based fine particles under the action of magnetic dipole force was
analyzed, and the force diagram is shown in Figure 3. The motion equilibrium equation of
particles is expressed as follows:

mp
d
→
u p

dt
=
→
F D +

→
F B +

→
F g +

→
F Magnetic dipole force +

→
F other (10)
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(1) Magnetic dipole force in three-dimensional space
In the compound field composed of flow field, magnetic field, and gravity field, Fe-

based fine particles will form magnetic dipoles after being magnetized under the action
of the uniform magnetic field. The schematic diagram magnetic dipole forces between
Fe-based fine particles is shown in Figure 4.
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The magnetic dipole force between the two particles is decomposed along the radial
direction and tangential direction, and the calculation formulas for the radial force Fr

′ and
tangential force Fθ

′ of particle j on particle i are as follows [36]: Fr
′ =

3µ0mimj[3cos θ′ icos θ′ j−cos(ϕi−ϕj)]
4πr4

Fθ
′ = − 3µ0mimjsin(θ′ i+θ′ j)

4πr4

(11)

where the permeability of vacuum is µ0 = 1.256× 10−6 N/A2; mi and mj are the magnetic
dipole moment of particle i and j, respectively, A·m2; and r is the linear distance between
two particles, m. Since the magnetic field is consistent with magnetic dipole moment in
direction, ϕi = ϕj = ϕ, θ′ i = θ′ j = θ′, and mi = 4/3π(di/2)3Mi, mj = 4/3π

(
dj/2

)3Mj,
so the calculation formulas for the radial force Fr

′ and tangential force Fθ
′ of particle j on

particle i can be simplified as follows:Fr
′ =

πµ0mimjdi
3dj

3(3cos2θ′−1)
48r4

Fθ
′ = −πµ0mimjdi

3dj
3sin2θ′

48r4

(12)

where di and dj are the particle sizes of particle i and j, respectively.
In addition, the saturation magnetization of the two colliding particles is the same; that

is, Mi = Mj = Mp, and the final calculation formulas for the radial force Fr
′ and tangential

force Fθ
′ of particle j on particle i can be expressed as follows:Fr

′ =
πµ0 Mp

2di
3dj

3(3cos2θ′−1)
48r4

Fθ
′ = −πµ0 Mp

2di
3dj

3sin2θ′

48r4

(13)

According to Newton’s third law, the force action is mutual, and the calculation
formulas for the radial force Fr

′ and tangential force Fθ
′ of particle i on particle j can be

expressed as follows: Fr
′ = −πµ0 Mp

2di
3dj

3(3cos2θ′−1)
48r4

Fθ
′ =

πµ0 Mp
2di

3dj
3sin2θ′

48r4

(14)

When the direction of the uniform magnetic field and inlet particle are parallel along
the Z axis, particles attract each other due to the magnetic attraction at 3cos2θ′ − 1 > 0, and
particles repel each other due to the magnetic repulsion at 3cos2θ′ − 1 < 0. The radial and
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tangential components of the magnetic dipole force under the Cartesian coordinate system
are expressed as follows:

FM(x) = Frsin θsin ϕ− Fθcos θsin ϕ

FM(y) = Frsin θcos ϕ− Fθcos θcos ϕ

FM(z) = Frcos θ + Fθsin θ

(15)

According to sin θ =
√

x2 + y2/r, cos θ = z/r, sin ϕ = x/
√

x2 + y2, and cos ϕ =
y/
√

x2 + y2, the magnetic dipole force equation under the Cartesian coordinate system is
expressed as follows: 

FM(x) =
πµ0 Mp

2di
3dj

3(x2+y2−4z2)·x
48(x2+y2+z2)

7/2

FM(y) =
πµ0 Mp

2di
3dj

3(x2+y2−4z2)·y
48(x2+y2+z2)

7/2

FM(z) =
πµ0 Mp

2di
3dj

3(3x2+3y2−2z2)·z
48(x2+y2+z2)

7/2

(16)

(2) Motion equilibrium equation of particles
The forces acting on Fe-based fine particles in the composite field composed of flow

field, magnetic field, and gravity field mainly include gas drag force, gravity force, Brow-
nian force, and magnetic dipole force, and the motion equation of the particles in the
three-dimensional space is expressed as below [36]:

mp
d2x
dt2 = FDx + FMx + FBx

mp
d2y
dt2 = FDy + FMy + FBy

mp
d2z
dt2 = FDz + FMz + FBz −mpg

(17)

where FDx, FMx, and FBx are the drag force on particles, the magnetic dipole between
particles, and the Brownian force they bear along the X axis, N; FDy, FMy, and FBy are the
drag force on particles, the magnetic dipole between particles, and the Brownian force
along the Y axis, N; FDz, FMz, and FBz are the drag force, the magnetic dipole between
particles, and the Brownian force on particles along the Z axis, N.

(3) Calculation method of coagulation coefficient
Figure 5 shows the motion trajectory of particle j relative to core particle i in three-

dimensional space from different initial positions in space, and all relative initial positions
where particle j can collide with core particle i in unit time are determined. In this case,
such initial position points ((xj0, yj0, zj0), (xj1, yj1, zj1). . .(xjn, yjn, zjn)) constitute an effective
collision scope in the three-dimensional space, and its volume is the coagulation coefficient
between particles i and j.
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3.3. Calculation of the Magnetic Coagulation of Fe-Based Fine Particles Based on CFD-PBM

When calculating the magnetic coagulation process of particles in the composite
field composed of flow field, magnetic field, and gravity field based on CFD-PBM, the
coagulation cores of all coagulation types of particles in the flow field can be introduced
into the PBM model in the form of UDF for calculation, and then the particle equilibrium
equation can be solved by the partition method. For the magnetic coagulation core of
Fe-based fine particles in a magnetic field, Kumar [37] has proposed the calculation formula
for the magnetic coagulation core of particles in the free molecular zone and the continuous
zone, as follows:

(1) Anisotropic magnetic coagulation core

βsat
mag,co =

24/3

37/6

[
msat

i msat
j µ0

π

]1/3

(kbT)2/3 1
µ

(
di + dj

)
didj

(18)

βsat
mag, f m = 31/621/3

[
msat

i msat
j µ0

π

]1/3

(kbT)1/6 1
ρp1/2

[
1

di
3 +

1
dj

3

]1/2(
di + dj

)
(19)

(2) Isotropic magnetic coagulation core

βsat
mag,co =

25/3

9

[
msat

i msat
j µ0

π

]1/3

(kbT)2/3 1
µ

(
di + dj

)
didj

(20)

βsat
mag, f m =

22/3

32/3

[
msat

i msat
j µ0

π

]1/3

(kbT)1/6 1
ρp1/2

[
1

di
3 +

1
dj

3

]1/2(
di + dj

)
(21)

where T is the flow field temperature, K; msat
i and msat

j are the saturation magnetic moments

of particle i and j, respectively, A ×m2.
Whether particles are located in the free molecular zone or continuous zone can be

judged according to Kn = 2λ/dp [14]; according to Allen and Raabe [38], the average free
path λ of air is calculated as follows:

λ = λ0
p0

p

(
T
T0

)2 T0 + Ts

T + Ts
(22)

where T0 = 296.15 K; p0 = 1.013 × 105 Pa; λ0 is the average free path of air molecules at
normal temperature and pressure, generally 67.3 nm; Ts = 110.4 K [38]; p is the absolute
pressure of ambient gas, Pa; T is the absolute temperature of ambient gas, K. Through
calculation, the size of particle Kn in the range of 0.5–2.5 µm is shown in Table 1.

Table 1. Kn value of particles of different diameters (300 K).

dp (µm) λ (nm) Kn Cc

0.5 68.41 0.2736 2.010
1.0 68.41 0.1368 1.933
1.5 68.41 0.09121 1.597
2.0 68.41 0.06841 1.438
2.5 68.41 0.05473 1.346

According to the size of Kn and the range in Table 2, the particles in the range of
0.5–1.0 µm belong in the near continuous zone/slip zone (0.1 ≤ Kn ≤ 1), and the par-
ticles in the range of 1.5–2.5 µm belong in the continuous zone (0.01 ≤ Kn ≤ 0.1). In
order to simplify the study, the particles in the range of 0.5–1.0 µm also belong in the
continuous zone.
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Table 2. Kn value and region of particles of different diameters (300~2000 K).

dp (µm) 0.01 0.1 1 10

Kn 10~100 1~10 0.1~1 0.01~0.1
Zone Free molecular zone Transition zone Near-continuous zone/Slip zone Continuous zone

After being determined, the magnetic coagulation kernel is added to the PBM model
through UDF, the proton balance equation (PBE) or general dynamics equation (GDE) is
solved to describe the evolution process of coagulation dynamics in the particle swarm
equilibrium model, and its coagulation dynamics equation is as follows [39]:

dn(w, t)
dt

=
1
2

∫ w

0
β(w− v, v)n(w− v, t)n(v, t)dv− n(w, t)

∫ ∞

0
β(w, v)n(v, t)dv (23)

where n(w, t) is the particle number concentration distribution function of particles with a
volume of w at time t, ((N/m3)/m3, N is the particle number); β(w, v) is the coagulation
kernel of two particles with volumes w and v, respectively, (m3/N)/s; 1/2 means that
two particles simultaneously participate in one event of particle coagulation; the first
term on the right side of the equation represents that the particle volume w is generated
by the coagulation of particle volume (w, v) and particle volume v; the second term on
the right side of the equation indicates the particle volume w is lost by coagulation with
other particles.

The partition method has the advantages of less calculated quantity, high calcula-
tion accuracy, flexible partition of subintervals, and simple coupling solving of the particle
swarm equilibrium equation and two-fluid governing equation [40]. Therefore, the partition
method was used to solve PBE, and then the whole coagulation process was numerically
simulated, thus obtaining the time-dependent evolution process of the particle size dis-
tribution function. When the size of particles introduced from the inlet was 1.0 µm, for
example, the particle swarm was divided into eight intervals (Bin-7–Bin-0) during analog
computation, where the particle coagulation direction in the flow field was Bin-7→Bin-
6→Bin-5→Bin-4→Bin-3→Bin-2→Bin-1→Bin-0. When the ratio exponent was taken as 1.0
(the particle volume of the next interval and the particle volume of the previous interval
satisfy Vk+1 = f sVk, and 1.08 ≤ f s ≤ 3.0), the average particle size corresponding to each
interval within Bin-7–Bin-0 was calculated as seen in Table 3. In addition, the average
particle size from different inlets within Bin-7–Bin-0 is listed in Table 4.

Table 3. Average particle diameter in each interval from Bin-7 to Bin-0.

Interval Number Average Particle Diameter (m) Proportion (%) Particle Volume Fraction (VF)

Bin-0 5.040 × 10−6 0 0
Bin-1 4.000 × 10−6 0 0
Bin-2 3.175 × 10−6 0 0
Bin-3 2.520 × 10−6 0 0
Bin-4 2.000 × 10−6 0 0
Bin-5 1.587 × 10−6 0 0
Bin-6 1.260 × 10−6 0 0
Bin-7 1.000 × 10−6 100 0.01420
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Table 4. Average diameter in Bin-7 to Bin-0 subranges with different particle diameters of inlet.

Particle Diameter (µm)

Average Particle Diameter (µm) Bin-7 Bin-6 Bin-5 Bin-4 Bin-3 Bin-2 Bin-1 Bin-0

d7 d6 d5 d4 d3 d2 d1 d0

0.5000 0.500 0.630 0.793 1.000 1.260 1.587 2.000 2.520
1.000 1.000 1.260 1.587 2.000 2.520 3.175 4.000 5.040
1.500 1.500 1.890 2.381 3.000 3.780 4.762 6.000 7.560
2.000 2.000 2.520 3.175 4.000 5.040 6.350 8.000 10.08
2.500 2.500 3.150 3.969 5.000 6.300 7.937 10.00 12.60

4. Simulation Correctness Verification
4.1. Grid Independence Test

In order to eliminate the influence of the number of grids on the numerical simulation,
the grid independence test was carried out on the calculation model, and the optimal grid
number was determined by calculating the collision probability between particles under
different grid numbers. Due to the symmetry rule of the calculation area, the grid used in
the calculation was a hexahedral structured grid, and the spherical wall of the core particle
was refined. The calculation results are shown in Figure 6, with the increase in the number
of grids, the magnetic coagulation removal efficiency first increased and then stabilized.
When the number of grids increased from 270,000 to 650,000, the efficiency of magnetic
coagulation removal changed to 0.5%. When the number of grids increased from 820,000 to
1,290,000, the efficiency of magnetic coagulation removal changed to 0.44%, and when the
number of grids increased from 1,290,000 to 2,200,000, the efficiency of magnetic coagulation
removal changed to 0.34%; that is, when the number of multi-fiber trapping structure grids
reached about 650,000, the efficiency of magnetic coagulation removal remained basically
unchanged. Therefore, 820,000 grids were selected for numerical simulation calculation.
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4.2. Experiment Verification of the Simulation Method

In order to verify the correctness of the numerical simulation method, the simula-
tion was carried out under the same conditions as the particle collision experiment. The
difference was that the collision in the experiment was between particles and droplets,
but the collision mechanism was the same. Figure 7 shows the comparison between the
numerical simulation value and the experiment value of particle collision probability. As
shown in figure, Ranz and Wong [41] reported experiment values were higher than the
simulation values, while those of Walton and Woolcock [42] and Schmidt and Loeffler [43]
were close to the numerical simulation results, because the fluid Reynolds number in the
Ranz and Wong experiment was much higher than the one in the numerical calculation
model. In addition, the Langmuir and Blodgett theory value [44] and the Slinn [45] semi-
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empirical formula calculation values were in good agreement with the changing trend of
the numerical simulation results. The above results show that the numerical calculation
model and method in this paper are suitable and can be used to calculate the particle
collision probability.
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5. Numerical Simulation Calculation Results
5.1. Effect of Particle Size on Magnetic Coagulation Removal Efficiency of Fe-Based Fine Particles

Figure 8 shows the influence of the particle size on the magnetic coagulation of Fe-
based fine particles in the composite field. As shown in the figure, the magnetic coagulation
removal efficiency of Fe-based fine particles gradually increased with the change of resi-
dence time, and the larger the particle size, the worse the magnetic coagulation effect of
Fe-based fine particles. When the particle size of Fe-based fine particles increased from
0.5 µm to 1.5 µm, the magnetic coagulation coefficient of Fe-based fine particles decreased
from 0.5414 to 0.2882. This is because the larger the particle size is, the more difficult it is to
change the motion state of particles, and the smaller the relative motion intensity between
particles under the same magnetic dipole force. The magnetic coagulation coefficient of
Fe-based fine particles presented a quadratic functional relationship with the particle size,
and its formula is expressed as follows: K = 0.7304− 0.4196dp + 0.0832dp

2. In addition,
with the increase of the dust particle size, the magnetic coagulation strength of Fe-based
fine particles under a random magnetic dipole orientation was greater than that under
the aligned magnetic dipole orientation, and the difference between the magnetic coagula-
tion removal efficiency under the random magnetic dipole orientation and that under the
aligned magnetic dipole orientation was smaller.
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Figure 8. Effect of particle size on magnetic coagulation of Fe-based fine particles.

5.2. Effect of Particle Volume Fraction on Magnetic Coagulation Removal Efficiency of Fe-Based
Fine Particles

Figure 9 shows the influence of the particle volume fraction on the magnetic co-
agulation of Fe-based fine particles in the composite field. As shown in the figure, the
magnetic coagulation removal efficiency of Fe-based fine particles gradually increased
with the change of residence time. The greater the particle volume fraction, the better the
magnetic coagulation effect of Fe-based fine particles. When the particle volume fraction
grew from 0.01 to 0.03, the magnetic coagulation coefficient of Fe-based fine particles
increased from 0.2353 to 0.5061. The reason is that the increase of the particle volume
fraction increases the number of particles in the composite field. Although the relative
motion intensity of particles with the same particle size was unchanged under the same
magnetic dipole force, the change in the quantity increased the probability of the collision
between particles. The magnetic coagulation coefficient of Fe-based fine particles pre-
sented a quadratic functional relationship with the volume fraction, expressed as follows:
K = 0.0216 + 23.56VF − 247VF2. In addition, with the increase of the particle volume
fraction, the magnetic coagulation strength of Fe-based fine particles under the random
magnetic dipole orientation was greater than that under the aligned magnetic dipole orien-
tation, and the difference between the magnetic coagulation removal efficiency under the
random magnetic dipole orientation and that under the aligned magnetic dipole orientation
was enlarged.
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Figure 9. Effect of particle volume fraction on magnetic coagulation of Fe-based fine particles.
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5.3. Effect of External Magnetic Field Strength on Magnetic Coagulation Removal Efficiency of
Fe-Based Fine Particles

Figure 10 shows the influence of external magnetic field strength on the magnetic
coagulation of Fe-based fine particles in the composite field. As shown in the figure, the
magnetic coagulation removal efficiency of Fe-based fine particles gradually increased with
the change of residence time. The greater the applied external magnetic field strength, the
better the magnetic coagulation effect of Fe-based fine particles. When the applied external
magnetic field strength increased from 0.5 T to 1.0 T, the magnetic coagulation coefficient
of Fe-based fine particles increased from 0.3940 to 0.5288. This is because the greater the
applied external magnetic field strength, the greater the magnetic dipole force between
two particles after magnetization, and the greater the relative motion intensity of particles
under the magnetic dipole force. The magnetic coagulation coefficient of Fe-based fine
particles showed a quadratic functional relationship with the applied external magnetic
field strength, expressed as follows: K = 0.1808 + 10.096H − 62.72H2. In addition, as the
applied external magnetic field strength increased, the magnetic coagulation strength of
Fe-based fine particles under the random magnetic dipole orientation was greater than that
under the aligned magnetic dipole orientation, and the difference between the magnetic
coagulation removal efficiency under the random magnetic dipole orientation and that
under the aligned magnetic dipole orientation remained basically unchanged.

Atmosphere 2023, 14, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 9. Effect of particle volume fraction on magnetic coagulation of Fe-based fine particles. 

5.3. Effect of External Magnetic Field Strength on Magnetic Coagulation Removal Efficiency of 
Fe-Based Fine Particles 

Figure 10 shows the influence of external magnetic field strength on the magnetic 
coagulation of Fe-based fine particles in the composite field. As shown in the figure, the 
magnetic coagulation removal efficiency of Fe-based fine particles gradually increased 
with the change of residence time. The greater the applied external magnetic field 
strength, the better the magnetic coagulation effect of Fe-based fine particles. When the 
applied external magnetic field strength increased from 0.5 T to 1.0 T, the magnetic coag-
ulation coefficient of Fe-based fine particles increased from 0.3940 to 0.5288. This is be-
cause the greater the applied external magnetic field strength, the greater the magnetic 
dipole force between two particles after magnetization, and the greater the relative motion 
intensity of particles under the magnetic dipole force. The magnetic coagulation coeffi-
cient of Fe-based fine particles showed a quadratic functional relationship with the ap-
plied external magnetic field strength, expressed as follows: 𝐾 = 0.1808 + 10.096𝐻 −62.72𝐻ଶ. In addition, as the applied external magnetic field strength increased, the mag-
netic coagulation strength of Fe-based fine particles under the random magnetic dipole 
orientation was greater than that under the aligned magnetic dipole orientation, and the 
difference between the magnetic coagulation removal efficiency under the random mag-
netic dipole orientation and that under the aligned magnetic dipole orientation remained 
basically unchanged. 

 
Figure 10. Effect of external magnetic field strength on magnetic coagulation of Fe-based fine parti-
cles. 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

10

20

30

40

50

60

u = 0.1 m/s
xp= 0.0250
H = 0.5 TCo

lli
sio

n 
pr

ob
ab

ili
ty

, E
(%

)

Time, t(ms)

 VF=0.01，dp=1.0 μm
 VF=0.02，dp=1.0 μm
 VF=0.03，dp=1.0 μm
 VF=0.02，dp=0.5 μm

 

0.010 0.015 0.020 0.025 0.030
10
15
20
25
30
35
40
45
50
55

Co
lli

sio
n 

pr
ob

ab
ili

ty
, E

(%
)

Volume fraction

Randomly orientation
Alignment orientation

  

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

10

20

30

40

50

60

 H = 0.50 T, dp = 1.0 μm
 H = 0.75 T, dp = 1.0 μm
 H = 1.00 T, dp = 1.0 μm
 H = 0.50 T, dp = 0.5 μm

u = 0.1 m/s
xp = 0.0250
VF = 0.02

Co
lli

sio
n 

pr
ob

ab
ili

ty
, E

(%
)

Time, t(ms)

 

0.4 0.6 0.8 1.0 1.2 1.4 1.6
20
25
30
35
40
45
50
55
60
65

Co
lli

sio
n 

pr
ob

ab
ili

ty
, E

(%
)

Magnetic field strength, H(T)

 Randomly orientation
Alignment orientation

Figure 10. Effect of external magnetic field strength on magnetic coagulation of Fe-based fine particles.

5.4. Effect of Particle Magnetic Susceptibility on Magnetic Coagulation Removal Efficiency of
Fe-Based Fine Particles

Figure 11 exhibits the influence of particle magnetic susceptibility on the magnetic
coagulation of Fe-based fine particles in the composite field. As shown in the figure, the
magnetic coagulation removal efficiency of Fe-based fine particles gradually increased with
the change of residence time. The greater the particle magnetic susceptibility, the better the
magnetic coagulation effect of Fe-based fine particles. When the magnetic susceptibility
of Fe-based fine particles increased from 0.0250 to 0.0500, the coagulation coefficient of
Fe-based fine particles increased from 0.3940 to 0.5288. This is because the greater the
saturation magnetization of particles, the greater the magnetic dipole force between two
particles after magnetization, and the greater the relative motion intensity of particles under
the action of magnetic dipole force. The magnetic coagulation coefficient of Fe-based fine
particles displayed a quadratic functional relationship with the magnetic susceptibility
of particles, expressed as follows: K = 0.1808 + 10.096xp − 62.72xp

2. In addition, with
the increase of particle magnetic susceptibility, the magnetic coagulation strength of Fe-
based fine particles under the random magnetic dipole orientation was greater than that
under the aligned magnetic dipole orientation, and the difference between the magnetic
coagulation removal efficiency under the random magnetic dipole orientation and that
under the aligned magnetic dipole orientation remained basically unchanged.
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Figure 11. Effect of particle magnetic susceptibility on magnetic coagulation of Fe-based fine particles.

6. Conclusions

(1) The larger the particle size, the worse the coagulation effect of Fe-based fine
particles. When the particle size of Fe-based fine particles increased from 0.5 µm to 1.5 µm,
the magnetic coagulation coefficient of Fe-based fine particles decreased from 0.5414 to
0.2882. The multi-field coupling coagulation coefficient and the particle size of Fe-based
fine particles satisfied a one-variable quadratic functional relationship as expressed by
K = 0.7304− 0.4196dp + 0.0832dp

2.
(2) The larger the particle volume fraction, the better the coagulation effect of Fe-based

fine particles. As the particle volume fraction grew from 0.01 to 0.03, the magnetic coagula-
tion coefficient of Fe-based fine particles increased from 0.2353 to 0.5061. The relationship be-
tween the magnetic coagulation coefficient of Fe-based fine particles and the particle volume
fraction was a quadratic function, expressed as follows: K = 0.0216 + 23.56VF− 247VF2.

(3) The greater the applied external magnetic field strength and particle magnetic sus-
ceptibility, the better the coagulation effect of Fe-based fine particles. When the applied ex-
ternal magnetic field strength increased from 0.5 T to 1.0 T or the magnetic susceptibility of
Fe-based fine particles increased from 0.0250 to 0.0500, the magnetic coagulation coefficient
of Fe-based fine particles increased from 0.3940 to 0.5288. The magnetic coagulation coeffi-
cient of Fe-based fine particles and their magnetic susceptibility conformed to a one-variable
quadratic functional relationship, expressed as follows: K = 0.1808 + 10.096H − 62.72H2,
K = 0.1808 + 10.096xp − 62.72xp

2.
(4) The magnetic coagulation strength of Fe-based particles under a random magnetic

dipole orientation was greater than that under the aligned orientation. As the dust par-
ticle size increased, the difference between the magnetic coagulation removal efficiency
under the random magnetic dipole orientation and that under the aligned orientation
became smaller, but the difference value was enlarged with the increase in the particle
volume fraction. When the applied external magnetic field strength and particle magnetic
susceptibility grew, the difference between the magnetic coagulation removal efficiency
under the random magnetic dipole orientation and that under the aligned orientation
basically unchanged.
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Nomenclature

Cc Cunningham correction factor
dp particle diameter, µm
FB Brownian force, N
FD drag force, N
Fg gravity, N
fs interval particle volume, m3

g gravitational acceleration, m/s2

Kn particle Knudsen number
kb Boltzmann constant, 1.38 × 10−23 J/K
Mp particle saturated magnetization, A/m
mi particle i magnetic dipole moment, A·m2

mj particle j magnetic dipole moment, A·m2

mp particle mass, kg
ρp particle density, kg/m3

Re Reynolds number
S0 noise spectral intensity, m2/s3

T absolute temperature, K
t time, s
u fluid velocity, m/s
up particle velocity, m/s
Vk interval particle volume growth factor
µ0 vacuum permeability, 1.256 × 10−6 N/A2

Greek symbols
α volume fraction
θ polar angle, rad
λ air molecules average free path, nm
ν fluid dynamic viscosity, Pa·s
ρ fluid density, kg/m3

Subscripts
i particle i
j particle j
mag magnetic field
sat saturation magnetization
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