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Abstract: Extreme weather events, such as flooding, are expected to increase in frequency and
intensity. Therefore, the prediction of extreme weather events, assessment of their local impacts
in urban environments, and implementation of adaptation measures are becoming high-priority
challenges for local, regional, and national agencies and authorities. To manage these challenges,
access to accurate weather warnings and information about the occurrence, extent, and impacts
of extreme weather events are crucial. As a result, in addition to official sources of information
for prediction and monitoring, citizen volunteered geographic information (VGI) has emerged as
a complementary source of valuable information. In this work, we propose the formulation of an
approach to complement the impact-based weather warning system that has been introduced in
Sweden in 2021 by making use of such alternative sources of data. We present and discuss design
considerations and opportunities towards the creation of a visual analytics (VA) pipeline for the
identification and exploration of extreme weather events and their impacts from VGI texts and images
retrieved from social media. The envisioned VA pipeline incorporates three main steps: (1) data
collection, (2) image/text classification and analysis, and (3) visualization and exploration through
an interactive visual interface. We envision that our work has the potential to support three processes
that involve multiple stakeholders of the weather warning system: (1) the validation of previously
issued warnings, (2) local and regional assessment-support documentation, and (3) the monitoring of
ongoing events. The results of this work could thus generate information that is relevant to climate
adaptation decision making and provide potential support for the future development of national
weather warning systems.

Keywords: weather warning systems; flooding; volunteered geographic information; visualization;
visual analytics; artificial intelligence; machine learning; natural language processing; classification;
social media

1. Introduction

Extreme weather events, such as heavy rainfall and flooding, are expected to increase
in frequency and intensity as a result of climatic changes, leading to negative societal
consequences [1,2]. Preparedness for extreme weather events, including knowledge and
capacity to monitor and assess their local impacts, are important aspects of increase societal
resilience [3,4]. Therefore, the prediction of extreme weather events, assessment of their
impacts in urban environments, and implementation of adaptive actions have become a
priority for local and regional authorities worldwide [5,6].
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In the break of extreme weather events, what is of vital importance is access to
timely and accurate information that can communicate knowledge about the current
conditions and impacts. The primary source of such information is commonly sensors
used for monitoring and collecting observations about, for example, river flow levels,
precipitation levels, temperature, wind etc. In addition to sensor networks set up by official
authorities, in the past decades, Volunteered Geographic Information (VGI) has gained
increasing prominence as a complementary source of valuable information [7]. VGI have
been classified into participatory and opportunistic approaches, depending on the level
of intentional activity of the contributing individual [8,9]. Participatory VGI includes
crowd-sourced spatiotemporal data collected through, for example, individuals’ home
weather stations, volunteered reports and observations that are submitted intentionally to
explicitly inform an ongoing event. Nowadays, however, individuals tend to continuously
share their experiences, observations, and news online through multiple social media
channels. As a consequence, social media is emerging as a new possible data source for
reporting on ongoing events. These can be characterized as opportunistic approaches
because while the purpose of the observation is not primarily to provide data on a specific
event, it is nonetheless useful information that can be extracted. Due to the nature of VGI,
be it participatory or opportunistic, harvesting this information opens the possibility for
accessing localized first-hand information from citizens that are potentially directly affected
or are direct observers of such events. This can be of particular value in the occurrence of
extreme weather events, but also for long-term disaster management to better inform and
complement standardised, nationwide warnings and processes.

Traditionally, meteorological agencies issue weather warnings based on meteorological
and hydrological models. These, however, frequently lack insights into local vulnerabilities
and potential impacts. The challenge to better couple weather warnings to local impacts and
actors that can provide additional information regarding the potential effects of weather
events has therefore been addressed by the new Swedish national system for impact-based
weather warnings, which was launched in October 2021 by the Swedish Meteorological
and Hydrological Institute (SMHI). The new approach implies a consultation process with
authorities and actors at local, regional, and national levels prior to issuing certain types
of warnings. This process further demands a series of preparatory efforts to establish sup-
porting documents for local and regional impact assessments, building on the knowledge
and experiences of current and previous risks and impacts. Such collective efforts could be
strengthened by VGI as a novel source of first-hand local information provided by citizens,
which can inform the warning and impact assessment processes.

In this paper we outline the design considerations, opportunities, and first steps
towards formulating and implementing a Visual Analytics (VA) [10,11] pipeline based
on citizen-contributed VGI to inform and verify impact-based weather warning sys-
tems. The ambition is to complement the current processes with access to supplemen-
tary actionable information. The work is conducted within an ongoing research project,
AI4ClimateAdaptation (https://liu.se/en/research/ai4climateadaptation, accessed on 29
May 2023). The aim of the project is to assess the potential of combining visualization and
Artificial Intelligence (AI)-based image and text analysis with the national impact-based
weather warning system. To this end, we report on common practices to consider; on
previous research that we draw inspiration from, we outline preliminary plans, and we
describe multiple analytical approaches we have considered and applied so far.

The remainder of this paper is structured as follows. Section 2 provides a brief
overview of related work. Section 3 outlines the motivation and background of the work.
Section 4 describes the design space for the envisioned VA pipeline and discusses the main
facets identified in relation to each of its steps: data collection (Section 4.1), classification
(Section 4.2), and visualization (Section 4.3). Section 5 includes a discussion on the limita-
tions of the proposed approach, and finally, conclusions and future work are outlined in
Section 6.

https://liu.se/en/research/ai4climateadaptation
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2. Related Work

In this section, we review research related to our ongoing work towards a VA pipeline
for detecting and visually exploring extreme weather events from VGI texts and images.

Several visual analytics systems have been proposed for exploring and visualizing
crisis events using user-generated messages from microblogging services. SensePlace2 [12]
and Twitinfo [13] are examples of web-based geovisual analytics systems that use user-
formulated keyword queries to identify and extract relevant tweets, log their frequen-
cies, and display them in coordinated views for interactive exploration. These examples
use classic keyword-based Natural Language Processing (NLP) approaches for the iden-
tification of relevant tweets and focus primarily on the visual exploration of the data.
Later approaches increasingly incorporate data mining and machine learning methods.
Chae et al. [14], for example, proposed a VA approach for emergency management and
disaster preparedness that includes topic modelling for extracting and following topics
from the texts. Cerutti et al. [15] used data mining and exploratory visualization to identify
disaster-affected areas from Twitter data. Bosch et al. [16], in ScatterBlogs2, propose a VA
approach for monitoring microblog messages. The system makes use of filters and SVM
classifiers for extracting messages and topic modelling for identifying and monitoring
topics of interest.

The approaches above have made significant contributions to crisis event detection
through the analysis and visualization of purely textual information generated by users,
primarily microblogs such as Twitter. Such data, however, are short and noisy, which is
why approaches combining multiple data sources have been investigated in the literature.
Cai et al. [17] introduce STM-TwitterLDA, an approach based on generative probabilistic
topic modelling, which incorporates five Twitter features (text, image, timestamp, location,
and hashtags) in a joint model to identify topics on Twitter. Qian et al. [18] propose a
multi-modal event topic model for identifying correlations between textual and visual
modalities to extract semantic topics and their evolutionary patterns and visualize these
with texts and images over time.

In our work, we envision a VA pipeline that combines NLP and computer vision tech-
niques with interactive visualization in order to enable the identification and exploration of
extreme weather events from VGI text and images—primarily posts collected from Twitter.
Feng et al. [19] proposed a similar approach, which uses location filtering to collect Twitter
data within a specific geographic area. They then combine a deep learning-based classifica-
tion approach with spatiotemporal clustering to detect flood events. The visual exploration
of the identified flood events in their work is performed via simple visual representations
showing the detected flood events as markers on a map and the tweet frequency per region
through a choropleth map. Our intention, however, is to provide a considerably more
advanced interactive visual interface that will enable the in-depth, flexible exploration of
multiple aspects characterizing the identified extreme weather events.

3. Motivation and Background

This paper outlines our design considerations for formulating a VA pipeline within an
ongoing research project, AI4ClimateAdaptation. The project aims to assess the possibility
of combining VGI from citizens, AI-based text and image analysis, and visualization to
support weather warning processes and increasing knowledge of local impacts.

The project is tightly connected to and motivated by the new Swedish national system
for impact-based weather warnings [20]. Following guidelines from the World Meteo-
rological Organization [21], the warning issuing process builds on a direct consultation
process with local and regional representatives for, e.g., first responders, municipalities,
and infrastructural services. The inclusion of regional and local actors in the process aims
to provide for both more accurate assessments of local thresholds and risk factors, and for
local and regional efforts to develop assessment support documentation across sectors.

This localized and impact-based approach to weather warnings provides additional
motivation to explore complementary sources that can further inform the weather warning
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processes and to validate previously issued warnings and their impacts. To this end, VGI,
both in its participatory and opportunistic form, is of high interest. In this work, we use
text and images retrieved from social media, in particular from Twitter [22].

We envision a final working pipeline composed of three main steps: (1) data collection,
(2) image/text classification and analysis, and (3) visualization. To achieve these three
generic steps of the overall pipeline, we outline the following work plans:

1. Exploration of available existing image and text data sets related to extreme weather
events, particularly flooding. Development of effective data collection approaches of
VGI in the form of text and images.

2. Implementation of machine learning (ML) algorithms and computational methods for
the classification and analysis of VGI texts and images for the detection of extreme
weather events, with a focus on flooding.

3. Design and development of a VA interface for the visualization and exploration of the
classified text and image data, with a focus on their spatio-temporal and contextual
characteristics, in order to detect and assess the occurrence, extent, and impacts of
extreme weather events, with a focus on flooding.

Our entire process towards this final result is informed and guided by representatives
from potential stakeholder groups through a co-design process [23] based on interviews
and workshops. Stakeholders include climate adaptation experts and experts responsible
for the impact-based weather warning system at SMHI, as well as actors at local, regional,
and national levels.

In the following sections, we discuss our design considerations and implementation
plans for each of these three main steps of the pipeline in more detail.

4. Design Space

Multiple facets relate to each of the steps of the envisioned VA pipeline for the iden-
tification and exploration of extreme weather events, in particular flooding, from VGI
texts and images. Each of these facets involves different considerations, opportunities and
challenges. In the following, we discuss the main facets we have identified for each step.
An overview diagram of the design space can be seen in Figure 1.

StakeholdersMeteorologists Authorities

Design Space of the Proposed Visual Analytic Approach

Requirements Data Computational 
Models

Interactive 
Visual Interfaces

Evaluation
Approaches

Researchers Computer Vision 
Researchers

Visual Analytics 
Researchers

Climate Adaptation 
Researchers

• Sources & Modalities
• Collection Methods
• Prior Resources

• Training Data
• Text Classification
• Image Classification
• Location Extraction

• Data-Users-Tasks
• Representations
• Map View
• Temporal View
• Content Views

• Interviews
• Pilot Studies & Tools
• Workshops

• Validation
• Documentation
• Monitoring

Figure 1. Outline of the design space of the proposed VGI-facilitated visual analytic approach and
envisioned VA pipeline.

4.1. Data Collection

Since the overall goals of the envisioned project go beyond implementing a visualiza-
tion approach for the existing standard datasets, the data-related concerns constitute an
important part of the design space.



Atmosphere 2023, 14, 1141 5 of 13

4.1.1. Sources and Modalities

First of all, the data provided by the authorities (i.e., the public weather warning
announcements) is one of the important sources. SMHI warnings are published on their
website and mobile application up to three days in advance of the start date. The warnings
are also available at WIS, a portal for Swedish actors to share information about civil
emergencies. Information about particular events can be used to identify further relevant
data (e.g., by considering the facts that warnings were issued for a particular location
during a particular date/time range), but also used eventually for validation purposes.

Next, we consider the data available on social media. We chose to collect and to use
data from Twitter since it is a widely recognized microblogging platform that facilitates the
dissemination of information. In the context of disasters, it has been extensively employed
to communicate evacuation strategies, disseminate warnings, and aid in the evaluation of
damages [24]. One additional data modality of interest that is supported by Twitter is image
data: photos relevant to the flood events and their impact would be very valuable for the
analysis of the outcomes of such events and feedback towards the respective impact-based
weather warnings.

Besides social media, possible data sources and collection channels include explicit
data collection and submission approaches.

4.1.2. Collection Methods

For the purpose of the project, the Twitter Streaming API is utilized to extract the text
and metadata of tweets by configuring a query that retrieves items containing keywords
relevant to flood, heavy rain, and cloud-burst events. The temporal parameters for the
query are being determined in reference to the warnings issued by SMHI. In order to
exclusively obtain tweets composed in Swedish, keywords based on terms used in Swedish
to refer to flood-related events were chosen. Spatial and language restrictions were not
incorporated into the query, as this could potentially reduce the number of tweets acquired.

For collecting additional data, we have been exploring the opportunity to make use of
a custom citizen sensing application that was developed as a mobile web application in
order to facilitate data collection by volunteering users.

Finally, in order to identify the relevant subsets and aspects of the data for collection
and further processing, we carried out pilot studies involving the existing data sets, re-
sources, and tools. In particular, we explored the feasibility of applying lexical markers
from the existing resources for social media queries or even further text data processing
stages. As demonstrated in Figure 2, we applied a custom version of a previously de-
veloped visual text analytic tool, uVSAT [25], to analyze the use of lexical markers from
CrisisLex [26] and EMTerms [27] (e.g., “flood”, “storm”, etc.) in Twitter data from the point
of view of individual documents and also results aggregated over time (e.g., in order to
check for particular temporal patterns, such as the use of relevant markers peaking around
the time of the corresponding events and declining over the course of the next 48 h). While
these preliminary analyses were conducted with the existing resources and data in English,
our main application scenario assumed the exclusive use of Swedish, which affected the
choice of keywords for the main data collection stage, as mentioned above.

4.2. Classification

In our work, we are interested in the identification of flooding events through the
classification and analysis of flood-related VGI in the form of texts and images. A multitude
of machine learning approaches of increasing sophistication have been emerging for the
classification of such data [28,29]. Overall, the main considerations in choosing an appro-
priate method are the modality of the data (in our case text and data), the availability and
size of suitable training data, and the type of intended categorization. Of particular interest
for the AI4ClimateAdaptation project is the increase in knowledge and awareness of local
impacts of flooding events in order to inform and validate the impact-based weather warn-
ing process. To this end, aspects that become central are (1) the possibility of identifying
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and/or exploring impacts and (2) the ability to associate flooding-related data entries to
geographic locations at a relatively high resolution.

(a)

(b)

Figure 2. Application of a custom version of a previously developed visual text analytic tool uVSAT
for flood-related lexical marker analysis in tweets in English as part of the data collection stage.
(a) Timeline view with separate and combined results of CrisisLex and EMTerms marker detection.
(b) Document view with the complete set of tweets loaded for exploration and potential export of
further markers.

4.2.1. Training Data

Text and image data collections to support classification tasks are increasingly becom-
ing publicly available. Examples of labelled dataset resources for natural disasters from
social media include CrisisLex [26] and CrisisNLP (https://crisisnlp.qcri.org/, accessed
on 29 May 2023) [30]. These resources focus primarily on social media text entries. On
the other hand, examples of resources for labelled images of natural disasters include the
MediaEval data challenges (https://multimediaeval.github.io/, accessed on 29 May 2023)
and Kaggle data repository [31].

While such public datasets are of high interest for training, they need to be com-
plemented with case-specific data to fine-tune classification models towards the specific
task and potentially towards the geographic and/or contextual setting. For this purpose,
focused data collection and annotation initiatives need to be explored. An alternative is
downloading relevant, localized Twitter text and images and manually annotating these
within the project or potentially through crowdsourcing platforms. In addition, in this
project, we investigate the development of a tailored app for submitting images relating

https://crisisnlp.qcri.org/
https://multimediaeval.github.io/
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to extreme weather events (in particular flooding) and annotating these with a number of
labels, as mentioned in Section 4.1.

Since collection campaigns of localized, task-specific datasets are usually of small-scale
and not sufficient for training a classification model on their own, the potential of transfer
learning [32] needs to be investigated. Furthermore, we acknowledge the challenges
of ambiguity in the underlying real-world data that might lead to annotation quality
issues, especially with text data [33,34], which will require careful consideration from both
quantitative and qualitative annotation reliability/agreement analyses [35,36].

4.2.2. Image Classification

Our first objective in the context of image classification is to classify VGI images as
flood vs. non-flood related. The task of detecting flooded and non-flooded images is closely
related to the classical problem of image classification based on a set of supervised images.
In recent years, a large number of models have been created and trained by professionals
using a large amount of data and extensive computing power [37]. This task simulates a
real-life scenario, where a person tries to identify a place by studying its individual parts
(landscape, buildings, trees, etc.).

In the ideal case, the model should receive a complete “observation” as input—a set of
photographs of the same place, taken on the same day, using the same device, under the
same weather conditions. However, a more realistic scenario that is relevant to our project
involves a single photo attached to a social media post rather than such a set of (high-
quality) images. In this context, images from various posts might be distributed within
the area of interest with respect to geographic position and time, which complicates the
task of recognition, since the context of the observed scene might be missing. This makes
the task of image classification for efficient and accurate flood impact/damage assessment
highly challenging. To address it, we will initially experiment with a Convolutional Neural
Network (CNN) model trained on millions of images from a publicly available database and
evaluate the CNN model learning algorithm using project specific data. As the base model
architecture alternatives, we consider EfficientNet [38], DenseNet [39], and ResNet18 [40].
These networks have been trained on a huge number of images and are already able to
recognise the simplest objects, making them promising for binary classification.

While an initial binary classification may be sufficient for simple flooding event
detection, it is not necessarily adequate for the task of informing and validating the issuing
of impact-based weather warnings. In this context, information regarding the surrounding
infrastructure and local impacts is critical to understand the local characteristics, context
and extent of an event. To this end, methods for multi-label and multi-class classification
are highly relevant.

4.2.3. Text Classification and Analysis

Text classification is one of the most common tasks in NLP, which is and has been a
research topic of interest for some time [41,42]. The main text classification and analysis
aspects that are relevant for this step of the proposed VA pipeline include (1) the basic task
of classifying VGI text entries as flood-relevant or flood-irrelevant to retrieve a dataset of
interest, and (2) the continued contextual and content analysis of this dataset, for example,
through automatically identifying topics that further categorize the data; extracting relevant
meta-data to be explored, such as demographic information, locations, and impact-related
information; and potentially also estimating the perceived severity of events through
sentiment analysis.

As in the case of image classification and in text classification, it becomes relevant to
consider classification beyond binary flood/non-flood labels and attempt to also identify
impacts types, impact severity, and/or affected infrastructure. There are two potential
paths towards achieving this. The first one would be to explore multi-label classification
models for text that directly try to assign a set of complementary target labels to each
data item [43]. The second path would be pursuing a progressive analysis approach by
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applying an initial binary classification to extract a relevant target dataset and, following
this, explore complementary NLP approaches for further classification and information
extraction, such as further text classification, keyword extraction, topic modelling, and
named entity recognition [44].

There are numerous approaches that could be appropriate for classification tasks, from
traditional machine learning methods such as Naive Bayes, Support Vector Machines (SVM),
and Random Forest (RF), to deep learning models such as Recurrent Neural Network
(RNN), Convolutional Neural Network (CNN), and increasingly, Transformer models [45].

As part of our exploration of the processes of appropriate methods, in the work of
Styve et al. [22], we outlined our first steps towards a VA pipeline for the identification
and exploration of flooding events from text data, particularly Twitter data. The proposed
pipeline combines (1) text classification, (2) location extraction, and (3) visualization. We
tested and assessed the performances of two classic (logistic regression and random forest)
and two neural network-based (CNN and ULMFiT) text classification algorithms and
proposed an algorithm for the geo-location extraction of the Tweets. Figure 3 shows the
visual interface developed in the work of Styve et al. [22] for exploring the geo-tagged
tweets with respect to their spatio-temporal distribution and textual content.

Figure 3. Visualization dashboard used in combination with several computational models for the
tasks of tweet relevance classification and location extraction [22]. Here, similar to the pilot studies
described in Section 4.1, the data and the respective developed models were based on tweets in
English rather than the target social media posts in Swedish.

4.2.4. Location Extraction

Increasing knowledge and awareness of local impacts is one of the main objectives of
the envisioned VA pipeline. Therefore, the need to match VGI to geographical locations is
an inherent part of the current work.

The challenge related to employing VGI from social media is the limited number
of posts that explicitly include fine-grained geographical attributes. For example, only
1% of posted Twitter messages are geo-tagged [46]. To overcome this limitation, the
use of geoparsing, a well-established NLP task, can be employed to extract toponyms
from a text and to associate these to the real-world coordinates. The geoparsing task
has several components; the prominent ones are ‘toponym recognition’, where tokens
in a text referring to place names are identified using ML approaches, and ‘toponym
resolution’, where by using geocoding methods, geographical attributes can be assigned to
the detected toponyms.

A well-known issue in geoparsing, however, is ‘toponym ambiguity’, which refers to
the case of a toponym having multiple geographical locations [46,47]. For example, there
are at least 11 cities called Paris in the world, such as Paris, France and Paris, Texas. Often,
the same instance of a toponym can exist several times within a country; for example, 9 of
the 11 cities called Paris are located in the USA. Several deep neural network pipelines
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have been proposed to mitigate this issue and improve the accuracy of the linking between
toponyms and geographical coordinates [48,49].

Social media messages can also contain images or videos, and as for text, it is possible to
retrieve location from this kind of data. Using geotagging methods, it is possible to analyse
the content of an image or a video and retrieve their geographic location. CNNs have been
employed to analyse images and predict their corresponding locations; PlaNet [50], for
example, uses the Inception architecture to perform this task.

4.3. Visualization

The final part of the envisioned VA pipeline for detecting and visually exploring
extreme weather events from VGI texts and images is an interactive visual interface that
brings together the different components of this system. There are three main factors to be
considered for the design and implementation of our VA interface: the data, the users, and
the analysis tasks to be performed [51].

4.3.1. Data-Users-Tasks

The data of focus for this work, as described previously in Section 4.1, are VGI images
and texts. In their unprocessed form, these data display or describe some content that can
be explored; they always include a temporal reference (the time that they were posted),
as well as additional meta-data such as information on the person that entered the post,
and in certain cases also an explicit spatial reference (tagged geographic position). Within
the AI4ClimateAdaptation project and through the envisioned VA pipeline, additional
attributes will be computed that further characterize the data and which can be represented
and explored in the visual interface. The main ones include a classification label and
classification confidence as well as an estimation of a geographic location.

Apart from the data, the other factors defining the design requirements for the visual
interface are its potential users and their analysis needs. The main stakeholders and
potential users of the envisioned VA pipeline are experts at SMHI who are actively engaged
in issuing impact-based warnings, as well as actors at local, regional, and national levels
that participate in the local consultation process that occurs prior to or simultaneously with
the issuing of weather warnings. Through a co-design process and building on individual
interviews, consultations, and workshops, we are assessing the users’ needs, mapping their
tasks and the way these are currently performed, and outlining the potential additional
support that could be provided to them by considering VGI as an additional source of
information.

We expect that the VA pipeline that we envision and propose has the potential to
support the stakeholders in three ways:

1. For the validation of impact-based weather warnings. Such validation can be performed in
the envisioned VA interface by allowing SMHI experts and regional actors to explore
confirmed weather events and their impacts and compare them to previously issued
warnings. Additional insight might also include the identification of events for which
warnings were not issued.

2. For assisting local and regional assessment–support documentation by supporting local
and regional actors to discover, highlight, and explore potential local impacts and
vulnerabilities. These could be identified through recurring impacts to specific
infrastructures during similar weather events, and thus contribute to the regional
assessment documentation.

3. For monitoring during an ongoing warning by providing real-time information to sup-
port the regional consultation process as well as first responders, who potentially
could feed back into the system, validating the crowdsourced information through in
situ observations.

With the considerations above, the following are examples of analysis tasks of interest
that we need to support:
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• Identification and exploration of when extreme weather events occur and of their
temporal extent.

• Identification and exploration of where extreme weather events occur and of their
spatial extent and progression.

• Identification and exploration of the types of impacts, including their spatio-
temporal characteristics.

4.3.2. Visual Interface

To satisfy such analysis needs, the VA interface has to incorporate at least the following
views:

• Map view showing the spatial density and distribution of relevant VGI and allowing
the visual detection of extreme weather events.

• Temporal view showing the temporal density and distribution of relevant VGI and
allowing the visual detection of events.

• Appropriate content views allowing details-on-demand [52] of the extreme weather
events and relevant VGI texts and images.

• Potentially also views of impact-related information extracted through NLP.

Following the outlined co-design process (reflected in Figure 1), we aim to evaluate [53,54]
the resulting VA interface and its potential to inform and provide complementary sup-
port to the impact-based weather warning process, through feedback sessions and task-
based experimentation.

5. Discussion

Apart from the outlined considerations, there are also limitations that should be
discussed in the proposed approach. The main limitation relates to biases that inherently
characterize the opportunistic VGI data that are used. Since such data are provided by
individuals through social media and not through a dedicated app with the explicit aim
of reporting flooding, biases exist with regards to the (1) distribution, (2) timing and
(3) location of the collected data records.

1. The coverage and distribution across the country is entirely dependent on the posts
retrieved for a certain event and thus are unpredictable to a large extent. Unavoidably,
areas with a higher population density might be better represented than more sparsely
populated areas. Due to this, there is a risk of creating a false impression of urgency
or an impression of a higher level of impacts in areas where data are more dense. This
needs to be carefully considered when designing representations of the data.

2. Attention is needed also in relation to the timing of the retrieved posts since these too
can hide biases. The quality of social media posts can degrade as hashtags relating to
events gain momentum, since false posts can appear using the same tags but directing
a user to unrelated content. The most representative posts are thus the ones closest to
the time of the event of interest.

3. A final limitation of the data is the estimation of their geographic location. As only
1% of posted Twitter messages are geo-tagged [46], there is an evident need to extract
the position of the posts using geoparsing. This increases the uncertainty of the
positioning and reduces considerably the precision of the location. When the goal is
to explore local effects, this factor can impede the analysis.

In addition to these data biases, the issue of data credibility needs to be highlighted.
As the credibility of the posting sources cannot be verified with certainty, it is important to
adopt strategies to ensure a certain quality of results. One approach for this could be, for
example, to not consider retweets in order to limit the time of collection of posts close to
the event, as well as to allow for the visual assessment of the content of posts as proposed
above. Finally, there are also limitations relating to the use of machine learning approaches
for the classification of data that should be considered. The confidence of the classification
results depends entirely on the training data used and can never produce complete and
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fully trustworthy results. Therefore, in our approach, we emphasize the importance of
keeping the human in the loop and the advantage of allowing for the exploration of the
content of the classified posts within a VA interface. This way, a user is able to visually
assess the results, and this can potentially also allow for refinements of the models used for
the classification.

6. Conclusions

In this paper, we have presented and discussed the design considerations and oppor-
tunities that we have outlined and are pursuing towards the creation of a VA pipeline for
the identification and exploration of extreme weather events, in particular flood events, and
their impacts on VGI, specifically from social media texts and images. The presented work
was performed as part of AI4ClimateAdaptation, a research project that aims to assess
the potential of combining visualization and AI-based text and image analysis with the
newly launched national impact-based weather warning system. Our goal is to provide
support to experts at SMHI working on the issuing of impact-based weather warnings
and to actors at local, regional, and national levels who are participating in the regional
consultation process in connection with a weather warning being issued. The intention is
to complement their work by providing access to additional, relevant contextual data and
not replace the current warning system. We envision that our work has the potential to
support these stakeholders in three domains: (1) in the validation of issued warnings, (2)
for local and regional assessment–support documentation, and (3) for the monitoring of
evolving events.

The outlined design space and the discussed considerations and limitations form
the basis for the future work within the scope of our project. The next steps involve the
implementation of the envisioned VA pipeline and its assessment with representative ex-
perts from the involved stakeholder groups. Furthermore, these considerations can also be
generalized for further scenarios involving the application of computational and interactive
visual analytic methods with multimodal data for addressing climate-related challenges.
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