
Citation: Arruda, A.M.d.; Lopes, A.;

Masiero, É. Microclimate

Multivariate Analysis of Two

Industrial Areas. Atmosphere 2023, 14,

1321. https://doi.org/10.3390/

atmos14081321

Academic Editor: Pavel Kishcha

Received: 8 July 2023

Revised: 2 August 2023

Accepted: 16 August 2023

Published: 21 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Microclimate Multivariate Analysis of Two Industrial Areas
Angela Maria de Arruda 1,*, António Lopes 2,3,* and Érico Masiero 1

1 PPGEU—Postgraduate Program in Urban Engineering, NUPA—Center for Acoustic and Thermal Research in
Buildings and Road Networks, Federal University of São Carlos, São Carlos 13565-905, Brazil; erico@ufscar.br

2 Center for Geographical Studies, IGOT—Institute of Geography and Spatial Planning, University of Lisbon,
1600-276 Lisbon, Portugal

3 Associate Laboratory TERRA, 3000-456 Coimbra, Portugal
* Correspondence: angelaarruda@estudante.ufscar.br (A.M.d.A.); antonio.lopes@edu.ulisboa.pt (A.L.)

Abstract: Most of the existing studies on the increase in air temperature (AT) in industrial neighbor-
hoods (UIs) approach the subject from the analysis of the land surface temperature (LST). Therefore,
the objective of this study was to analyze, in addition to LST, the variables of air temperature, relative
and specific humidity, wind speed and direction, sky view factor and the albedo of the material
surfaces, and to verify which of them has a greater impact on the urban microclimate of the UIs of two
cities, Sintra/PT and Uberlândia/BR. To develop this analysis, representative sections of industrial
urban areas in the previously mentioned cities were selected and computational simulations were
carried out with the ENVI-met software to obtain results related to the studied variables. The results
of the simulations, analyzed using multivariate analysis, showed that even though the Udia UI has
materials with lower albedo (−45%), lower percentages of vegetation (−20%) and lower WS (−40%)
than the Sin UI, the AT inside it may be lower than in the unshaded surroundings around 1.3 ◦C. For
Sin UI, a difference in WS of −1.9 m/s, compared to the control points, caused a peak of +1.5 ◦C in
the industrial environment at 13 h, contrary to what happened in Udia UI.

Keywords: urban microclimate; multivariate analysis; computer simulation

1. Introduction

Climate change is a concern of the scientific community, citizens and the political class
around the world [1], with the city being a central agent in these changes. The effect of
urban heat islands (UHIs) is defined as the rise in the urban air temperature in the urban
limit atmospheric layer compared to nearby suburban or rural environments [2], which has
been highlighted as anthropogenic activities are transforming agricultural matrix societies
into industrial and service societies [3]. Human activities and the physical characteristics of
the environment, particularly those of the built environment, such as the high density of
buildings, the concentration of building materials with a high energy potential, reduced
evapotranspiration, greater heat storage, increased balance of solar radiation, reduced
advection and increased anthropogenic heat, are its causes [2,4–9].

To understand what happens in the canopy layer, that is, between the soil and the
average level of the roofs and the peculiarities of each site, it is interesting to identify the
intrinsic characteristics of each urban cut. Stewart and Oke [10] proposed local climate
zones (LCZs) for classifying each urban and rural landscape according to the properties
of the elements present in each location. The main properties analyzed are the height
of surface roughness, waterproof surface fraction, and thermal performance of materials,
among others.

Stewart [11] explains that by adopting the LCZs system, the universal study class
of UHIs is the landscape composed of the properties that influence the thermal field of
the canopy (surface morphology—height and density of the object) and the soil cover
(waterproof or permeable). The surface morphology has an impact on the local climate by
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altering the airflow and heat transfer in the air, as soil cover changes the albedo, humidity
availability and soil heating and/or cooling capacity. The LCZs are divided according to
the type of buildings present and types of soil cover, ranging from densely built, large
buildings with low height to cuts with heavy industries. Regarding the coverings, there is
variation in the density occupied by trees, exposed soil, rock, and water [10].

There is widespread interest in comparing different regions, generally rural and urban
centers, in terms of land occupation, waterproofing levels and vegetation. However, within
the urbanized spaces, there are differences in air temperature and relative humidity, direct
consequences of microclimate, as well as environmental and spatial variables. In general,
UHI studies are devoted to the central areas of large cities, and they do not always consider
diverse spatial configurations or the seasonality of land use and occupation. Industrial
areas, in particular, are locations with the potential for UHI formation and consequent
interference in nearby areas [12]. The choice of building materials in construction has a
prominent role in improving the thermal conditions of the environment and mitigating
the effects of UHI, the best choice being materials with lower absorption capacity, greater
reflectivity (albedo) and greater thermal conductivity, called cooling materials [13].

In addition to the fresh building materials used in the envelope and roof of buildings,
with the use of reflective roofs and walls [14] or green roofs [15], different strategies for
mitigating the effects of UHIs have been addressed for their surroundings, such as the use
of cold pavements with integrated vegetation, pavements with porous and more permeable
concrete for sidewalks, the replacement of conventional pavement with concrete grass grid
pavers in parking lots, and living fences and trees. The results of these replacements show
a reduction of up to 3 ◦C in AT and 30 ◦C in LST, in addition to improving thermal comfort
indices [16]. The decrease in TA associated with vegetation in urban canyons can reach
10 ◦C to 15 ◦C depending on the layout of trees and shading [17].

The high concentration of buildings, extensive areas built with horizontal buildings
with metal covers, little or no vegetation, widely paved urban infrastructure, intense
traffic and anthropogenic residual heat resulting from industrial activities have been rec-
ognized as contributing factors to the formation of UHIs, i.e., urban regions with higher
temperatures that are concentrated in industrial regions due to the exploration and use
of natural raw materials for the production of energy and marketable products whose
direct impact on the natural ecosystem is observed through increased intraurban surface
temperature [8,9,18–20]. The impact of these infrastructures on surrounding areas can dras-
tically affect the urban climate and the comfort and health conditions of the surrounding
area. The intensity of UHI is influenced by both the urban landscape and the type of urban
development [8]. The different types of soil cover and the distance of industrial clusters
have an impact on the cooling speed of the cuts, especially in relation to LST: large water-
proofed extensions dominate the LST standard, unlike that recorded in water bodies [21].
Mohan et al. [12] obtained values above 2 ◦C for the intensity of nighttime UHI, varying
the classes of land use and coverage being the mining sites, which presented the highest
intensity (2.52 ◦C), followed by industrial districts (2.32 ◦C) and rural and urban settlements
(2.13 ◦C). Singh et al. [22] concluded that there has been a constant accumulation of heat
over the years in the industrial agglomeration in Jharsuguda/India, with an impact on the
rise in nighttime air temperature, attributed to changes in land cover, intense industrial
activities and mining processes. According to Meng et al. [9], the declining trend in the
variation in LST from inside industrial centers to their outskirts proves the impact of such
regions on UHIs. When compared to weather seasons, the greatest disparity between the
LST of the spaces studied occurred during the hot seasons; the intensity of UHI was greater
in spring and summer.

The identification of hot spots, for example, from the aforementioned studies, makes
it possible to classify the type of local climate and different urban thermal patterns through
the study of the microclimates of a city [23]. However, obtaining weather data with high
time resolution, essential for the analysis of climate phenomena on a local scale or micro-
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scale, in general, encounters logistical and financial obstacles, according to Reis et al. [24],
making it difficult or sometimes rendering it impossible to study.

In this context, it is understood that many of the existing studies on UHIs in industrial
regions address the topic from the analysis of the LST in functions of the type of coverage and
land use. Therefore, it becomes interesting to expand such analysis by inserting other climate
variables as a contribution to the studies of urban thermal comfort, especially in industrial
districts. In this sense, some numerical and computational models are used for urban climate
analysis in open spaces, highlighting the ENVI-met software, which provides results for
properties such as temperature and relative humidity of the air, solar radiation, speed and
direction of the wind and the albedo of the surfaces, among others. Micrometeorological
thermal simulations help in understanding the dynamics of UHI formation and also in
estimating the effectiveness of possible mitigation measures [18,25–29].

The choice of the cities of Uberlândia/BR and Sintra/PT is justified by the opportunity
to study two locations with unique characteristics. The first one is a Brazilian city in
the process of accelerated growth, in which it is possible to see an excessive process of
verticalization of urban occupation in central areas and various areas with inadequate
infrastructure for housing [26]. Add to these characteristics the identification of processes
of expansion of extensive industrial areas in the periphery, which further suppress the
vegetated areas of the municipality and contribute to changing the urban microclimate.
Thus, it would be interesting to extend the microclimate study, broadly exploited in the
Portuguese capital, Lisbon, to a municipality located in the metropolitan region, and that
has expressive industrial zones, like Sintra.

In this study, the microclimate of urban clippings industrial is analyzed through the
three-dimensional simulation software ENVI-met (V 5.0.1), which makes it possible to
obtain the meteorological data. The simulation is performed through a three-dimensional
model of the urban microclimate, by means of surface–vegetation–atmosphere interactions.
The energy balance is calculated using the variables radiation, reflection and shading from
buildings and vegetation, airflow, temperature, humidity, local turbulence and dissipation
rate, as well as water and heat exchanges from the soil [30].

Thus, this study aimed to analyze which variables, in addition to LST, have the
greatest impact on the urban microclimate of industrial districts in two cities, Sintra/PT
and Uberlândia/BR, according to the type of climate and the physical composition of the
urban clusters, using multivariate analysis with the data obtained from the ENVI-met
microclimate model and later comparing them to the data of the variables obtained from
meteorological stations positioned in open places, called control points, to identify the
specificities of each microclimate.

2. Methods

To develop this study, representative clippings of industrial urban areas were selected
in the cities of Sintra and Uberlândia, identifying percentages of vegetation, roofed and
sealed areas, as well as the urban geometry, represented by SVF and the albedo of the
surfaces, calculated from Landsat 8 satellite images, obtained through the USGS Landsat
data archive, accessed through special search tools and online request, namely USGS Global
Visualization Viewer (GLOVIS) (available at http://glovis.usgs.gov, accessed on 15 January
2023), EarthExplorer (http://earthexplorer.usgs.gov/, accessed on 15 January 2023) and
QGIS software to calculate the albedo of the surfaces and characterize the clippings.

The council of Sintra, in Portugal, has had a Municipal Director Plan since 1999, which
includes agricultural and ecological reserve areas. The current plan, under review, defines
industrial zones between mountainous and environmental conservation areas. Even with
planning and laws on land use and occupation, studies suggest that agricultural areas
contained in the Lisbon metropolitan area tend to be pressured to become urban, which
imposes greater challenges to the urban confinement plan [31].

The metropolitan area of Lisbon comprises 18 municipalities, grouped into two sub-
regions: the Grande Lisboa and the Setúbal Peninsula. The council of Sintra, whose
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location is shown in Figure 1, has 319.23 km2 and 385,954 inhabitants [32] and is subdivided
into 11 parishes. It is the second most populous county in Portugal and presents great
heterogeneity in its territory, with the coastal and northern parishes having forest and rural
characteristics, while in the south there are the urbanized parishes, the object of this study.
It has a temperate climate with rainy winter, dry summer and low heat (Csb), according to
the Köppen–Geiger classification, with an average altitude of 206 m and an annual average
temperature of approximately 15 ◦C [33]. (Figure 1).
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Figure 1. Location of Sintra/PT. Source: Lisboa Aberta (2023).

The city of Uberlândia, Brazil, is located in the interior of the state of Minas Gerais,
18◦55′08′′ S, 48◦16′37′′ O (Figure 2), with an estimated population of 706,597 inhabitants [34],
and it has a total area of 4,115.206 km2. It is a major regional industrial and logistical center
and its economy is based on industrial and service activities. The climate is tropical with a
dry season (Aw) in the Köppen–Geiger classification, an average annual temperature of
22.3 ◦C, an altitude of 863 m and an IDH of 0.789 [34].

The choice of the scenes, shown in Figure 3, is justified by their belonging to an indus-
trial LCZ, called LCZ 8, similar to the two cities addressed, according to the classification
principles of Stewart and Oke [10] and Demuzere et al. [35].

In Figure 4, we have the distribution of LCZs along the industrial territory and
surroundings of Sintra (Sin) and Uberlândia (Udia), with LCZ 8 represented in gray,
predominantly occupied by large constructions, soil covering mostly paved areas, surface
albedo between 0.15 and 0.25 and the following building materials present: steel, concrete,
metal and stone [10]. The residential LCZ 3 is represented by the colors red and orange,
indicating high construction density with buildings of up to 2 floors and low construction
density characterized by more widely spaced constructions, respectively.

Subsequently, values of the input parameters for the computer simulations were
collected from Climate.OneBuilding.Org [36], such as the air temperature (AT), land surface
temperature (LST), relative humidity (RH), specific humidity (SH), wind speed (WS) and
wind direction (WD) of the regions in which the cities are located. Starting from the
physical characteristics of the urban clippings representative of industrial areas and the
climatic information, models of the urban clippings were prepared for the development
of the simulations in ENVI-met software in order to identify a typical day for each area,
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corresponding to the 5th percentile of the hottest days of the year, with calm, rain-free
winds and little cloudiness.
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Figure 3. Scenes studied: (a) UI Sintra; (b) UI Udia. Source: Google Earth (2023).

It should be noted that the ENVI-met microclimatic model presents, according to
Lopes et al. [37], the limitation of not yet being a viable solution for predicting the intensity
of future UHIs, since it is restricted to small urban areas, around 3 km2, mainly due to
the computational processing capacity. In this case, the use of statistical techniques and
the development of predictive models for certain climatic contexts prove interesting to
spatially extend urban microclimatic studies [38]. Croce et al. [20] add that the results of
microclimatic models strongly depend on the boundary conditions of the urban area under
study defined in the configuration file, which may affect the simulation results.
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2.1. Input Parameters for ENVI-Met

The values of the input parameters for the simulations were gathered from Cli-
mate.OneBuilding.Org [36], which provides the averages of specific air temperature and
humidity, wind speed and direction, precipitation and radiation from the years 2007 to
2021. Such a file is inserted into the Full Forcing option in ENVI-met, and the summary
input data are presented in Table 1 for the selected days.
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Table 1. Input data.

Category Input

Modeling area (L, W, H) (m)
Grid cell (x, y, z)

500 × 500 × 50
4 × 4 × 2

Cities Uberlândia Sintra

Configuration file
Simulation start date 05:00 h (23 January 2022) 05:00 h (17 July 2022)
Simulation end date 04:59 h (24 January 2022) 04:59 h (17 July 2022)
Simulation period 24 h 24 h

Meteorological input

AT max = 41 ◦C—17:00 h AT max = 29 ◦C—12:00 h
AT min = 29 ◦C—06:00 h AT min = 15 ◦C—05:00 h

SH max = 12.5 g/kg—22:00 h SH max = 13 g/kg—13:00 h
SH min = 8 g/kg—13:00 h SH min = 9 g/kg—21:00 h

WS max = 3.6 m/s—11:00 h WS max = 6 m/s—15:00 h
WS min = 0—5:00 h WS min = 0—7:00 h

Material
Roof—sandwich roofing sheet Roof—sandwich roofing sheet

Pavement—dark asphalt Pavement—light asphalt
Vegetation—grass and trees Vegetation—grass and trees

The choice of 23 January 2022 and 17 July 2022 for the simulations in Uberlândia
and Sintra, respectively, is justified by the fact that these two days correspond to the 5th
percentile of the hottest days in the past ten years with temperatures above 30 ◦C.

2.2. Albedo Calculation

To calculate the exoatmospheric albedo, we followed the method suggested by Lopes [39].
First, it is necessary to define the area, the period and the percentage of cloud cover in
the database USGS Earth Explorer [40]. After selecting the Landsat 8–9 OLI/TIRS C2 L2
dataset, it is possible to select the desired images and the bands B2, B3, B4, B5 and B6 in TIF
format. In the QGIS software, the algorithm of Olmedo [41] is applied through the raster
calculator tool with the coefficients presented in Equation (1) to obtain an image with the
albedo data calculated for each pixel:

Albedo = rs,B (0.246) + rs,G (0.146) + rs,R (0.191) + rs,NIR (0.304) + rs,SWIR1 (0.105) + rs,SWIR2 (0.008) (1)

where rs B is the SWIR, Landsat bands 2 to 6 (after being transformed into reflectances).
Applying this methodology, we obtain Figure 6, which shows the variation in the

albedo in the Sintra and Uberlândia UIs.

2.3. Multivariate Analysis

After the simulations, 30 random points were extracted from each studied clipping,
for the time of 2 p.m., at a height of 9 m from the ground (Figure 7). These points were
identified according to the initials of the city and the location of the point, with U1 referring
to point 1 of Udia and S1 referring to point 1 of Sintra, for example.

The data were organized and subsequently treated in R-Studio software. The Multi-
variateAnalysis package [42] was used to develop the statistical tools known as principal
components and dendrograms.

For the analysis of the results, it was decided to apply multivariate analysis techniques,
especially factor analysis and cluster analysis, which, according to Hongyu et al. [43], are
viable and efficient alternatives for the analysis of results, making it possible to reduce the
dimensionality of variables, group individuals according to their similarities, and, therefore,
analyze the most important variables for each group involved. Moreover, factor analysis
and cluster analysis are widely used in studies of climatological phenomena and identifica-
tion of climate zones, such as Zscheischer et al. [44], Amiri, Mesgari [45], Silva et al. [46],
Leoni et al. [47], Nunes and Sousa [48], Praene et al. [49] and Valverde et al. [50].
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Principal component analysis (PCA) is one of the most widespread methods of factor
analysis. It uses the modeling of the covariance matrix of the data, and it consists of
linearly transforming a set of original variables, correlated among themselves, into linear
combinations of them, linearly independent, reducing the total data and extracting only
those that describe most of the total variability, with as little data loss as possible [43].

For the choice of principal components (PCs) to be retained, one can resort to the
screen plot, where one searches the graph that represents the eigenvalue versus the per-
centage of variance explained, the “jumping off point” from which the PCs do not have
so much importance for the total variance [46]; the Kaiser criterion [51], which selects the
PCs according to the value of their eigenvalues, with eigenvalues > 1 belonging to the
PCs that explain the greatest variation in the total sample space [43]; or the analysis of
representativeness in relation to the total variance, in which the researcher predetermines a
percentage of explanation of the total variance, according to the phenomenon studied, with
commonly accepted values being above 70%.

Associated with PCA, cluster analysis is used to divide the sample elements into
groups according to their proximity and common characteristics. The distance between two
objects can be measured according to several criteria, with the Euclidean distance being
the most common and appropriate dissimilarity measure for quantitative variables: the
higher this value, the more different, or dissimilar, the objects are [48]. The hierarchical
clustering method, on the other hand, groups similar elements and the process is repeated
at various levels, forming a tree called a dendrogram [48]. The link between elements can
be the nearest neighbor, farthest neighbor or average link.

After clustering, it is possible to evaluate the degree to which the original distances and
the paired distances are maintained by the dendrogram using the cophenetic correlation
coefficient, where a value closer to 1 means better correlation. The existence of similar
behaviors between variables and the formation of internally homogeneous and internally
heterogeneous groups from the study of certain variables can be verified through such
exploratory tools [47].

3. Results

In this paper, the results are structured in three sections:

• Hierarchical clustering and principal component analysis (PCA): Assessment to reveal
similarities in data distribution patterns and establish possible associations between
the main variables in the microclimate study of each clipping and the impact of each
variable for the scenario studied;

• Physical composition of the clippings and albedo: Presentation of the physical charac-
terization and albedo of the clippings, which influence the urban microclimate;

• Descriptive analysis: Assessment of the simulation results for the variables with the
greatest impact on each scenario.

3.1. Hierarchical Clustering and Principal Component Analysis

The results of the hierarchical clustering revealed similarities in the data distribution
patterns between 60 points collected at the UIs in Uberlândia and Sintra. The average
method was used to determine the optimal clusters (k) and interpret and validate the
data clusters. This method led to a correlation between the cophenetic distance and the
original distance of 0.94, confirming that the dissimilarity matrix is well represented in
the dendrogram. As a result, two main clusters were identified based on their distinctive
features in the dataset (Figure 8), with sizes of 30 composed exclusively of elements from
Sintra or Udia.
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Figure 8. (a) Dendrogram showing the two clusters identified. (b) Screen plot showing a slow
decrease in inertia after k = 2. (c) Visualization of the k-means cluster plot.

The research dataset initially contained eight variables: AT, RH, SH, SVF, WS, WD,
albedo, LST. To simplify the descriptions for further analysis, principal component analysis
(PCA) was implemented to reduce the dimensionality of the data. The variables that
have the highest contribution are highlighted in the bar chart (Figure 9). The dashed line
presented in the graph corresponds to the expected average percentage of the variance
explained, 12.5%.
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Figure 10 shows all five PCs and the weighting coefficients of each study variable for
the PC, where the first three stood out. For PC1, the variables AT, RH, WS, albedo and LST
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stood out. For PC2, SH and SVF had the greatest contribution, while WD was highlighted
for PC3.
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Figure 10. PCs and variable contributions.

As criteria for choosing the principal components, we can choose eigenvalues > 1,
according to Kaiser’s criterion [51], or select the components that allow explaining 70% of
the variance. The first two components satisfy both criteria simultaneously, according to
Table 2. The screen plot can also be used, which facilitates the visualization of the point
where the explained variance tends to stabilize; that is, the first two PCs have 77.02% of the
variance, and therefore, they effectively summarize the total sample variance and can be
used to study the dataset (Figure 11).

Table 2. Eigenvalues and percent variances of principal components.

Eigenvalue Variance Percent Cumulative Variance Percent

PC1 4.75 59.40 59.40

PC2 1.40 17.62 77.02

PC3 0.84 10.61 87.63

PC4 0.70 8.75 96.39

PC5 0.15 1.90 98.29

PC6 0.09 1.14 99.43

PC7 0.04 0.53 99.97

PC7 0.002 0.028 100

In order to understand the importance of each variable in the construction of the
two components, the correlation between the original variables and the components was
calculated, and the correlations between the two PCs and their weighting coefficients for
each trait are presented in Table 3.
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Table 3. Weighting coefficients of the characteristics and their correlation with the two PCs.

Variable
Weighting Coefficient Correlation

PC1 PC2 PC1 PC2

AT −0.45 −0.009 −0.99 0.01

RH 0.44 0.12 0.97 −0.15

SH −0.06 0.65 −0.15 −0.77

WS 0.42 −0.12 0.93 0.14

SVF −0.11 −0.58 −0.25 0.70

Albedo 0.43 0.05 0.94 −0.07

WD 0.10 −0.45 0.23 0.53

LST −0.44 0.02 −0.97 −0.03

Hougyu et al. [43] evaluated the decision to select two PCs from eight original vari-
ables as reasonable; therefore, one can use only the first two PCs for the composition of
Equations (2) and (3):

PC1 = −0.45 AT + 0.44 RH − 0.06 SH + 0.42 WS − 0.11 SVF + 0.43 Albedo + 0.10 WD − 0.44 LST (2)

PC2 = −0.009 AT + 0.12 RH − 0.65 SH − 0.12 WS − 0.58 SVF + 0.054 Albedo − 0.45 WD + 0.02 LST (3)

According to Equation (2) and Table 3, in PC1, the variables AT, RH, WS, albedo and
LST stand out, and the contrast between AT and RH is evident, which can be called a
contrast component between air temperature and relative humidity. In Equation (3), the
SH, SVF and WD stand out, since the variation explained in PC1 is independent of the
variation explained in PC2.

The principal component analysis shows the loading of the sample clusters based on
their similarity (Figure 12). The gray dots are the samples, while the lines correspond to the
eigenvectors of the principal components. The variables WS and albedo presented similar
contributions to PC1 because these variables have vectors of similar length and are closer
to the PC1 axis. The contributions of the variables AT and RH are similar, but with opposite
signs evidencing the inversely proportional behavior of such variables. The variables on
the same side approximate the variance of the value according to their similarity. The
points extracted from the Udia clipping are strongly correlated with AT and LST, while the
Sintra points are strongly correlated with the WS, albedo and RH variables.
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Based on this multivariate analysis, it is necessary to analyze the physical composition
of each clipping that certainly influences the AT, LST, WS, albedo and RH variables.

3.2. Physical Composition and Albedo of the Clippings

When analyzing the physical composition of the clippings and comparing the in-
dustrial clippings of Sintra (UI Sin) and Uberlândia (UI Udia), some relevant data can be
noticed: the percentages of vegetation and roofs are 2.81% and 8% higher in UI Sintra, re-
spectively, while UI Udia presents 6.52% more impervious surface and 4.17% more exposed
soil than UI Sintra, as can be seen in Figure 13.
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A large impermeable space can modify the energy and mass balances, which impairs
the local water balance, because it increases surface runoff and decreases evapotranspi-
ration, a reflection of the removal of vegetation for the construction of infrastructure, as
pointed out by [2].

The importance of vegetation and water bodies in mitigating the intensity of UHIs
is explained by Gunawardena et al. [52]: green spaces dominated by trees tend to offer
greater relief from thermal stress and their increased roughness is responsible for cooling
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the boundary layer, while “blue spaces” require more planning to yield improvements in
the surrounding air temperature.

Such analysis suggests that the influence of evapotranspiration-based cooling from
green and blue space is mainly relevant to urban canopy layer conditions, and that tree-
dominated green space offers the greatest thermal stress relief when it is most needed.
However, the magnitude and transport of the cooling experienced depend on the size,
extent and geometry of the green spaces, as some large solitary parks are only capable of
offering minimal boundary layer cooling [52].

In addition to evapotranspiration, the shading provided by trees contributes to the
reduction in air and surface temperatures, reducing the number of hours of thermal dis-
comfort by up to 21% due to the insertion of green structure and 30% due to vegetation,
according to research developed by Palomo Amores et al. [53] in Seville, Spain.

Mello et al. [54] studied the influence of building materials, especially roof tiles, on the
urban climate in the interior of Brazil. The samples studied were ceramic, metal and fiber
cement. The results showed that fiber cement roofing produced temperatures between
10 ◦C and 12 ◦C higher than the surrounding air, ceramic roofing produced temperatures
between −0.1 ◦C and −0.3 ◦C higher, and metal roofing, used in sheds and services,
produced temperatures between 16 ◦C and 20 ◦C higher. It was proven that the average
temperatures of the city of Presidente Prudente/SP have increased by about 2.5 ◦C in the
past 30 years, with a difference between rural and urban areas of up to 10 ◦C.

Table 4 gives a brief comparison of the theoretical and measured albedo properties of
the sidewalk, roof and vegetation.

Table 4. Albedo comparison.

Theoretical Albedo Measured Albedo

Category UI Sin UI Udia UI Sin UI Udia

Vegetation 0.27 * 0.27 * 0.28 0.21

Roof 0.57 ** 0.57 ** 0.50 0.26

Pavement 0.50 * 0.20 * 0.30 0.15

Average 0.44 0.34 0.36 0.20

Standard Deviation 0.12 0.16 0.09 0.04
* Provided by ENVI-met; ** Ferreira [55].

By analyzing the albedo of the surfaces using images from the Landsat 8 satellite and
the calculations presented in Equation (1) and shown in Figure 13, it is possible to extract
data from this property, presented in Table 4.

At first, it was assumed that the aged albedo of the metal roofs in Sintra and Udia
would be the same because they are sandwich roofing sheets. However, the results in
Table 4 show that the albedo of the Sintra UI roof is 48% higher than that presented in UI
Udia. The average albedo measured in Sintra is, on average, 45% higher than the albedo of
Uberlândia for the region studied. This result had the most significant contribution from
the albedos of the roofs and sidewalks.

According to Alchapar et al. [56], increasing albedo in the urban environment can
improve the thermal conditions of outdoor spaces, mainly by decreasing the maximum
temperature, when combined with scenarios with a vegetation percentage above 20%. In
addition to the decrease in air temperature during the day, such a change can improve air
quality and reduce air conditioning costs and the absorption of solar radiation by surfaces.
Using reflective materials on roofs and floors can increase the albedo of each surface by
0.25 and 0.15, respectively, and the total albedo by 0.1 [57]

Roofs play a key role in diminishing the internal temperature of buildings and their
surroundings: according to a study by Murguia et al. [58], the albedo of cool roofs can
decrease the energy consumption inside buildings, leading to energy savings in commercial



Atmosphere 2023, 14, 1321 15 of 22

buildings in the USA, due to the action of two mechanisms: solar reflectance and thermal
emissivity. Reflectance is the amount of solar energy reflected by the roof and tends to
decrease over time. High reflectance saves energy by reflecting incoming solar radiation
into space and tends to decrease over time. Maximum reflectance is generally achieved by
white roof products, or cool roofs that are apparently dark in visible aspects, but still able
to reflect most of the heat and offer more traditional roof colors [58].

For the analysis of WS, AT, LST and RH were chosen to select control points located
in open areas, without buildings and with undergrowth vegetation and calculate the
difference between them and the 30 random points inside each cutout of Sintra and Udia to
enable the comparison of these variables for the two cities studied. The WS, AT and RH data
were obtained from the National Institute of Meteorology database for Uberlândia [34] and
the Portuguese Institute of the Sea and Atmosphere [33] for Sintra through meteorological
stations. Due to the unavailability of data for LST in these databases, the LST will only be
compared between the two industrial cuts studied.

3.3. Descriptive Analysis

In this section, the results of the most important variables will be presented for Sin
UI and Udia UI, determined from the multivariate analysis, namely WS, AT, LST and RH
compared to the control points, except for LST.

The Udia and Sintra clippings showed discrepant behavior throughout the day, regard-
ing the difference in WS between the control points and the points of the UIs, presented in
Figure 14. The WS at the Sintra UI has a sharp drop of up to −1.5 m/s starting at 13 h and
extending into the night. In the same period, the WS at the Udia UI remained close to the
control points, presenting an average drop of −1.2 m/s.
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Analyzing the RH difference between the points collected for the UIs of Sintra and
Udia and control points located in open spaces, it can be seen that there is a greater
maximum positive variation for the data from Udia (10%), while in Sintra, there is −4%
variation, meaning that the UI Sin presented the lowest RH. For both cities, the greatest
differences in RH occur in the period of heating of the surfaces from 11 to 15 h, as shown
in Figure 15.
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Figure 15. Difference in RH of UIs Sin and Udia.

As for the difference in specific humidity, shown in Figure 16, the greatest differences
were recorded for the UI Udia (3 g/kg), with all positive values, which indicates that the
SH in the UI Udia was greater than that recorded at the points of control. On the other
hand, UI Sin did not show considerable SH differences regarding the control points.
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Figure 16. Difference in SH of UIs Sin and Udia.

Figure 17 shows the difference in AT of Udia and Sintra and the control points: after
sunset, around 19 h, the two clippings show a decrease in the AT difference, remaining
approximately constant. For the Sintra UI, the difference between the temperature of the
control point and the temperature inside the UI remained positive during almost the entire
period, reaching its peak at 12 h, with a difference of 1.2 ◦C. The Udia clipping, on the other
hand, showed an inverse behavior; during the period of radiation incidence, the points
inside the UI showed lower air temperatures than the control points, reaching a maximum
difference of −1.5 ◦C at 13 h.

The behavior presented by the points inside the ID Udia can be explained by jointly
analyzing the difference in the AT, RH, SH and WS: the period from 13 h to 15 h corresponds
to the period with the highest RH variation (8%) and highest SH variation (g/kg), and the
inside of the ID is the one with the highest RH compared to the control points, associated
with the low WS.
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When comparing the LST in the industrial cuts, shown in Figure 18, it is noted that the
peak of LST in Sin UI is 25.5% lower than that registered in Udia UI, and the peak hours
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4. Discussion and Conclusions

This section presents the main topics involved in the study of the microclimate of each
scenario studied. From the results obtained, through computer simulation and multivariate
analysis, it was possible to determine the existence of heterogeneous groups according to
the location, Sintra or Udia. This study allowed us to analyze which among the variables AT,
RH, SH, WS, WD, SVF, albedo and LST presented a greater influence on the industrial urban
microclimate of Udia and Sintra. For the UI of Udia, the AT and LST were determining
factors, while RH, WS and albedo showed a significant influence in Sintra.

Through the characterization of the studied sections, one can perceive the main
discrepancies identified between the two sections whose impact on the studied variables
will be discussed: the percentage of built area and paved area, and the albedo. UI Udia had
a percentage of waterproofed surface 6.52% higher than UI Sin, while the latter had 2.81%
more vegetation. The albedo of UI Sin was 45% higher than UI Udia; that is, the building
materials present in this sample and their physical composition contributed to the higher
reflectance than UI Udia, proving the impact of this variable on the microclimate of UI Sin
according to the PCA analysis.

Galusic [59] points out that floors also play an important role in urban air temperature,
since surfaces with a high albedo and emissivity remain cooler when exposed to solar
radiation, as they absorb less radiation and emit more thermal radiation into space and
therefore less heat to the surroundings.

As a comparative parameter, control points were adopted in each city, which are
located in regions with low vegetation and no buildings, are fully exposed to solar radiation
and lose moisture more easily, and do not benefit from the shading effect. Comparing the
RH and SH between the UIs and control points, it was found that both the RH and the SH
of the UI Udia were higher than those found at the control points, with peaks of 8% and
3 g/kg, respectively, contrary to UI Sin, whose difference remained close to zero.

The UI Sin and UI Udia presented close values, in modulus, for the difference between
AT and the control points during the heating period of the surfaces (9 h to 16 h). UI Sin
presented a peak of 1.2 ◦C higher at the control points at 13 h, and at the same time, UI
Udia showed −1.3 ◦C. Thus, the behavior regarding AT, RH and SH of the studied IUs
was different.

In Uberlândia, Silva et al. [46] demonstrated air temperature differences of up to
2.2 ◦C in winter and 1.2 ◦C in summer for peripheral neighborhoods with many vacant lots,
exposed soil and sparse vegetation.

The LST of the UI Udia was higher than that presented in the UI Sin for the entire
simulated period, reaching a peak of 48.49 ◦C at 15 h, following the AT trend. The LST
is mainly influenced by AT because of its control over sensible heat exchange between
the Earth’s surface and the atmosphere, with heat flowing from the warmer surface to the
cooler atmosphere [1].

The positive correlation of LST and AT can be noticed in both clippings as a result
of the heat emitted by industries and factories, intense traffic of heavy vehicles and high
energy consumption. For urban areas, the higher LST due to the effect of ICUs can cause an
increase in AT, creating an area of low pressure that draws in cooler air from surrounding
areas [2].

The impermeable surface cover fraction is positively and exponentially correlated
with LST, unlike vegetation and water. The impact of impermeable surfaces on regional
LST change can be six times greater than the sum of vegetation and water contributions. In
percentage terms, Xu, Lin and Tang [60] point out that an addition of 10% of green space or
water for each 10% reduction in impermeable surface can decrease the LST by up to 2.9 ◦C
or 2.5 ◦C, respectively. As for the importance of vegetation, Xiao et al. [61] studied the
impact of green areas in industrial districts in China, and the results show that the cooling
and humidification effect of medium-sized green spaces was more significant during the
hours of high temperatures during the day. In addition, the result shows that the shape
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and size of the area within a green space have a significant influence on local cooling and
humidification.

The effect of soil sealing causes an increase in air temperature and a decrease in
humidity. Thus, preventing the water evaporation process is one of the most relevant
aspects to be considered when choosing materials for urban surfaces. The porosity and
roughness of buildings, ventilation conditions and the materials of vertical coverings
impact in a complementary way the microclimatic conditions of a site [59].

Comparing the difference between the WS at the UIs and the control points, negative
values are identified for UI Sin and UI Udia, reaching up to −1.9 m/s and −1.2 m/s,
respectively; that is, the WS in the control points is greater than that recorded in the
UIs. The less pronounced difference for the UI Udia may be a consequence of the lower
percentage of the built area (−40%) compared to the UI Sintra, since the higher built density
provides physical obstacles to the passage of the wind, reducing its speed [2].

The greater Lisbon region benefits from strong winds, considered crucial factors for
the decrease in the intensity of UHI at nightfall, acting as a relief factor in the overheating of
the region, according to the Report for the Identification of UHIs, because in critical areas,
the highest intensity of UHI occurs at dusk, with anomalies > 2 ◦C, and may exceed 4 ◦C,
decreasing to 1.1 ◦C–1.5 ◦C at dusk [37,62]. The role of ventilation in the city of Lisbon was
evidenced by Lopes [63], Lopes et al. [64] and Matias and Lopes [65] in their studies of the
surface radiation balance of urban materials and its impact on micro-scale air temperature
in a Lisbon neighborhood. The authors concluded that both temperatures and the radiative
balance of facades and surfaces respond directly to the incident solar radiation and that
when streets are not benefited by the prevailing wind direction, air temperatures tend to be
higher compared to streets exposed to the wind. However, in Sintra, a lower WS at the UI
Sin compared to the control points had a negative impact on the AT reduction, especially in
the afternoon.

Therefore, comparing the Sintra and Udia UIs, it can be concluded that even though
the Udia UI has materials with lower albedo, which demand more time to heat up and heat
loss occurs more slowly after sunset, and it also has lower percentages of vegetation, relative
humidity and wind speed than the Sin UI, the air temperatures inside it may be lower than
in the unshaded surroundings. Although the microclimate of the Sin UI is dependent on
other variables, the WS, whose function is the cooling and loss of heat from the surface to
the environment [2], had a significant impact and a difference of −1.9 m/s compared to the
control points; this parameter caused a peak of 1.5 ◦C in the industrial environment at 13 h.
Therefore, urban ventilation planning can contribute to sustainable urban development,
considering primary ventilation corridors where the wind direction is predominant, parks
and green spaces, and complementary secondary ventilation corridors [66].

This study is a useful tool to identify the most important variables for the industrial
microclimate of two different cities. In future research, we intend to carry out measurements
in situ to verify if the conclusions obtained through the simulations are confirmed and to
expand the study to other types of LCZs. Since the albedo of the Sintra roofs and sidewalks
was responsible for raising the albedo of the cutout as a whole, it is proposed to increase
the albedo of Udia roofs by applying acrylic paint with high reflectivity and installing
sidewalks with higher albedo. Such changes are expected to have a positive impact on
decreasing the AT in the Udia UI, as in the Sintra UI, although it lacks demonstration.
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