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Abstract: Parameter estimation strategies have long been a focal point in research due to their
significant implications for understanding data behavior, including the dynamics of big data. This
study offers an advancement in these strategies by proposing an adaptive parameter estimation
approach for the Generalized Extreme Value distribution (GEVD) using an artificial neural network
(ANN). Through the proposed adaptive parameter estimation approach, based on ANNs, this study
addresses the parameter estimation challenges associated with the GEVD. By harnessing the power
of ANNs, the proposed methodology provides an innovative and effective solution for estimating
the parameters of the GEVD, enhancing our understanding of extreme value analysis. To predict
the flood risk areas in the Chi river watershed in Thailand, we first determine the variables that are
significant in estimation of the three GEVD parameters µ, σ, and ξ by considering the respective
correlation coefficient and then estimating these parameters. The data were compiled from satellite
and meteorological data in the Chi watershed gathered from the Meteorological Department and
92 meteorological stations from 2010 to 2021, and consist of such variables as the Normalized
Difference Vegetation Index (NDVI), climate, rainfall, runoff, and so on. The parameter estimation
focuses on the GEVD. Taking into consideration that the processes could be stationary (parameters
are constant over time, S) or non-stationary (parameters change over time, NS), maximum likelihood
estimation and ANN approaches are applied, respectively. Both cases are modeled with the GEVD
for the monthly maximum rainfall. The Nash-Sutcliffe coefficient (NSE), is used to compare the
performance and accuracy of the models. The results illustrate that the non-stationary model was
suitable for 82 stations, while the stationary model was suitable for only 10 stations. The NSE
values in each model range from 0.6 to 0.9. This indicated that all 92 models were highly accurate.
Furthermore, it is found that meteorological variables, geographical coordinates, and NDVI, that are
correlated with the shape parameter in the ANN model, are more significant than others. Finally,
two-dimensional maps of the return levels in the 2, 5, 10, 20, 50, and 100-year return periods are
presented for further application. Overall, this study contributes to the advancement of parameter
estimation strategies in the context of extreme value analysis and offers practical implications for
water resource management and flood risk mitigation.

Keywords: generalized extreme value; artificial neural network; rainfall; runoff; normalized
difference vegetation index
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1. Introduction

Climate changes have a direct impact on rainfall distribution and atmospheric fluctu-
ations, affecting water resource management and hydrology. The northeastern region of
Thailand frequently experiences flooding that causes significant damage. Over 75% of the
country and about 15% of the total population suffer from water shortages every year, with
an estimated annual damage value of around 19 million USA dollars. Given the recurring
problem, there is an urgent need for efficient prediction and management of these extreme
weather events. There were seven recent major floods, in the years 1983, 1995, 1996, 2002,
2006, 2011, and 2019, that caused direct damage to many lives and properties that cannot
be assessed [1,2].

In 2011, Gale and Saunders [3] presented the cause of the 2011 major floods in Thailand
and future flood forecasts, which showed that more flooding could occur within the next
two to three decades unless flood defenses and flood management practices are improved.
The study discovered that such locations were frequently damaged by flooding and the
Chi River Basin area had a flood every year, according to the flood situation report [4–6].
In addition, the Chi Watershed has been experiencing flooding in many forms, including
flooding in Roi Et, Kalasin, and Khon Kaen provinces, water overflowing the bank and
wild water flows and mudslide in Kalasin and Chaiyaphum. The main causes of flooding
problems were as follows: (1) long wet days and heavy rainfall occurring in the watershed
area due to the southwest monsoon, northwest monsoon, and depression from the South
China Sea; (2) the upstream area has a mountainous terrain, which is the origin of the Chi
River, and many main streams with high slopes and increasing amount of forest destruction,
reducing water retention and promoting fast run-off following rain; (3) the lower parts
of the Chi watershed, especially in Roi Et province and Ubon Ratchathani province, are
a plain. Many rivers flow together and it is also the point where the Chi River meets the
Mun River before it flows into the Mekong River, causing problems in drainage from the
watershed area; and (4) water management, the water in large reservoirs during the rainy
season of some years must be drained in large quantities because the upstream area has
a large amount of annual rainfall combined with the amount of water discharged from
nearby reservoirs [7,8].

In the field of hydrology, the Generalized Extreme Value Distribution (GEVD) is
commonly used to analyze extreme rainfall data [9]. Thus, parameter estimation methods
for GEVD, and identifying significant explanatory variables for its parameters, are essential
for modeling such extremes. Previous research has attempted parameter estimation using
linear models and random forest models, focusing largely on climatic indices. Others have
used the Index of Connectivity and Normalized Difference Vegetation Index (NDVI) for
modeling rainfall-runoff and vegetation density, respectively. As [10,11] estimated and
predicted the change in the parameters based on data from river basins in the United States
and developed a model suitable for each area. The straight line and random forest models
were compared with the simple Naive method of Jin et al. [12]. The parameters were found
to mostly depend on climatic indices, while the selected prediction model was a linear
one. Note that the methodology discussed in our article, can be applied to other statistical
distributions related to the extreme value analysis. On this regard, we mention two
articles [13,14]. In [13], a useful software for regional and at-site statistical analyses of annual
maxima time series is proposed. The software showed good performance with the annual
maxima series for the Italian rain-gauge network by implementing Gumbel, GEV and Two
Component Extreme Value distributions. In [14], the results about the derivation of the
exact distribution of maximum annual daily precipitation are summarized and discussed,
with special attention on compound/super statistical distributions. The results have a
20% higher accuracy in terms of the Root Mean Square Error (RMSE) value, compared
to the Naive approach [11]. Haniyeh et al. [15] created a rainfall-runoff model with the
Index of Connectivity, which is considered as a hydro-geomorphic tool to investigate the
flow connection within catchments. The NDVI is the index that indicates the density and
abundance of vegetation [16]. The artificial neural network (ANN) model by [17,18] had
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an efficiency of 97% when applied to the Haughton River in Australia. Rotjanakusol and
Laosuwan [19] studied the relationship between the NDVI with the amount of rainfall
obtained from the measurement station of the Thai Meteorological Department. The NDVI
had a value between 80–97 in the lower northeast region of Thailand.

This study aims to contribute to the ongoing efforts of modeling extreme rainfall events by
proposing an adaptive parameter estimation method using an ANN approach. We focus on
the monthly maximum rainfall data for the Chi river watershed in Thailand, employing two
models: a stationary model that uses maximum likelihood estimation, and a non-stationary
model using ANN. This study presents the application of ANN to estimate time-changing
GEVD parameters, a novel approach in this context. We also estimate the 2, 5, 10, 20, 50, and
100-year return periods for the Chi watershed with the R program and illustrate this with spatial
maps using the Quantum Geographic Information System program. Supplementary Material
includes technical specifics, tables, and figures.

2. Study Area

The data used in this study were provided by the Meteorological and Royal Irrigation
Departments of Thailand and Terra-MODIS MOD13Q1 package satellite image data for the
years 2010–2021 [20]. Figure 1 shows the locations of all 92 meteorological stations along the
Chi watershed for the 12 provinces in the northeastern region of Thailand. Table 1 shows the
attribute types, notation, and predictor variables for our models.

Figure 1. Location of all 92 stations along Chi Watershed in northeastern region of Thailand.



Atmosphere 2023, 14, 1197 4 of 18

Table 1. Attribute types, notation, and predictor variables.

Attribute Type Attribute Notation

GEVD attributes Location parameter µ or mu (x1)
Scale parameter σ or sigma (x2)
Shape parameter ξ or xi (x3)

Geographical coordinates Latitude LAT (x4)
Longitude LON (x5)

Meteorological variables Maximum rainfall max_rain (x6)
Average rainfall average_rain (x7)

Cumulative rainfall sum_rain (x8)
Average minimum rainfall min_average_rain (x9)

Maximum wind speed max_wind (x10)
Average wind speed average_wind (x11)

Maximum temperature max_temp (x12)
Minimum temperature min_temp (x13)
Average temperature average_temp (x14)

Average relative humidity average_RH (x15)
Maximum relative humidity max_RH (x16)

Satellite images NDVI NDVI (x17)

Hydrological variables Maximum runoff max_runoff (x18)
Average runoff average_runoff (x19)

Note: The parameters µ, σ and ξ in this table are deterministic and represent the location, scale, and shape
parameters of the GEVD, respectively.

Figure 2 shows the histogram distribution of the data for the 19 predictor variables.
Each of the 92 meteorological stations are specified by their geographical coordinates of
latitude (x4) and longitude (x5). For each station, we observed the monthly meteorological,
satellite image, and hydrological attribute type, which are the fourteen variables (x6 − x19)
for the 12 years of 2010–2021. Thus, for each of the 92 stations we have 12× 12 = 144
observations for each of the fourteen variables. Variables x4 −−x19 are considered to be
input variables for our model. The output variables are the GEVD parameters (ξ, µ, and σ)
for each of the 92 stations, which are x1, x2, and x3 in the notation of Table 1.

NDVI sigma sum_rain xi

max_temp max_wind min_average_rain min_temp mu
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Figure 2. Histogram showing the distribution of data for all 19 variables.
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3. Methodology
3.1. The GEVD

The GEVD was initially developed in [21], where three extreme distribution functions
can be written: Gumbel distribution, Frechet distribution, and Weibull distribution [22,23].
The block maxima method was used to select the maximum observation (or minimum
observation) Mn = max(x1, x2, ..., xn) for analysis determined by the process without
changing the parameters. For the estimating GEVD parameters by MLE, the probability
distribution function was structured as shown in Equation (1):

f (x; µ, σ, ξ) =
1
σ

(
1 + ξ

(
x− µ

σ

))(−1/ξ)−1
exp

(
−
(

1 + ξ
x− µ

σ

)−1/ξ
)

, (1)

defined on the set 1 + ξ(x− µ)/σ > 0, where the parameters satisfy −∞ < µ < ∞, σ > 0
and −∞ < ξ < ∞. This is the generalized extreme value (GEV) family of distributions. The
model has three parameters: location parameter µ; scale parameter σ, and shape parameter
ξ. The type II and type III classes of extreme value distributions correspond to the cases
ξ > 0 and ξ < 0, respectively, in this parametrization. The subset of the GEV family with
ξ = 0 is interpreted as ξ → 0, leading to the Gumbel family [22].

3.2. The Maximum Likelihood Estimation

The parameters of the GEVD can be estimated using the MLE approach. Although
the MLE approach leads to underestimation for small sample sizes, it has a small variance
for large sample sizes. The MLE is often considered better than L-moment estimation for
large sample sizes [24]. For ξ 6= 0, the log-likelihood function can be obtained directly from
Equation (1) [22]:

`(µ, σ, ξ) = −n log σ−
(

1 + 1
ξ

)
∑n

i=1 log
(

1 + ξ
(

xi−µ
σ

))
−∑n

i=1

(
1 + ξ

(
xi−µ

σ

))−1/ξ
,

provided that 1 + ξ
(

x−µ
σ

)
> 0.

3.3. The Return Level

The return level or quantiles is used to interpret extreme values. The return level for
the return period T for the GEVD is defined as shown in Equation (2)

ẐT = µ̂− σ̂

ξ̂

(
1−

(
− log

(
1− 1

T

))−ξ̂
)

. (2)

The return level associated with the return period T = 1
p , where p is the probability of

the year in which ẐT exceeds the annual maximum, since, to a reasonable degree of accuracy,
the level ẐT is expected to be exceeded on average once every T years. More precisely, ẐT is
exceeded by the annual maximum in any particular year with probability p [22].

3.4. The ANN Approach

The ANNs are a Machine Learning algorithms based on some non-linear functions for
the weighted sums of input variables. The ANN procedure can be visualized (Figure 3) as a
graph with nodes (neurons) and connections between them that are called edges. Neurons
and edges are typically assigned with weights wij that adjust the learning procedure [25].
The weight increases or decreases according to the strength of the signal at the connection.
Neurons may have a threshold such that a signal is only sent if the aggregate signal crosses
that threshold. Typically, neurons are aggregated into layers. Different layers may perform
different transformations on their inputs. Signals travel from the first layer xi (the input
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layer) to the last layer (the output layer), possibly after traversing the layers multiple times.
The weights wij, bias bj, the weight summing junction vj, and the activation function ϕ
provide the output [26] as shown in Equation (3):

Output =
(

∑m
j=1
(
∑n

i=1(wijxi) + bj
)
vj

)
ϕ. (3)

Figure 3. Structure of ANNs.

The structure of the ANN model is presented in the form of ANN(a− b− c), where
a, b and c are the number of input variables, number of hidden layers, and number of
output variables, respectively.

ANN modeling is a process used to build models that can learn and predict data
efficiently. It has the following steps.

Step 1. Validate and prepare the data with the independent variables being GEVD
parameters and four groups of dependent variables: Geographical coordinates, Meteoro-
logical variables, Satellite images, and Hydrological variables (altogether 19 variables).

Step 2. Dataset division: Divide the dataset into training set and test data set (test set)
for training and evaluating model performance using a ratio of 70% to 30%.

Step 3. Define model structure and parameters: Select and define the appropriate
ANN structure for the desired task, such as the number of layers (layers) and the number
of nodes (nodes) in each layer. In our study, we start with 1–20 in each layer and after find
the suitable number of nodes, package “neuralnet” in R program [27]. We got 740 models
per parameter.

Step 4. Build and prepare ANN model using R program.
Step 5. Evaluation and improvement: The performance of the ANN model is evaluated

using the test data set. After, we improve the structure or parameters of the model to achieve
the best results with NSE and RMSE.

3.5. Pearson Product-Moment Correlation Coefficient

The Pearson correlation coefficient is used to measure the relationship between two
paired variables (xi, yi), i = {1, 2, . . . , n}. The variables should be on an interval or ratio
scale. The values of the correlation coefficient lie between −1 to 1 and can be calculated as
shown in Equation (4):

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2
, (4)

where x̄ = 1
n ∑n

i=1 xi and ȳ = 1
n ∑n

i=1 yi [28].
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3.6. Model Accuracy Verification
3.6.1. The RMSE

The RMSE is used to compares the estimated and the real values of three parameters
in the GEVD. It is defined as show in Equation (5):

RMSE =

√
1
n

n

∑
i=1

(θik − θ̂ik)2, k = {1, 2, 3}, (5)

where θik are the real values of parameters µ, σ, ξ, θ̂ik are the estimated values µ̂, σ̂, ξ̂, and n
is the number of data.

3.6.2. Nash–Sutcliffe Model Efficiency Coefficient (NSE)

In 1970 [29], Nash and Sutcliffe assessed the suitability of models with the NSE
coefficient, which is a measure of model accuracy, or model performance. The NSE values
range from −∞ to a maximum of 1, and compares the data value with the forecast value
using the same quantile position, as show in Equation (6):

NSE = 1− ∑n
i=1(Qi −Qpred

i )2

∑n
i=1(Qi − Q̄i)2 , (6)

where Qi are the quantile function of observed monthly maximum rainfall, Qpred
i is the

quantile function of the modeled monthly maximum rainfall, Q̄i is the mean of the quantile
function of observed monthly maximum rainfall, and n is the number of data. The summary
of the operational procedures and analytical methods employed in this study for ANN
modeling to estimate the parameters of the GEVD is illustrated in Figure 4. It shows
the data collection phase, four types of data were gathered, including satellite images,
meteorological data, hydrological data, and geographical coordinates. The collected dataset
was then subjected to a data cleansing process. Following this, the parameters of the GEVD
were estimated using both stationary and non-stationary approaches. The NSE was utilized
to select appropriate models, and flood risk areas were predicted through the estimation of
return levels.

Figure 4. Map of the research methodology.

4. Results and Discussion
4.1. Parameter Estimation of the GEVD

The results of the parameter estimation of the GEVD parameters µ, σ, and ξ from the
monthly maximum rainfall data from 92 meteorological stations using the MLE approach
are shown in Figures 5–7:
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(a) (b)

Figure 5. Estimates of location parameter (µ̂) for 92 stations based on monthly maximum rainfall.
(a) Map of estimated location parameter (µ̂). (b) Histogram of estimated location parameter (µ̂).

(a) (b)
Figure 6. Estimates of scale parameter (σ̂) for 92 stations based on monthly maximum rainfall.
(a) Map of estimated scale parameter (σ̂). (b) Histogram of estimated scale parameter (σ̂).

(a) (b)

Figure 7. Estimates of shape parameter (ξ̂) for 92 stations based on monthly maximum rainfall.
(a) Map of estimated shape parameter (ξ̂). (b) Histogram of estimated shape parameter (ξ̂).

For the estimation results for the location parameter µ of the GEVD, the values ranged
from 20 to 38 with an average of 27 (Figure 5a), and the distribution of these values did not
conform to a specific parametric distribution, showing skewness to the right (Figure 5b).
These values were then used as the initial parameter value for the estimation procedure for
the other variables and applied to the ANN models as well.

With respect to the estimation results for the scale parameter σ of the GEVD, the values
ranged from 14 to 33 with an average of 21 (Figure 6a), and the data were symmetrically
distributed (Figure 6b). The initial parameter values for our models, including the ANN
model, were chosen based on the distribution of the location parameter, µ, of the GEVD.
These values provided a sensible starting point for the optimization procedures in our
models, as they reflect the empirical distribution of the data. By using these as initial
estimates, we could enhance the efficiency and stability of the parameter estimation process.
In the revised manuscript, we have included a more detailed explanation of this rationale
for our choice of initial parameter values.
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Finally, for the estimation results for the shape parameter ξ of the GEVD, the values
ranged from −0.25 to 0.25 with an average of 0.09 (Figure 7a), but the data distribution
was non-parametric being skewed to the left (Figure 7b). These values were used as the
initial parameter value for the estimation procedure of the other variables and applied to
the ANN models as well.

4.2. Relationship between Variables

The Pearson correlation coefficient is applied to analyze any correlation between the
variables; that is, the relationship between the parameters µ, σ and ξ and the 16 other variables.
The results of the relationship analysis between the variables are shown in Figure 8.

Figure 8. Correlations between the predictor variables.

Figure 8 shows that the variables σ, average minimum rainfall, ξ, NDVI, longitude,
average rainfall, and cumulative rainfall are all significant correlated with the location
parameter µ. The variables µ, longitude, average rainfall, cumulative rainfall, average
relative humidity, and NDVI are all significantly correlated with the scale parameter σ.
The variables µ, maximum Rainfall, NDVI, and maximum temperature are significantly
correlated with the shape parameter ξ.

4.3. The ANN Model

In this section, we develop an ANN for estimating the three GEVD parameters. To
validate the derived model, we use the cross-section method with using 70% of the data for
training the ANN model and 30% for testing it. Tables 2–4 show the best ANN model in
bold font for estimation of each GEVD parameter µ, σ and ξ, while Figures 9–11 show the
structure of the best ANN model for each parameter.
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Table 2. Structure of the ANN models for estimating the GEVD location parameter µ with structure
modeling and evaluation of the model performance by RMSE and NSE.

Model Input Variable Structure RMSE NSE

ANN01

σ, ξ, LAT, LON, max_rain,
average_rain, sum_rain,

min_average_rain,
max_wind, average_wind,

max_temp, min_temp,
average_temp, average_RH,

max_RH, NDVI, runoff_ max,
average_runoff

18-1-1 2.1848 0.7541

ANN02

σ, ξ, LAT, LON, max_rain,
average_rain, sum_rain,

min_average_rain,
max_wind, average_wind,

max_temp, min_temp,
average_temp, average_RH,
max_RH, NDVI, max_runoff,

Average_Runoff

18-20-1 2.4424 0.6927

ANN03

σ, ξ, LAT, LON, max_rain,
average_rain, sum_rain,

min_average_rain,
max_wind, average_wind,

max_temp

11-4-1 2.3731 0.6837

ANN04 σ, LON, average_rain 3-14-1 2.8328 0.6047

ANN05 σ, LON, average_rain 3-16-1 2.8452 0.6012

ANN06 σ, LON, average_rain 3-11-1 2.8453 0.6012

ANN07 max_rain, average_rain,
sum_rain 3-4-1 3.0436 0.2307

ANN08 max_rain, average_rain,
sum_rain 3-16-1 3.0573 0.2237

ANN09 max_rain, average_rain,
sum_rain 3-5-1 3.0665 0.2190

Note: Structure of ANN or ANN(a− b− c), where a, b, and c are the number of input variables, number of hidden
layers and number of output variables, respectively.

As it is shown in Table 2, the best model for estimating the GEVD location parameter
µ is ANN01 based on it having the smallest RMSE (2.1848) and largest NSE (0.7541)
values. The model can be seen more clearly in Figure 9, where we present the structure of
ANN01 model.
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Table 3. Structure of the ANN models for estimating the GEVD scale parameter σ with structure
modeling and evaluation of the model performance by RMSE and NSE.

Model Input Variable Structure RMSE NSE

ANN10
µ, ξ, LAT, LON, max_rain,
average_rain, sum_rain,

min_average_rain, max_wind
9-1-1 1.6799 0.5998

ANN11

µ, ξ, LAT, LON, max_rain,
average_rain, sum_rain,

min_average_rain,
max_wind, average_wind,

max_temp, min_temp,
average_temp

13-14-1 1.7302 0.5920

ANN12 µ, ξ, LAT 3-10-1 1.7400 0.5330

ANN13 µ 1-1-1 1.9115 0.4450

ANN14 µ 1-2-1 1.9151 0.4429

ANN15 µ 1-3-1 1.9146 0.4432

ANN16

max_rain, average_rain,
sum_rain, max_wind,

average_wind, max_temp,
min_temp, average_temp,

average_RH, max_RH, NDVI,
max_runoff

12-9-1 1.6006 0.5323

ANN17

ξ, average_rain, sum_rain,
max_wind, average_wind,

max_temp, min_temp,
average_temp, average_RH,
max_RH, NDVI, max_runoff

12-1-1 1.6455 0.5057

ANN18
max_rain, average_rain,

sum_rain, max_wind,
average_wind, max_temp

6-20-1 2.1025 0.4847

Note: Structure of ANN or ANN(a− b− c), where a, b, and c are the number of input variables, number of hidden
layers and number of output variables, respectively.

As shown in Table 3, the best model for estimating the GEVD scale parameter σ is
ANN10, based on it having the smallest RMSE (1.6799) and largest NSE (0.5998) values.
The structure of the ANN10 model is summarized more clearly in Figure 10.
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Figure 10. Structure of the ANN model ANN10 (9-1-1).
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Table 4. Structure of the ANN models for estimating the GEVD shape parameter ξ with structure
modeling and evaluation of the model performance by RMSE and NSE

Models Input Variable Structure RMSE NSE

ANN19

µ, σ, LAT, LON, max_rain,
average_rain, sum_rain,

min_average_rain,
max_wind, average_wind

9-6-1 0.0740 0.4866

ANN20 µ, σ, LAT, LON, max_rain,
average_rain 6-2-1 0.0807 0.4669

ANN21 µ, σ, LAT, LON, max_rain,
average_rain 6-16-1 0.0833 0.4319

ANN22 µ, LAT, LON, average_rain,
sum_rain 5-17-1 0.0651 0.4734

ANN23 µ, LAT, LON, average_rain,
sum_rain 5-2-1 0.0673 0.4374

ANN24

µ, LAT, LON, average_rain,
sum_rain, average_wind,

max_temp, min_temp,
average_temp, average_RH,

NDVI, min_average_rain

12-4-1 0.0843 0.4250

ANN25 max_rain, average_rain,
sum_rain, max_wind 4-19-1 0.0803 0.0931

ANN26 max_rain, average_rain,
sum_rain, max_wind 4-16-1 0.0804 0.0903

ANN27 max_rain, average_rain,
sum_rain, max_wind 4-10-1 0.0807 0.0826

Note: Structure of ANN or ANN(a− b− c), where a, b, and c are the number of input variables, number of hidden
layers and number of output variables, respectively.
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Figure 11. Structure of the ANN model ANN19 (9-6-1).

As shown in Table 4, the best model for estimating the GEVD shape parameter ξ is
ANN19, based on having the smallest RMSE (0.0740) and largest NSE (0.4866) values. For
clarity, the structure if the model ANN19 is shown in Figure 11.

In the next step, the three selected best ANN models (ANN01(18-1-1), ANN10 (9-1-1),
and ANN19 (9-6-1)) are applied to the parameter estimation of the GEVD. Each of three
GEVD parameter can be estimated by the (S) or (NS) procedures. Hence, there are 23 = 8
possible estimation procedures (Table 5).

For this study, we deployed our adaptive method for the data from the 92 meteoro-
logical stations, and the eight possible GEVD estimation procedures are applied to each
station with the results shown in Figure 12. The top three best procedures are found to be
GEVD08(NS-S-NS), GEVD07(NS-S-S), and GEVD02(S-NS-S).
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There are 10 stations for which the S procedure model was optimal for all three
parameters, namely, for GEVD01(S-S-S), while there were seven stations that are best
fitted by the NS procedure for all three parameters, namely, for GEVD05(NS-NS-NS)
(Table 5). From these results, and those in Figure 12, we can conclude that mixed (S and NS)
procedures give a better performance than those with a single (S or NS) procedure model
for all three GEVD parameters. In particular, there are 16 stations along the Chi watershed
that are suitable for the GEVD08(NS-S-NS) procedure, followed by GEVD07(NS-S-S) and
GEVD02(S-NS-S) for 15 stations.

Table 5. Parameter estimation procedures with the number of suitable stations.

Model
Parameters Estimations Process Number of Stations

(Percentage)µ (mu) σ (sigma) ξ (xi)

GEVD01 S S S 10 (10.87%)

GEVD02 S NS S 15 (16.30%)

GEVD03 S NS NS 11 (11.96%)

GEVD04 S S NS 7 (7.61%)

GEVD05 NS NS NS 7 (7.61%)

GEVD06 NS NS S 11 (11.96%)

GEVD07 NS S S 15 (16.30%)

GEVD08 NS S NS 16 (17.39%)

Note: S is stationary process and NS is a non-stationary process from the ANN model.

Figure 12. Map showing the suitable estimation procedure for each meteorological station.

4.4. Return Level Estimation

Figure 13 shows return level estimation for 2, 5, 10, 20, 50 and 100-year return period
for the annual maximum monthly rainfall data in the Chi watershed area.
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(a) 2-year return levels. (b) 5-year return levels.

(c) 10-year return levels. (d) 20-year return levels.

(e) 50-year return levels. (f) 100-year return levels.

Figure 13. Maps of the estimated 2, 5, 10, 20, 50 and 100-year return period for the annual maximum
monthly rainfall data in the Chi watershed area.

The return level maps for a 2, 5, 10, 20, 50 and 100-year return period of the monthly
maximum rainfall data show the areas at risk of flooding within that time period. The
flood risk areas are found to be in the provinces located on the lower left edge of the Chi
watershed: Yasothon, Ubon Ratchathani, Roi Et, Kalasin, and Maha Sarakham. These maps
were created using the Q-GIS program, and show that the return level increases every year
for all stations. This clearly means that planning for future rainfall management is essential.



Atmosphere 2023, 14, 1197 15 of 18

5. Discussion

This study models the estimation procedure of the location, scale, and shape parame-
ters of the GEVD with usage of the maximum rainfall and satellite image data. The main
analytical approach is to use an ANN, with the main purpose being to determine the
variables affecting the change in the three GEVD parameters µ, σ, and ξ when the monthly
rainfall data are considered. The correlation between the variables is investigated using the
Pearson correlation coefficient and then the parameters of the GEVD are modeled using
the ground and satellite based data. The ANN models are then used to predict flood prone
areas by producing two-dimensional maps of the return level within specified period of a
2 to 100-year period. The conclusion of the analysis can be summarized into 3 parts.

(1) The analysis of all 19 variables (Table 1) and the Pearson correlation coefficient
(Figure 8) revealed that (a) there are seven variables σ, average minimum rainfall, ξ, NDVI,
longitude, average rainfall, and cumulative rainfall that are significantly correlated with
the estimates of GEVD location parameter µ with Pearson’s correlation coefficients of
0.68, 0.48, 0.45, −0.46, 0.39, 0.36, 0.36, and 0.34, respectively (b) there are six variables
µ, longitude, average rainfall, cumulative rainfall, average relative humidity, and NDVI
that are significantly correlated with the estimates of the GEVD scale parameter σ with
Pearson’s correlation coefficients of 0.68, 0.57, 0.51, 0.51, 0.42, and 0.36, respectively (c)
there are four variables µ, maximum rainfall, NDVI, and maximum temperature that are
significantly correlated with the estimates of the GEVD shape parameter ξ with Pearson’s
correlation coefficients −0.46, −0.29, 0.23 and −0.21, respectively.

(2) The results from the ANN model for estimating the three GEVD parameters µ, σ, and
ξ are as follows. The cross-validation method for the ANN model used 70% of the data for
training and 30% for testing. The model structure consists of an input layer, a hidden layer, and
an output layer. The best models for µ, σ, and ξ are ANN01, ANN10 and ANN19, respectively,
based on having the smallest RMSE and highest NSE values. The suitable models can be
written as:

µ̂ = (
1

∑
j=1

(
19

∑
i=2

(wijyi) + bj)vj)ϕ,

σ̂ = (((w1,1x1 + w3,1x3 + w4,1x4 + w5,1x5
+w6,1x6 + w7,1x7 + w8,1x8 + w9,1x9 + w10,1x10) + b1)v1)ϕ,

ξ̂ = (
6
∑

j=1
((w1jx1 + w2jx2 + w4jx4 + w5jx5 + w6jx6

+w7jx7 + w8jx8 + w9jx9 + w10jx10 + w11jx11)) + bj)vj)ϕ.

(3) Comparing the model performance between the S and NS procedures using NSE,
is concluded that the mixed (S and NS) procedures gave a better performance than the
single (S or NS) procedure model for estimating all three GEVD parameters. In particular,
there are 16 stations along the Chi watershed that are suitable for the GEVD08 (NS-S-NS)
procedure, followed by GEVD07 (NS-S-S) and GEVD02 (S-NS-S) for 15 stations.

The Modelling of the three GEVD parameters from the monthly maximum rainfall
using MLE and ANN is consistent with Hristos et al. [11], who found that the given
parameters were related to the weather conditions and terrain characteristics. They also
found that the NDVI affects the parameters. In accord Haniyeh Asadi et al. [15] developed
an ANN model for rainfall-runoff forecasts using the NDVI and Hydrological Connectivity
Index, two climatic and hydrological factors.

Considering both S and NS procedures to model the GEVD, the NS process is caused
by a number of factors, with the main contributing factors being climate change and
topography,which results in the lower efficiency and accuracy of the S process modeling.
On the other hand, the NS process was suitable for the global environment that was
constantly changing.



Atmosphere 2023, 14, 1197 16 of 18

6. Conclusions

The conclusion of this study encompasses several important findings that contribute
to the understanding and modeling of extreme rainfall events using the GEVD.

Firstly, the analysis revealed significant correlations between certain variables and the
estimates of the GEVD parameters (µ, σ, ξ). The variables that exhibited strong correlations
include average minimum rainfall, NDVI, longitude, average rainfall, cumulative rainfall,
and average relative humidity. These correlations provide valuable insights into the factors
influencing extreme rainfall behavior, such as local climate conditions and geographical charac-
teristics. Understanding these relationships can enhance our ability to predict and manage flood
risks. Secondly, the adaptive parameter estimation approach using the ANN demonstrated
its effectiveness in estimating the GEVD parameters. The ANN models, specifically ANN01,
ANN10, and ANN19, showed superior performance in terms of the RMSE and NSE values.
This highlights the capability of ANN in capturing the complex relationships between input
variables and GEVD parameters, enabling more accurate parameter estimation and improved
flood risk assessments. Furthermore, the comparison between S and NS procedures revealed
the importance of considering both approaches in GEVD modeling. The mixed S-NS procedures
outperformed individual S or NS procedure models in estimating the GEVD parameters. This
indicates the influence of climate change and topography on extreme rainfall patterns, empha-
sizing the need to account for temporal variability and non-stationarity in modeling extreme
events. Neglecting these factors can lead to biased estimations and inadequate risk assessments.

The findings of this study have practical implications for flood risk management and
water resource planning. By understanding the key variables and their correlations with
GEVD parameters, decision-makers can better identify areas prone to extreme rainfall
events and allocate resources for effective mitigation strategies. The ANN-based approach
offers a valuable tool for parameter estimation and prediction of flood-prone areas, enabling
timely and accurate decision-making.

In conclusion, this study provides valuable insights into the estimation of GEVD parameters
for extreme rainfall modeling. The significant correlations observed between variables and
GEVD parameters, along with the successful implementation of the ANN approach, enhance
our understanding of extreme rainfall behavior. The consideration of non-stationarity further
improves the modeling accuracy. These findings contribute to better flood risk management
and water resource planning in the face of changing climate conditions.
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