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Abstract: Desertification vulnerability and contributing factors are of global concern. This study
analyzed the spatial and temporal distribution of net primary productivity (NPP), precipitation,
and temperature from 1985 to 2015. The rain use efficiency (RUE) of vegetation was selected as an
indicator; and desertification vulnerability and contributors were evaluated with the Mann–Kendall
test (M–K test) and the Thornthwaite–Memorial model. The results showed that NPP was lower in
that years that had lower precipitation and higher temperatures, and vice versa. NPP was spatially
consistent with precipitation distribution and roughly opposite to the spatial distribution of the
annual change rate of temperature. The desertification vulnerability decreased from west to east,
among which both the western sub–region (WSR) and the central sub–region (CSR) had the largest
proportion of regions with high desertification vulnerability. On the other hand, the eastern sub–
region (ESR) mostly comprises areas with extremely low or low desertification vulnerability. The
vulnerability contributors for desertification differed among each sub–region. The desertified regions
in WSR and ESR were mainly influenced by human activity (HA), but primarily driven by the
combined impact of Precipitation–Temperature (PT) and HA in CSR. The south–east part of the CSR
was only affected by HA, whereas the lesser affected regions in the study area were affected by PT
and HA simultaneously. The study provides recommendations for the improvement of regional
ecological environments to prevent future disasters.

Keywords: NPP; precipitation; temperature; desertification vulnerability; contributor; Inner
Mongolia

1. Introduction

As one of the main types of land degradation [1], desertification is a hot spot in the
field of global land degradation and restoration and has received extensive attention from
international organizations such as the United Nations Convention to Combat Desertifica-
tion [2]. Inner Mongolia is a typical representative of arid and semi–arid regions around
the world and an important ecological barrier in northern China [3]. While desertification
in this region is affected by both climate change and human activity, it can also respond
quickly to changes in influencing factors. A qualitative or quantitative understanding of
desertification vulnerability and its contributors is of great significance for curbing land
degradation. However, Inner Mongolia has a vast territory and the differences in desertifi-
cation vulnerability and desertification–causing factors in different sub–regions within the
territory are not clear.

Currently, many scholars have conducted studies on the characteristics of deserti-
fication vulnerability and its contributors using the random forest model [4], Spearman
rank correlation [5], and standard and adjusted Mediterranean desertification and land
use approaches [6] with different time scales. The indicators used to measure desertifi-
cation include the global desertification vulnerability index [7], the aridity index [8], the
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normalized landscape index [9], and so on. The research scope covers the world [7], Central
Asia [10], Iraq [11], Mongolia [12,13], and China [14,15], among others. The results showed
that desertification has become one of the most severe ecological problems worldwide,
affecting 20% of the world’s population, 70% of the dry land, and 25% of global terrestrial
land [16,17]. Among them, moderate desertification regions, severe desertification regions,
and extremely severe desertification regions account for 13%, 7% and 9% of the world,
respectively [7]. Desertification has occurred in varying degrees in most parts of Central
Asia from the 1980s to the 2000s, and deteriorated further in the 2010s [10]. Climate change,
drought or less rainfall, abuse of natural resources, overgrazing, and other factors were
all found to be closely related to the aggravation of desertification in Iraq in the past two
decades even posing a threat to food security and human health in the area [11]. Influ-
enced by factors such as increased temperature and decreased precipitation, more than
three–quarters of the land in Mongolia is being affected by drought and desertification [12].
Desertification in China is also grave: from 1950 to 2000, desertified regions in China
increased from 1.37 × 105 km2 to 3.85 × 105 km2 [18] and the rate of desertification rose
from 1.56 × 103 km2/a to 3.60 × 103 km2/a [19]. As of 2014, desertified regions in China
accounted for 27.2% of the whole country, distributed across 18 provinces (municipalities
and autonomous regions). Regions with mild desertification, moderate desertification,
severe desertification, and extremely severe desertification accounted for 28.7%, 35.4%,
15.4% and 20.5% of the total, respectively [15]. Northwestern China has always been a
region where desertification is more severe than in other regions. For example, the soil
salinization of oases in Xinjiang and the desertification of land on the edge of oases are
mainly attributed to human activity (such as poor management of land resources) [20].
Since the 1980s, desertification has become one of the major causes of the decline in the
ecosystem in Inner Mongolia [21]. However, over the last two decades, the desertifica-
tion area has been reduced by nearly 11% [22], and the net land restoration area during
2000–2010 and 2010–2020 was 35,800 km2 and 65,300 km2, respectively [23].

Most of the existing related achievements have focused on the status of desertification
in different regions [24]. However, the identification of desertification vulnerability is
still scarce and a rational assessment system of desertification vulnerability has not been
established. Most studies examined areas that were sensitive to climate change in arid and
semi–arid regions as the study area for overall research [25], and there is little comparative
analysis of commonalities and differences in the vulnerability and contributors of deser-
tification in small–scale areas within a certain region. Based on the above, to ensure the
research result is more representative and comprehensive, this article chose Inner Mongolia,
which has a large expanse of territory and covers a large number of climate types, as the
study area. Based on NPP, precipitation, and temperature raster datasets from 1985 to
2015, the commonalities and differences of desertification vulnerability and contributors
in different local regions within Inner Mongolia were comprehensively compared and
analyzed. The study not only provides an indication of how to improve the ecological
environment but also enriches its actual achievement in this field.

2. Materials and Methods
2.1. Overview of the Study Area

The study area is the Inner Mongolia Autonomous Region (37◦24′ N~53◦23′ N,
97◦12′ E~126◦04′ E) (Figure 1). Its total area is approximately 118.3 × 104 km2, with
a stretch of 2400 km from east to west and 1700 km from north to south. The elevation
ranges from −35 m to 3499 m, accounting for 12.3% of China’s total area. The Inner Mongo-
lia Autonomous Region also has complex and varied landforms (e.g., deserts, mountains,
plains, sand, and basins), with a variety of climate types (e.g., monsoon climate, temperate
continental climate, and plateau climate) [26].
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Figure 1. Location of the study area.

2.2. Materials

The precipitation and temperature data include monthly precipitation and temperature
raster datasets with 1 km resolution in China, which were sourced from the national earth
system science data center. The dataset was generated through a delta spatial downscaling
scheme (mainly consisting of four steps: 1. Construction of the dataset. 2. Construction of
the anomaly time series. 3. Spatial interpolation. 4. Conversion to absolute climatic time
series) [27,28] based on the global climate dataset published by the Climatic Research Unit
and the high–resolution climate dataset published by WorldClim. The NPP data used in
this study are from a monthly NPP dataset covering China’s terrestrial ecosystems north of
18◦ N (1985~2015); the data were sourced from the Global Change Research Data Publishing
& Repository [29]. The three datasets all ranged from January 1985 to December 2015. Based
on monthly data, the sum of NPP and precipitation from January to December was defined
as annual NPP and annual precipitation, respectively, and the mean temperature from
January to December was defined as annual temperature.

2.3. Data Processing Method

ArcGIS software was adopted to convert and extract NPP, precipitation, and tempera-
ture data to obtain monthly data in the study area, and all data formats were unified in a
tiff format.

As a land degradation process, desertification is essentially the decline of land pro-
ductivity. RUE is the ratio of NPP to precipitation and synthesizes the variability of land
production capacity at the regional scale to characterize the development of desertification.
A decrease in RUE value indicates a decline in vegetation’s ability to convert water and
nutrients into biomass, which increases desertification vulnerability in the study area [30].
RUE was applied to characterize the desertification vulnerability in the study area. The
calculation formula for RUE is:

RUE =
NPP

P
(1)

In the formula: P–annual precipitation.
The Thornthwaite–Memorial model was used to analyze contributors to desertification

vulnerability [31,32]. The specific theoretical formulas of the model are:

PTRUE =
3000[1− e

−0.0009695[ 1.05P√
1+(1+ 1.05P

3000+25T+0.05T3 )
−20]

]

P
(2)

HARUE = PTRUE − RUE (3)
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In the formula: T–annual temperature; P–annual precipitation; PTRUE–desertification
vulnerability related to PT (gC·mm−1·m−2·a−1); HARUE–desertification vulnerability re-
lated to HA (gC·mm−1·m−2·a−1).

Based on the least squares method, the one–variable linear regression model was used
to simulate the annual change rate of factors (including NPP, precipitation, temperature,
RUE, PTRUE and HARUE) in the study area on the basis of each pixel [33]. The formula is:

θ =
n∑n

i=1 ici −∑n
i=1 i∑n

i=1 ci

n∑n
i=1 i2 − (∑n

i=1 i)2
(4)

In the formula: θ–the annual change rate of factors (θNPP, θP, θT, θRUE, θPTRUE and
θHARUE were used to indicate the annual change rate of NPP, precipitation, temperature,
RUE, PTRUE, and HARUE, respectively, in the following paper); ci–annual value of factors
in the year i; n–number of years in the calculation period.

The M-K test is a non–parametric test widely used in hydro–meteorological data
analyses. Here, the M-K test was used to measure the significance of the annual change
rate in factors [34]. The specific formulas are:

sgn(Xk+1 − Xk) =


+1 if Xk+1 − Xk > 0
0 if Xk+1 − Xk = 0
−1 if Xk+1 − Xk < 0

(5)

S = ∑n−1
k=1 ∑n

k+1 sgn(Xk+1 − Xk) (6)

V(S) =
n(n− 1)(2n + 5)

18
(7)

Z =


S−1√
V(S)

if S > 0

0 if S = 0
S+1√
V(S)

if S < 0
(8)

In the formula: Xk+1 and Xk—the value of factors in year k + 1 and k; S—the Kendall
statistic; n—the length of data; V(S) —the variance of S; Z —the test statistics. In addition,
when |Z| is above or equal to 1.64, 1.92, and 2.32, it indicates that the annual change rate
of factors passed significance tests at 90%, 95%, and 99% confidence levels.

2.4. Criteria for Classification of Desertification Vulnerability and Identification of Contributors

The study defined the region with θRUE above 0 and passed the M–K test with 95%
confidence as the improved region and, based on whether θRUE passed the test of signifi-
cance with a confidence interval of 99%, the improved regions were further divided into
the region with moderate improvement and the region with significant improvement. See
Table 1 for details.

With reference to previous research results [30], the study divided the positive and
negative combinations of θRUE, θPTRUE and θHARUE into 8 scenarios (Table 2) to measure the
driving effects of PT or HA on improved regions and desertified regions. If θPTRUE was
positive or θHARUE was negative, it meant that either PT or HA helped in the recovery of
desertification. If θPTRUE was negative or θHARUE was positive, it indicated that either PT or
HA aggravated desertification.
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Table 1. Criteria for desertification vulnerability classification.

Regions Z Value Classification

Improved regions 2.32 ≤ Z Region with significant improvement
1.96 ≤ Z < 2.32 Region with moderate improvement

Desertified regions

0 ≤ Z < 1.96 Region with extremely low desertification
vulnerability

−1.96 ≤ Z < 0 Region with low desertification vulnerability
−2.32 ≤ Z < −1.96 Region with moderate desertification vulnerability

Z < −2.32 Region with high desertification vulnerability

Table 2. Quantitative assessment models of PT and HA.

Regions θPTRUE θHARUE Contributor

Improved regions

>0 >0 PT
>0 <0 Both
<0 >0 Error
<0 <0 HA

Desertified regions

>0 >0 HA
>0 <0 Error
<0 >0 Both
<0 <0 PT

In addition, when the desertified region (improved region) was affected by PT and HA
at the same time, this study calculated the contribution rate of the two using the following
formula:

CPTRUE(HARUE)
=

∣∣∣θPTRUE(HARUE)

∣∣∣∣∣θPTRUE

∣∣+ ∣∣θHARUE

∣∣ × 100% (9)

In the formula: C–contribution rate of PT or HA.
In summary, the identification and attribution of desertification vulnerability were

mainly divided into two steps (Figure 2): 1. Identification of desertification vulnerability.
2. Determination and quantitative analysis of contributors to desertification vulnerability.

Figure 2. The process of identification and attribution of desertification vulnerability.
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2.5. Division of the Study Area

The study area was large, with significant differences in NPP, precipitation, and
temperature from west to east (as shown in Figure 3a,b). To facilitate analysis, it was
rationalized based on the administrative boundaries as well as the practice of previous
regional divisions [26]. The study area was divided into three sub–regions (Figure 3c): the
western sub–region (including Alxa League, Wuhai, Bayannur, Baotou, and Ordos); the
central sub–region (Hohhot, Ulanqab, Chifeng, and Xilin Gol League); and the eastern
sub–region (Tongliao, Hulunbeier, and Xing’an League).

Figure 3. (a) The regional mean value of NPP for WSR, CSR, and ESR. (b) The regional mean value
of precipitation and temperature for WSR, CSR, and ESR. (c) Regionalization of WSR, CSR, and ESR.

3. Results
3.1. Spatio–Temporal Changes of NPP, Precipitation, and Temperature

Figure 4 shows the spatio–temporal variation of NPP and spatial distribution of θNPP
in the study area. It can be seen from the figure that the regional mean values of NPP in
WSR, CSR, and ESR from 1985 to 2015 were 100.94 gC·m−2·a−1, 171.66 gC·m−2·a−1, and
233.06 gC·m−2·a−1, respectively. The maximum value (minimum value) appeared in 1998
(2005), 1998 (2007), and 2014 (1992). In terms of the temporal evolution of the NPP, the NPP
values of WSR and CSR were relatively high from 1985 to 1999 and decreased rapidly after
entering the 21st century; while the NPP value in ESR fluctuated with an upward trend
on the whole. In spatial terms, the annual average NPP of WSR and CSR was lower in
the west, higher in the east, and the dividing line was roughly at 109.5◦ E and 118◦ E. The
annual NPP of ESR was higher in Great Khingan and its surrounding areas and gradually
decreased toward the south and the west.

The annual change rate of NPP in WSR mainly decreased (accounting for approxi-
mately 74.25% of the total area of WSR). An amount of 68.57% of the decreased region
passed the test of significance, which was mainly distributed in the east of the Badain Jaran
Desert. The rate of decline was between −23.55~−2.00 gC·m−2·a−1/10 a. On the other
hand, 25.75% of WSR showed an upward trend, and the area which passed the significance
test accounted for 20.62%. In spatial terms, the NPP increased at a faster rate in the south
and the north but at a slower rate in the central part. The annual change rate of NPP in
CSR increased on the whole, accounting for 53.15% of CSR, with 41.05% of CSR seeing
a significant increase, mostly at the rate of 10 gC·m−2·a−1/10 a or more. Regions with a
decreasing annual change rate of NPP were mainly concentrated in northern Ulanqab and
western Xilinhot (part of the Xilin Gol League). The area that passed the test of significance
with a confidence level of 95% accounted for 35.11%, and the rate of decline exceeded
−13.45 gC·m−2·a−1/10 a. The θNPP in ESR was between −23.82 gC·m−2·a−1/10 a and
17.37 gC·m−2·a−1/10 a; the overall distribution was that NPP decreased (36.89%) in the cen-
tral part and increased (63.11%) in the north–south. Among them, the areas that decreased
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significantly and increased significantly accounted for 22.20% and 44.35%, respectively. The
NPP increased region was mainly distributed near Hulun Lake, while the NPP decreased
region was concentrated in the south of ESR.

Figure 4. (a) The regional mean value of NPP for WSR. (b) The regional mean value of NPP for CSR.
(c) The regional mean value of NPP for ESR. (d) Spatial distribution of NPP’s muti-year mean value
in different sub-regions. (e) Spatial distribution of NPP’s annual change rate in different sub-regions.

Figure 5 shows the spatio–temporal variation of precipitation and the spatial distribu-
tion of θP in the study area. The annual precipitation of WSR, CSR, and ESR was 289.67 mm,
292.52 mm, and 425.19 mm, respectively. All the maximum values appeared in 1998, and
the minimum values appeared between 2005 and 2007. The spatio–temporal changes of
precipitation in the three sub–regions have remarkable consistency: showing a rising trend
first, then falling and rising again temporally, and rising from west to east (from northwest
to southeast) spatially.

In terms of the annual change rate of precipitation in the three sub–regions, except
for the junction of WSR and CSR as well as the surrounding areas of Mu Us Sandland, the
annual precipitation of WSR was mainly on the rise, accounting for 89.99% of WSR, yet the
rate of rise was very slow (θP was mostly between 0~7 mm/a). Only about 5.61% of the area
increased significantly, and the rate was above 7.5 mm/a. The annual precipitation of CSR
and ESR dropped, and the rate of decrease rose from west to east and from north to south.
Among them, 42.08% of CSR had a significant decreasing trend in annual precipitation,
which was mainly concentrated in the regions east of 120◦ E, with the annual precipitation
decreasing at a rate between 1.68 and 3.83 mm/a. A total of 11.82% of the ESR showed a
significant downward trend, most of which were concentrated in Tongliao. The annual
change rates of precipitation in the rest of CSR and ESR were between −0.68~0.31 mm/a
and −2~0.34 mm/a, thus the change of precipitation in these areas was not significant.
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Figure 5. (a) The regional mean value of precipitation for WSR. (b) The regional mean value of
precipitation for CSR. (c) The regional mean value of precipitation for ESR. (d) Spatial distribution of
precipitation’s muti-year mean value in different sub-regions. (e) Spatial distribution of precipitation’s
annual change rate in different sub-regions.

Figure 6 shows the spatio–temporal variation of temperature and the spatial distri-
bution of θT in the study area. The annual temperature in the study area decreased from
west to east as a whole, and the regional average temperatures of WSR, CSR, and ESR
were 7.91 ◦C, 3.64 ◦C, and 0.59 ◦C, respectively. The average temperature of the three sub–
regions fluctuated temporally. Among them, the average temperature of CSR increased at
the fastest rate (0.37 ◦C/10 a), followed by WSR and ESR (0.139 ◦C/10 a). The annual tem-
perature of WSR and ESR increased from west to east and from north to south, respectively.
As to CSR, the annual temperature of its center, Hunshandake Sandy Land was the lowest,
and increased toward the southeast and the southwest.

The annual change rate of temperature in both WSR and CSR increased significantly;
the former increased at a faster rate from west to east, while that of the CSR increased at
the same rate from east to west. The annual change rate of temperature in ESR also rose,
yet the θT was mostly less than 0.05 ◦C/10 a, which failed to pass the test of significance.

3.2. Spatio-Temporal Variation in Desertification Vulnerability and Its Contributors
3.2.1. Spatial and Temporal Distribution Characteristics of Desertification Vulnerability

Figure 7 shows the spatial distribution of desertification vulnerability (a) and the
annual change rate of RUE in the study area from 1985 to 2018 (b). According to the figure,
WSR was a desertified region as a whole, accounting for 84.41% of the total area, and
69.73% of WSR belonged to the regions with high or moderate desertification vulnerability,
which were mainly distributed from the Jilantai Saline Land to the Urat Rear Banner (part
of Bayannur). The θRUE in this region was between −0.068 gC·mm−1·m−2·a−1/a and
−0.027 gC·mm−1·m−2·a−1/a. Regions with low or extremely low desertification vulner-
ability accounted for 14.68% of the total area of WSR, mainly distributed in the west of
Ejina Banner (part of Alxa League) and the northwest of Alxa Right Banner (part of Alxa
League). The regions with moderate improvement and significant improvement accounted
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for 1.93% and 13.66% of the total, mainly distributed in the central part of Ejina Banner
(part of Alxa League), where the θRUE was mostly above 0.02 gC·mm−1·m−2·a−1/a.

Figure 6. (a) The regional mean value of temperature for WSR. (b) The regional mean value of
temperature for CSR. (c) The regional mean value of temperature for ESR. (d) Spatial distribution of
temperature’s muti-year mean value in different sub-regions. (e) Spatial distribution of temperature’s
annual change rate in different sub-regions.

Figure 7. (a) Spatial distribution of desertification vulnerability in each sub-region. (b) Spatial
distribution of RUE’s annual change rate in different sub-regions.

The overall desertification vulnerability level of CSR was relatively simple and had
prominent spatial differences. Specifically, desertified regions and improved regions ac-
counted for 47.38% and 52.62% of total CSR, respectively. Among them, desertified regions
were mainly concentrated in the northwest of CSR, including Darhan Muminggan United
Banner (part of Baotou), Siziwang Banner (part of Ulanqal), and other places. Most were
desertified regions with high desertification vulnerability (regions with moderate, low,
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and extremely low desertification vulnerability accounted for only 0.76%, 6.02%, and
9.61% of CSR, respectively), and the θRUE was between −0.055 gC·mm−1·m−2·a−1/a
and −0.026 gC·mm−1·m−2·a−1/a in this area. The region with moderate improvement
only accounted for 2.36% of the CSR, and the remainder were all regions with significant
improvement (50.26%), where the RUE mostly grew by 0.005 gC·mm−1·m−2·a−1/a to
0.02 gC·mm−1·m−2·a−1/a, and in spatial terms, the RUE rose at the fastest rate in the east
of the CSR and gradually decreased in the west.

From north to south, the ESR was characterized by a sandwich structure of “improved
regions–desertified regions–improved regions”, accounting for 50.46% and 49.54% of the
ESR, respectively. Among them, the area with significantly improved RUE accounted for
44.41% of ESR, and the θRUE in this region was mostly above 0.005 gC·mm−1·m−2·a−1/a.
Desertified regions were mainly distributed in the central part of ESR, of which the regions
with extremely low, low, moderate, and high desertification vulnerability accounted for
23.83%, 14.27%, 1.64%, and 10.72% of ESR, respectively. In space, the desertified regions
with moderate and high desertification vulnerability were mainly concentrated near Hulun
Lake, and the vulnerability level decreased eastward.

3.2.2. Determination and Quantitative Analysis of Contributors to Desertification
Vulnerability

Figure 8 shows the spatial distribution of contributors to desertification vulnerability
in the study area. As mentioned above, 84.41% belonged to desertified regions, of which
61.96% of the WSR was caused by HA, 0.74% was caused by PT (which was mainly
concentrated at the junction of WSR and CSR), and 16.55% of the area was affected by a
combination of PT and HA; the contribution rates of the two were 53.6% (θPTRUE = −1.19
× 10−3 gC·mm−1·m−2·a−1/a) and 46.4% (θHARUE = 1.03 × 10−3 gC·mm−1·m−2·a−1/a),
respectively. The improved regions accounted for 15.59% of WSR. and the joint effect of PT
and HA was the leading factor for the improvement of desertification in this region (12.18%).
The contribution rates of the two factors in the improved regions were 28.64% (θPTRUE = 3.11
× 10−3 gC·mm−1·m−2·a−1/a) and 71.36% (θHARUE = −3.11 × 10−3 gC·mm−1·m−2·a−1/a),
respectively, followed by HA (1.79%), while the area which had improved under the
influence of PT only accounted for 1.45% of WSR.

Figure 8. (a) Spatial distribution of contributors to desertification vulnerability in different sub-
regions. (b) Spatial distribution of HARUE’s annual change rate in different sub-regions. (c) Spatial
distribution of PTRUE’s annual change rate in different sub-regions.
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Desertified regions and improved regions accounted for 47.38% and 52.62% of CSR,
respectively. Of these, 20.83% were improved under the influence of HA and approximately
29.68% were improved under the joint influence of PT and HA; among them, the contri-
bution rate of PT only accounted for 9.07%. In addition, the improved area that was only
affected by PT accounted for 1.25%. Desertified regions were mostly caused by the joint
effects of PT and HA (accounting for 26.46% of CSR), of which the contribution rate of PT
was roughly 2.88% (θPTRUE = −0.41 × 10−3 gC·mm−1·m−2·a−1/a), and the rest stemmed
from HA. In addition, 9.35% and 5.73% of the desertified regions were derived from HA
and PT, respectively.

The regions affected by both PT and HA accounted for 47.26% of ESR; the contribution
rates of PT and HA were 19.71% (θPTRUE = 1.47 × 10−3 gC·mm−1·m−2·a−1/a) and 82.29%
(θHARUE =−6.00× 10−3 gC·mm−1·m−2·a−1/a), respectively, most of which were improved
regions. The desertified region in ESR was an area greatly affected by HA as 25.02% of ESR
deteriorated under the influence of HA alone. Regions which were independently affected
by PT were less than 5%.

4. Discussion and Conclusions

The NPP in the study area was positively correlated with precipitation [35] and
negatively correlated with temperature (Table 3). This is consistent with the correlation
between NPP and precipitation or temperature in the Shendong coal mine [36], The overall
correlation decreased from west to east (WSR > CSR > ESR). Such correlation is also
demonstrated as follows: the NPP of WSR and CSR in years with less precipitation and
higher temperature was lower, and vice versa. This further explains that precipitation and
temperature may be important contributors to the NPP of WSR and CSR [37], and the
NPP can also respond significantly to changes in precipitation and temperature. Zhang
et al. proposed [38] that decreased precipitation, increased temperature, and potential
evapotranspiration causes severe water deficiency and reduced ecosystem productivity,
which is consistent to some degree with this study. However, the NPP of ESR did not show
such a correlation with precipitation and temperature, which may stem from factors such as
suitable hydrothermal conditions and the good vegetation foundation of ESR. The overall
NPP in the study area increased from west to east, that is, the regional mean value of the
NPP of WSR was less than that of CSR as well as ESR, which is basically consistent with
the spatial distribution of precipitation in the study area, and opposite to the temperature
to a certain degree. From the perspective of the annual change rate, the NPP in WSR
mostly dropped, while that in CSR and ESR rose. On the whole, NPP decreased more
rapidly in regions where temperature rose at a faster rate, and tended to increase in regions
where temperature rose at a slower rate. The conclusion that the change of NPP in the
Hunshandake Sandy Land is closely linked to the change of precipitation and temperature
is basically consistent with this article [39]. However, since 2000, NDVI has been weakly
related to precipitation [40] and other studies have different conclusions to the results of
this study, which may be due to the difference in the selection of the index.

Table 3. Correlation between NPP and precipitation or temperature.

WSR CSR ESR

Precipitation Temperature Precipitation Temperature Precipitation Temperature

0.49 * −0.45 * 0.80 * −0.23 0.11 0.06
Note: “*” in the table referred to significantly correlated at the 0.05 level.

As shown in Figure 9, the overall desertification vulnerability in the study area de-
creased from west to east. Among them, both WSR and CSR had the largest proportion of
regions with high vulnerability to desertification, followed by low desertification vulner-
ability regions, extremely low desertification vulnerability regions, and moderate deser-
tification vulnerability regions. On the other hand, ESR consisted mostly of regions with
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extremely low desertification vulnerability, followed by low desertification vulnerability,
high desertification vulnerability, and moderate desertification vulnerability regions. The
proportion of improved regions decreased from the central part to the east and west as a
whole. To be more precise, the improved regions in CSR were larger than those in WSR
and ESR, and the area of improved regions in CSR was 2~3 times larger than that in WSR
and ESR.

Figure 9. The proportion of areas with different desertification vulnerability in each sub-region.

As a whole, the combined effort of PT and HA contributed significantly to deserti-
fication vulnerability in the study area. However, there were some regional differences
as well. For example, PT and HA were both key contributors to CSR’s desertification
vulnerability in desertified regions, while in WSR and ESR, desertified regions were mainly
influenced by HA alone. Improved regions in the study area were primarily driven by
both, but the improved region in the southeast part of the CSR was only dependent on
HA. The conclusion is that there are temporal and spatial differences in the impact of
climate change, natural variability, and HA on desertification. For example, changes in
climate factors were the main reason for the fluctuation of desertification boundaries in
arid and extremely arid regions of Inner Mongolia [31] and there were no obvious signs
of desertification expansion in the Hunshandake Sandy Land under climate change and
HA [39]. Grassland desertification is becoming increasingly serious, and human activity
is a major factor in the occurrence of desertification in an increasing number of areas [5].
These are all consistent with this article to a certain extent. However, the conclusion that
the improvement of desertification in the China–Mongolia–Russia Economic Corridor was
dominated by climate change [41] and desertification was the result of the superposition
of climate and HA, with climate change being the main influencing factor followed by
HA [42] differs from the results of this study, which may be due to the difference in the
study area and study period.

This article provides a detailed analysis of desertification vulnerability and its con-
tributors in Inner Mongolia. However, the article also has certain gaps in its methods.
For example, HARUE cannot be defined by RUE and PTRUE entirely; if heavy rains have
brought fertile soil from upstream downstream, the corresponding portion of biomass
would also be included in the HARUE, even if it is not of anthropogenic origin. Conversely,
in the presence of a parasitic attack (which reduces NPP), the effective HARUE linked to
anthropic effects would be biased (reduced). Based on the annual change rate of RUE,
PTRUE, and HARUE, the driving effects of PT and HA on desertification vulnerability were
divided into eight scenarios for discussion, but whether there is a more logical way to
divide the scenarios needs to be explored further. Studies have shown that wind [43],
overgrazing, deforestation [44], and overcultivation [45] are also important contributors to
desertification. Anthropogenic activity is a double–edged sword for vegetation change [46].
Thus, based on multiple factors and methods, an in–depth analysis of the relationship
between these factors and desertification should be conducted.
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