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Abstract: High PM10 concentrations are still a significant problem in many parts of the world. In
many countries, including Poland, 50 µg/m3 is the permissible threshold for a daily average PM10

concentration. The number of people affected by this threshold’s exceedance is challenging to estimate
and requires high-resolution concentration maps. This paper presents an application of random
forests for downscaling regional model air quality results. As policymakers and other end users are
eager to receive detailed-resolution PM10 concentration maps, we propose a technique that utilizes
the results of a regional CTM (GEM-AQ, with 2.5 km resolution) and a local Gaussian plume model.
As a result, we receive a detailed, 250 m resolution PM10 distribution, which represents the complex
emission pattern in a foothill area in southern Poland. The random forest results are highly consistent
with the GEM-AQ and observed concentrations. We also discuss different strategies of training
random forest on data using additional features and selecting target variables.

Keywords: random forest; Gaussian plume; GEM-AQ; downscaling; PM10

1. Introduction

PM10 refers to particulate matter with a diameter of 10 micrometres or less [1]. These
particles come in many sizes and shapes and can comprise hundreds of chemicals. Many
of these chemicals are emitted directly from an anthropogenic source, such as construction
sites, unpaved roads, fields, smokestacks, or fires. PM10 is a major air pollutant that can
significantly impact human health, including respiratory and cardiovascular diseases [2].
Within Europe, Poland and, in particular, its southern provinces are in focus due to their
high industrialization [3], and a large number of the population is affected by high PM10
and PM2.5 concentrations [4]. Therefore, accurate and detailed information on PM10
concentrations is essential for assessing and managing the impacts of air pollution.

In recent years, advances in remote sensing and satellite data have enabled high-
resolution PM10 concentration maps at regional and global scales [5,6]. These maps can
provide valuable information to policymakers, researchers, and the general public. They
help to plan and evaluate efforts to improve air quality and protect human health. However,
due to inherent remote sensing limitations, they remain a temporal snapshot (or a mosaic
of snapshots), sometimes misinterpreted as monthly or annual average concentrations.
Still, additional means are needed to meet the demand for high-resolution concentration
maps [7].

Using mathematical equations, air quality models can simulate the transport and dis-
persion of PM10 particles in the atmosphere. These models estimate PM10 concentrations at
high spatial and temporal resolutions using meteorological data, emission inventories, and
other inputs. This method can generate PM10 concentration maps from regional to global
scales. While air quality models can be accurate, they require significant computational
resources and depend on the quality of input data. There are several classes of air quality
models [8], including CTM (chemical transport models), which are based on mass and
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momentum conservation equations and are the most universal and general. Since pollutant
transport is highly linked to meteorological conditions, CTMs are often run together with
meteorological models (online approach) or use the results of a meteorological model
(offline approach).

Gaussian plume models are analytical and widely used due to their low computational
demands [9]. These models provide an analytical solution to pollutant transport equations,
assuming one of the atmosphere stability classes. They are usually applied for a single
stack to assess its environmental impact [10].

Another rapidly emerging approach for obtaining air quality concentration maps is
the application of machine learning techniques (also known as data-driven modelling) [11].
In this case, the user is only responsible for defining the input data (such as meteoro-
logical parameters, land use, and emission inventory data) and target variables (usually
concentrations). These models act as black-box models and are trained using supervised
learning processes. Depending on the output type, they can be classified as classification or
regression models. The most popular model types include neural networks (focusing on
LSTM networks [12]), random forests [13], and spatial kriging algorithms [14,15].

Data fusion methods can combine data from different sources [16], such as ground-
based monitoring, satellite remote sensing, and air quality models, to generate high-
resolution PM10 concentration maps. These methods use statistical and machine learning
techniques to merge the data and estimate PM10 concentrations at locations where data are
missing or incomplete. While data fusion methods can improve the accuracy and spatial
resolution of PM10 concentration maps, benefiting from multiple approaches, they must be
applied cautiously as they often produce non-physical results [17,18].

The objective of this paper is to demonstrate an application of the random forest as
a data fusion technique for results originating from two sources (the regional GEM-AQ
model [19] and the local Gaussian plume model). Section 2.2 describes the details of the
GEM-AQ model, while Section 2.3 describes the Gaussian model. In Section 2.6, we discuss
several approaches to the application of random forests. The proposed approach was tested
on a regional domain located in a diverse area of southern Poland, routinely modelled
with a coarse-resolution regional model. The proposed approach can also act as a form of
downscaling for air quality model results. This region was chosen due to data availability
and reported air-quality issues in the past. Observation and emission data from the whole
year of 2021 were used.

2. Data and Methods

This study used the GEM-AQ model 24 h forecast from the operational run and
observations from the national air quality monitoring network. The study period covered
the year 2021.

2.1. Study Area

The study area is located in southern Poland, covering an area of around 5300 km2

in the Silesian and Lesser Poland provinces (Figure 1). The area is populated with al-
most 1.7 M people. The largest cities include Bielsko Biała (170,000 inhabitants), Rybnik
(140,000 inhabitants) and Jastrzębie-Zdrój (91,000 inhabitants). The northern part of the
study area covers the upper Vistula Valley, which has a high urbanization level (Figure 2).
In contrast, the southern part reaches the Carpathian mountains, which limit air mass
exchange (Figure 3). Temperature inversion is frequently observed, especially in foothill
valleys in the winter period. This fact limits boundary layer mixing and contributes to poor
air quality [20]. As a consequence, cities within the study area suffer from poor air quality
due to high PM10 concentrations [4].
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Figure 1. Location of the study area with meteorological and air quality stations.

Figure 2. Landuse classes within the study area.
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Figure 3. Land elevation of the study area.

2.2. The GEM-AQ Model

The GEM-AQ model is a semi-Lagrangian chemical weather model in which air quality
processes (chemistry and aerosols) and tropospheric chemistry are implemented online in
an operational weather prediction model, the Global Environmental Multiscale (GEM) [21]
model, which was developed at Environment Canada. The gas-phase chemistry mechanism
used in the GEM-AQ model is based on a modified version of the Acid Deposition and
Oxidants Model (ADOM) [22], where additional reactions in the free troposphere were
included [19].

The GEM-AQ model is set up to perform calculations using 28 vertical layers, out of
which the lower 21 layers are classified as the troposphere.

Emission data from the Polish national emission inventory drive emission sources within
the model. These data are based on annual reporting obligations the facilities’ owners fulfil.
Annual emissions are transformed into monthly emission rates using the weighting factor
from annual emission profiles. Emission profiles are assigned to the so-called SNAP emission
categories [23,24]. Within this work, SNAP 01 (combustion in the production and transfor-
mation of energy), SNAPS 02,03,04 (industrial and non-industrial combustion plants) and
SNAP 07 (road transport) were included. Resulting PM10 time series from GEM-AQ model
are presented together with observed ones in the Appendix A.2.

2.3. The Gaussian Plume Model

A Gaussian plume model is a widely used mathematical model for predicting the
dispersion of pollutants in the atmosphere. The model assumes that the dispersion of
pollutants can be approximated as a two-dimensional Gaussian distribution, which spreads
out in a pattern similar to the shape of a bell curve.

The Gaussian plume model is based on the idea that a combination of atmospheric
turbulence and wind patterns determine the dispersion of pollutants. The model considers
source strength and height, wind speed and direction, and atmospheric stability. The
topography of the modelled area is not considered.



Atmosphere 2023, 14, 1171 5 of 24

The Gaussian plume model is used in various applications, including air quality
assessments for industrial facilities [25], roadway emissions [26], and wildfires [27,28]. It
is often used with other models or measurement techniques to provide a comprehensive
picture of the air quality in a given area.

The Gaussian plume model was implemented in a parallel Python code using multi-
processing and NumPy modules. The model was based on the Gaussian plume formula-
tion [29], which describes the one-hour average concentration distribution at the surface
level as follows:

C(x, y) =
E

2πσyσzu
exp

(
− y2

2σ2
y

)
exp
(
− H2

2σ2
z

)
· 1000 (1)

where u is the one-hour average wind velocity (assumed to be uniform over the whole
computational domain), and σy(x) and σz(x) are the standard deviations (horizontal and
vertical) of the spatial distribution of the plume concentration, which were estimated using
dispersion curves for rural areas, as proposed by Briggs [30,31]:

σy(x) = k11x(1 + k22x)k33 (2)

σz(x) = k44x(1 + k55x)k66 (3)

The coefficients k11, . . . , k66 depend on the atmospheric stability class (A-F) with a nearly
linear growth with a downwind distance x (Table 1).

Table 1. Briggs’s dispersion curves coefficients for rural areas.

Stability Class k11 k22 k33 k44 k55 k66

A 0.22 0.0001 −0.5 0.20 0.0 0.0
B 0.16 0.0001 −0.5 0.12 0.0 0.0
C 0.11 0.0001 −0.5 0.08 0.0002 −0.5
D 0.08 0.0001 −0.5 0.06 0.0015 −0.5
E 0.06 0.0001 −0.5 0.03 0.0003 −1.0
F 0.04 0.0001 −0.5 0.016 0.003 −1.0

Atmosphere stability was classified based on gradient Richardson number criteria [32].
The gradient Richardson number was estimated based on the meteorological output from
the GEM-AQ model. The vertical gradients were calculated between the two lowest layers.
Detailed comparison of GEM-AQ meteorological results with the observations can be found
in the Appendix A.1.

H is the plume rise above the surface, which is a sum of stack height He and plume
rise dh calculated using the combination of Holland and CONCAWE formulas (dhH ,dhC,
respectively) [33], depending on the heat flux Q:

dh =


dhC f or Q > 24,000
dhH · (24,000−Q)/8000 + dhC · (Q− 16,000)/8000 f or Q ∈ 〈16,000; 24,000)
dhH f orQ < 16,000

(4)

2.4. Emission Data

The Polish national emission inventory [34] fully covers the study area. Three primary
emission SNAP categories from the inventory were used in Gaussian modelling: domestic,
industrial and transport emissions. Annual emissions were transformed into monthly
emission rates using the weighting factor from annual emission profiles.

Traffic emissions were represented as point sources distributed across 30 m along
the road network (Figure 4a). For the uplift formula (Equation (4)), we assumed a fume
temperature of 500 K and a velocity of 1 m/s.
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Domestic emissions were based on the National Database of Topographic Objects
(BDOT), a nationwide system of collecting and sharing topographic data, including vector
data describing each building as the basis for the national emission inventory [34]. For the
Gaussian model, we assumed a stack height of 3.5 times the number of floors + 0.5 m. The
fume temperature was assumed to be 400 K and the velocity was assumed to be 0.5 m/s.

Industrial emissions (Figure 4b) were based on annual reporting obligations provided
to the national emission inventory database.

(a)

(b)

Figure 4. Cont.
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(c)

Figure 4. PM10 annual emissions: (a) traffic, (b) industrial, (c) domestic.

2.5. Surface Observations

There are nine air quality stations within the study area. Each measures PM10 con-
centration with an hourly time step. One meteorological station is located in the centre
of the area (Figure 1). Table 2 summarizes the annual observed air quality series. Despite
the annual mean being at a moderate level (30–40 µg/m3), the number of days with the
legal threshold (50 µg/m3) exceeded is quite significant and covers the central part of the
winter season.

Table 2. Statistical summary of the observed daily averaged PM10 concentration annual time se-
ries (2021).

Observation Station Mean Concentration 90.2% Concentration
Percentile

No. of Days with a
Concentration

Exceeding 50 µg/m3

MpOswiecBema 35.81 72.32 69
MpSuchaNiesz 40.9 90.6 98
SlBielKossak 29.21 52.18 48
SlCiesChopin 31.0 56.91 54
SlGoczaUzdroMOB 37.27 78.88 77
SlRybniBorki 35.94 69.43 64
SlUstronSana 18.03 31.62 8
SlWodzGalczy 38.8 73.79 91
SlZywieKoper 34.54 64.83 66

As an auxiliary input to random forest training and validation, hourly observations of
temperature and wind speed from 2021 were used. Figure 5 summarizes the meteorologi-
cal observations.
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(a) (b)

Figure 5. Observed meteorological conditions at Bielsko Biała: (a) temperature; (b) wind speed.

2.6. Random Forest

As a data fusion algorithm, random forest was used. Random forest is a robust ma-
chine learning algorithm for classification [35] and regression tasks [36]. It is a type of
ensemble learning algorithm that combines multiple decision trees to improve the predic-
tive performance of the model [37]. Each decision tree in a random forest is constructed
using a different subset of the training data and a random subset of the input features.
This split introduces diversity and reduces overfitting, as each tree is trained on a different
subset of the data and features.

In this work, we trained a random forest algorithm to predict observed PM10 con-
centrations at the observation station locations. Input features included concentrations
from GEM-AQ and the Gaussian plume model. The random forest models were trained
using a 5-fold cross-validation process. This involves splitting the input data into five
subsets, using one subset for evaluation and the remaining four for training, and repeating
this five times so that each subset is used once for an evaluation. We also attempted to
use calendar-related variables, such as the day of the week and the month, and observed
meteorological parameters as additional features. The training dataset was based on time
series observations from all nine stations.

As a second trial, we tried using datasets based on observations from a single observa-
tion station’s time series. This approach is justified because each station’s location primarily
influences air quality observations, and merging time series from multiple locations may
only sometimes be the best approach [38].

Finally, we attempted station vs. station cross-validation, as we anticipated the pres-
ence of clusters of similar stations in terms of air quality dynamics within the analyzed
area. Additionally, information about outliers (i.e., stations that were different from the
others) would help exclude them from the training dataset.

Random forest was implemented using a Python code with the scikit-learn module.
The hyperparameters used were 513 estimators (trees), and the tree depth was limited to 5.
The absolute error was used as a training criterion.

The trained model was then applied to each pixel of the computational domain (with
a 250 m spatial resolution) using the Gaussian plume and GEM-AQ results as input to
predict the concentration in a grid cell as output. Depending on the target variable, this
process was performed on hourly or daily concentrations (3).

3. Results

In the following section we discuss the aggregated measures of various random forest
configurations. Detailed comparison of the resulting and observed PM10 time series can be
found in the Appendix A.3.
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3.1. Overall Performance

In order to assess the reproducibility of PM10 concentration dynamics, we examined
the coefficient of determination R2 of the GEM-AQ and Gaussian plume models within
a monthly time window (Figures 6 and 7). Both models perform better in winter months
(October–March) than in summer (April–September). This pattern is observed at all air
quality stations and can be explained by the meteorological factors driving PM10 concen-
tration, which is better reproduced in winter than in summer. Another reason might be the
temporal emission profile, which is more uniform in winter (due to constant demand for
heating) than in summer when the daily profile is not uniform.

(a)

(b)

Figure 6. R-squared coefficients between observations and GEM-AQ results: (a) hourly concentra-
tions; (b) daily averaged concentrations.
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Both GEM-AQ and Gaussian plume models perform better with daily averaged
concentrations. This fact is due to rapid changes in observed concentrations, which cannot
be simulated by any of these models [39]. Some authors [3] explain this concentration
variation by emission, which is driven by the air temperature.

(a)

(b)

Figure 7. R-squared coefficients between observations and Gaussian plume model results: (a) hourly
concentrations; (b) daily averaged concentrations.
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The random forest algorithm’s performance was evaluated based on R2, which is
suitable for assessing the dynamics’ reproducibility. For assessing accuracy, the accuracy
coefficient (ACC) was used, which describes how accurate the results predicted by the
random forest (ŷ) are in comparison to observations (y):

ACC =

(
1−∑

|ŷ− y|
y

)
· 100% (5)

As Table 3 reveals, reproducing the hourly dynamics of PM10 concentrations was
challenging, regardless of the extra features. Using daily averaged concentrations instead
of hourly concentration increased the R2 from around 0.2 to 0.4 and accuracy from 48%
to 60%. Using additional features improved the model’s dynamics in all cases, while the
accuracy remains almost the same.

Table 3. Performance of the initial run of random forest, depending on data aggregation (rows) and
additional input features.

Target Variable No Additional
Features

Day of the Week,
Month

Day of the Week, Month,
Observed Wind,

Observed Temperature

hourly concentration R2 0.28 0.34 0.37
ACC[%] 44.9 48.6 48.7

daily mean concentration R2 0.49 0.54 0.61
ACC[%] 62.8 65.5 68.1

daily median concentration R2 0.43 0.46 0.55
ACC[%] 59.9 62.6 66.0

daily maximum concentration R2 0.43 0.45 0.48
ACC[%] 57.8 59.7 60.3

3.2. Temporal Comparison

We analyzed the performance of random forest models trained on data from one
month only. We used 5-fold cross-validation and data from all the observation stations. The
process was repeated for hourly data and daily averages. As the data from Table 4 reveal,
the best performance in terms of dynamics reproduction (R2) was obtained for winter
months. At the same time, the accuracy (and thus, the reproduction of the magnitude of
observed concentrations) was better in the summer months. This fact can be explained by
a general tendency of ensemble methods, which are not very good at reproducing peak
values. Also, some authors claim that a significant amount of emissions is not included in
the national emission inventory [40,41].

Table 4. Performance of the random forest with data of single months used for training.

ACC[%] R2 ACC[%] R2

Hourly
Concentration Daily Mean

January 45 0.21 January 61 0.36
February 40 0.15 February 53 0.25

March 46 0.17 March 59 0.17
April 52 0.14 April 70 0.06
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Table 4. Cont.

ACC[%] R2 ACC[%] R2

Hourly
Concentration Daily Mean

May 55 0.04 May 72 0.2
June 64 0.02 June 78 0.02
July 57 0 July 71 −0.07

August 50 0.02 August 70 0.05
September 51 0.04 September 68 −0.04

October 44 0.13 October 60 0.14
November 48 0.23 November 65 0.44
December 39 0.31 December 57 0.49

3.3. Spatial Comparison

Finally, we analyzed if the choice of observation station location influenced the per-
formance of the random forest. We used a 5-fold cross-validation process and data from
one station at a time. The results make it possible to distinguish stations with sufficiently
better performance (SlBielKossak and SlWodzGalczy) and stations with significantly worse
performances (MpSuchaNiesz and MpOswiecBema), as can be seen in Table 5. This differ-
ence can be explained when we look at the station location. The former is located in dense
urban areas with local district heating systems. In contrast, the latter is in a single-family
housing area with typical low-stack residential heating emissions.

Table 5. Performance of the random forest with single station used for training process.

ACC[%] R2 ACC[%] R2

Hourly
Concentration Daily Mean

SlBielKossak 60 0.5 72 0.64
SlWodzGalczy 56 0.46 71 0.63
SlRybniBorki 51 0.39 66 0.51
SlCiesChopin 48 0.43 69 0.72
SlUstronSana 49 0.35 66 0.51

SlGoczaUzdroMOB 50 0.36 62 0.53
SlZywieKoper 37 0.41 62 0.54
MpSuchaNiesz 34 0.37 59 0.59

MpOswiecBema 44 0.3 58 0.39

3.4. Annual Statistics

The annual statistics of the GEM-AQ model (Figures 8a, 9a and 10a) resemble the emis-
sion pattern (Figure 4). High concentrations are observed in the western part of the study
area (Rybnik and Wodzisław cities) and the centre (Bielsko-Biała and Żywiec). The results
from the Gaussian plume model highly underestimate the average PM10 concentration
(Figure 8b). The Gaussian plume model and random forest reveal a complex concentration
pattern in the southern part of the study area, resulting from complex topography. The
order of the magnitude of the random forest results is similar to that of the GEM-AQ model.
The random forest is not good at reproducing peak concentrations; thus, the percentile
for the random forest (90.2%) is generally lower than for GEM-AQ (Figure 9). Also, the
number of days when the legal threshold of 50 µg/m3 is exceeded is lower for the random
forest algorithm than for GEM-AQ.
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(a) (b)

(c)

Figure 8. Annual average PM10 concentration: (a) obtained by GEM-AQ model, (b) obtained by
Gaussian plume model, and (c) obtained by random forest.

(a) (b)

Figure 9. Cont.
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(c)

Figure 9. The 90.2% percentile of daily averaged PM10 concentration timeseries: (a) obtained by
GEM-AQ results, (b) obtained by Gaussian plume model, and (c) obtained by random forest model.

(a) (b)

Figure 10. Number of days with average daily concentration exceeding 50 µg/m3: (a) obtained from
GEM-AQ model; (b) obtained by random forest results.

4. Discussion

We have analyzed several variants of a downscaling approach based on random
forests. The poorest performance was obtained by an hourly forecasting model with only
the GEM-AQ and Gaussian plume models as input. Using calendar variables (day of the
week and month) as auxiliary inputs improved the R2 of the model’s results. This was
due to the seasonal variation of emissions, which was not included in the annual EMEP
temporal profile. However, it was trained by the random forest based on observations. This
includes holiday seasons, heating days (which influence domestic emissions), and work
schedules, which determine traffic emissions.

Using meteorological observations as auxiliary data also improved the random forest
results. They reduced the uncertainty that was introduced by the meteorological part of
GEM-AQ. By knowing the temperature and wind data, the random forest can mitigate
some uncertainty from the meteorological model.

Finally, we tried using daily aggregation (mean or median). This approach led us to
better results (accuracy and dynamics). Such a result is due to the nature of random forest
regression, which tends to generalize training sets. Thus, it is not good at reproducing
extreme values (outliers from the statistical point of view). Nevertheless, aggregated values
(annual statistics) assess human exposure to pollutants. The lack of reliable hourly results
should be acceptable for this application.

Poor results in reproducing hourly dynamics of PM10 concentrations may be explained
by a combination of several causes, including the spatial representativeness of meteorologi-
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cal results and the intrinsic uncertainty of the emission inventory, which, especially in the
case of traffic or domestic emissions, is based on approximated emission factors.

5. Conclusions

Random forest regression is a powerful and robust technique for developing non-
linear regression models. As we have shown, it can be applied to obtain high-resolution
concentration maps based on regional model results. As a random forest cannot extrapolate
data, its results are slightly underestimated.

The accuracy of random forest improves when applied to daily averaged values. This
is likely due to the smoothing effect of averaging, thanks to which no sharp gradients must
be simulated. Additional improvements to the random forest regression model can be made
by using additional features. Including the day of the week and month improved both
accuracy and dynamics of all random forest variants. These features act as a non-explicit
temporal profile, which helps to adjust the regression to temporal changes in emissions.
Including meteorological observations (temperature and wind) as additional features is
also helpful in improving the random forest model’s regression results. However, the
improvement is less significant in this case. The effect of meteorological observations is
likely a way of fixing the inaccuracy of the meteorological results of the GEM-AQ model,
which later on affected the air quality results.

The choice of observation stations for random forest training should be made with
care. Some stations deliver observations that could be more challenging to replicate. On the
other hand, using a single observation station’s time series as a training target over large
areas may produce results that need more universality.
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Appendix A. Timeseries Evaluation

Appendix A.1. Meteorological Model Evaluation

The meteorological part of the GEM-AQ model is a source of meteorological variables
(wind speed, wind direction, gradient Richardson number) for the Gaussian plume model.
Within the modelling domain (Figure 1), one meteorological observation station exists
(Bielsko-Biała). A comparison of observed and modelled hourly time series are presented
in Figure A1. The temporal temperature pattern is reproduced reasonably well. Some
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underestimations in temperature are noticeable in winter extremes. The model tends to
underestimate the observed wind speed for wind time series. Also, calm conditions with
no wind are not reproduced by GEM-AQ.

(a)

(b)

Figure A1. Hourly time series of meteorological parameters bserved and modelled by GEM-AQ:
(a) temperature; (b) wind speed.

Appendix A.2. PM10 Input Time Series Evaluation

The GEM-AQ and the Gaussian plume model are the sources of the input time series
for the random forest algorithm. The observation data from nine observation stations are
the target variables for random forest training (with a 5-fold cross-validation procedure).
Figures A2–A4 present time series comparisons at each air quality station location.
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(a)

(b)

(c)

Figure A2. Observed and modelled PM10 hourly concentration time series at (a) SlBielKossak,
(b) SlCiesChopin, and (c) SlWodzGalczy.
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(a)

(b)

(c)

Figure A3. Observed and modelled PM10 hourly concentration time series at (a) SlRybniBorki,
(b) SlUstronSana, and (c) SlGoczaUzdroMOB.



Atmosphere 2023, 14, 1171 19 of 24

(a)

(b)

(c)

Figure A4. Observed and modelled PM10 hourly concentration time series at (a) SlZywieKoper,
(b) MpOswiecBema, and (c) MpSuchaNiesz.
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Appendix A.3. Random Forest Output PM10 Time Series

Figures A5–A7 present the daily PM10 output time series from the most accurate
random forest model trained within this work (using daily mean concentrations and
auxiliary variables, including the day of the week, month, and meteorological observations;
see Table 3).

(a)

(b)

(c)

Figure A5. Observed and modelled PM10 daily concentration time series at (a) SlBielKossak, (b) Sl-
CiesChopin, and (c) SlWodzGalczy.
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(a)

(b)

(c)

Figure A6. Observed and modelled PM10 daily concentration time series at (a) SlRybniBorki, (b) SlUs-
tronSana, and (c) SlGoczaUzdroMOB.
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(a)

(b)

(c)

Figure A7. Observed and modelled PM10 daily concentration time series at (a) SlZywieKoper,
(b) MpOswiecBema, and (c) MpSuchaNiesz.
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