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Abstract: To alleviate the negative effects of air pollution, this paper explores a mixed prediction
model of pollutant concentration based on the machine learning method. Firstly, in order to improve
the prediction performance of the sparrow search algorithm least square support vector machine (SSA-
LSSVM), a reverse learning strategy-lens principle is introduced, and a better solution is obtained by
optimizing the current solution and reverse solution at the same time. Secondly, according to the
nonlinear and non-stationary characteristics of the time series data of PM2.5 and PM10, the variational
mode decomposition (VMD) method is used to decompose the original data to obtain the appropriate
K value. Finally, experimental verification and an empirical analysis are carried out. In experiment 1,
we verified the good performance of the model on University of California Irvine Machine Learning
Repository (UCI) datasets. In experiment 2, we predicted the pollutant data of different cities in the
Beijing–Tianjin–Hebei region in different time periods, and obtained five error results and compared
them with six other algorithms. The results show that the prediction method in this paper has good
robustness and the expected results can be obtained under different prediction conditions.

Keywords: pollutant prediction hybrid model; improved sparrow search algorithm; variational
mode decomposition; least square support vector machine

1. Introduction

With the development of industrialization and a large number of harmful gas emis-
sions in China, air pollution has become an urgent problem to be solved. The prediction of
pollutant concentration can help relevant departments to formulate reasonable prevention
and control policies. Thus, it has been widely concerned with by scholars [1,2]. As inhalable
particles in air pollutants, the higher the concentration is, the worse the air quality is. A
number of studies have shown that high concentrations of PM2.5 and PM10 also increase
the risk of diseases such as lung cancer [3] and asthma [4]. Therefore, it is of great practical
significance to establish a reasonable and accurate short-term pollutant concentration early
warning system. The problem of air quality seriously affects people’s health and restricts
the long-term healthy development of the economy. Therefore, air quality has become a
key area of in-depth attention and research by government departments and researchers.
Although scholars and policymakers have made great efforts to reduce and control air
pollutants in recent years, PM2.5 and PM10 have long been the main air quality pollutants
in major cities in China. In response to severe air fine particulate matter (PM2.5 and PM10)
pollution, the Chinese government issued the Air Pollution Prevention and Control Action
Plan in 2013 to improve the effectiveness of environmental supervision in key regions [5].

In recent years, scholars have done a lot of research on pollutant prediction models,
which are generally divided into three categories: physical models, statistical models and
hybrid models. Physical models are modeled by meteorological and geographic informa-
tion to simulate the diffusion and transport mechanisms of chemicals related to air pollution
to predict the air quality level [6]. At the same time, mature mathematical methods are used
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to calculate the temporal and spatial distribution of pollutants [7]. The main models in-
clude the Mozart model [8], operational street pollution model (OSPM) [9] and community
multiscale air quality (CMAQ) model [10]. Therefore, people pay attention to the statistical
model of expressing the mapping relationship between input and output through historical
data. The traditional statistical methods include the regression method [11], principal
component analysis [12], projection pursuit model [13], autoregressive integrated moving
average method [14] and fuzzy time series analysis [15]. Because most statistical models
are single models and have defects such as a dependence on data sets or assumptions, they
can not deal well with the instability and randomness of sequence data such as PM2.5 or
PM10, which leads to a poor prediction performance.

In order to improve these shortcomings, scholars have proposed some artificial intel-
ligence methods, such as the back propagation (BP) neural network [16], artificial neural
network (ANN) [17], support vector machine (SVM) [18], least square support vector ma-
chine and machine learning method, combined with classical statistical methods to build a
better hybrid model, and have achieved some good results in various fields. As the opti-
mization model of the support vector machine, the least squares support vector machine
shows excellent performance in dealing with small samples and solving global optimization
and high-dimensional feature space problems. However, the parameter selection of the
least square support vector machine is often random, so scholars use intelligent algorithms
to optimize the two important parameters of the least square support vector machine. Some
of the most widely used algorithms include the genetic algorithm [19], fruit fly optimization
algorithm [20], cuckoo search algorithm [12] and gravity search algorithm [21]. However,
most of these algorithms are difficult to understand, and are easy to fall into local opti-
mization and slow convergence, which limits their potential to combine with least squares
support vector machines. The sparrow search algorithm is a new intelligent optimization
algorithm [22] proposed in 2020 based on sparrow foraging and anti-predation behavior.
The SSA shows excellent performance in algorithm convergence and global optimization,
which encourages us to use this algorithm to optimize the parameters of the least squares
support vector machine. Some hybrid least square support vector machine models are
proposed and applied to different fields, such as water quality prediction [23], reservoir
penetration rate [24], insulator surface contamination prediction [25] and especially PM2.5
concentration [26] and pollutant prediction [27].

Inspired by the reference [26–28], considering the non-linearity and non-stationarity
of PM2.5 and PM10 data, which are the main pollutants affecting air quality, we introduce
VMD and decompose the time series data of PM2.5 and PM10. At the same time, in order to
improve the performance of SSA-LSSVM, we introduce the reverse learning strategy-lens
principle [23] to optimize two important parameters of LSSVM, and establish a new model
(TSSA-LSSVM) to further overcome the sensitivity of the least squares support vector
machine to parameter selection.

The main purpose of this paper is to improve the short-term pollutant prediction
accuracy of cities in the Beijing–Tianjin–Hebei region by proposing a new hybrid model
(VMD-TSSA-LSSVM) based on VMD and the machine learning method. And the major
aims are as follows:

(1) To deal with the instability and randomness of the original data of the PM2.5 and
PM10 time series, the VMD technique is used to decompose the original signal
into multiple modes to ensure the accuracy of the decomposed signal and avoid
redundancies and over-decomposition.

(2) The lens principle is introduced to optimize the sparrow search algorithm, the SSA
shows excellent performance in algorithm convergence and global optimization
and the TSSA will further improve the performance of the optimized least squares
support vector machine and obtain the optimal parameters.

(3) To obtain effective prediction results and improve its practical application value, in
the experimental stage, not only the excellent performance of the model is verified
on the UCI data set, but the prediction results are also analyzed under multi-input
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and compared with other models to verify that the prediction accuracy of this model
is better and more suitable for pollutant concentration prediction.

(4) Finally, based on the experimental part, we carry out a statistical analysis to further
verify the effectiveness of the model.

The rest of this article is organized as follows. In Section 2, some related work is
reviewed. In Section 3, the main model is established and the relevant experimental
analysis is carried out. Finally, in Section 6, we give the conclusion of this paper.

2. Related Work
2.1. Variational Mode Decomposition

Variational mode decomposition (VMD) is a new completely non-recursive, adaptive
and quasi-orthogonal signal decomposition model [29,30] proposed by Dragomiretski and
Zosso in 2014. The main purpose of VMD is to decompose the original signal by con-
structing and solving the following constrained variational problems to obtain a specified
number of intrinsic mode function (IMF) components.

min
({µk},{ωk})

{∑
k
‖∂t[(δ(t) +

j
πt

)× µk(t)]e−jωkt‖2
2},

s.t. ∑
k

µk = f .
(1)

where {µk} = {µ1, µ2, . . . µk} and {ωk} = {ω1, ω2, . . . ωk} represent the frequency centers
of k mode components and each component, respectively. ∂(t) is the partial derivative of
time t, and j is the imaginary unit. Further, µk(t) and ωk(t) are represented as:

µk(t) = Ak(t)cosψk(t). (2)

ωk(t) = ψ′k(t) =
dψk
dt

. (3)

where Ak(t) is the amplitude of µk(t) when the time is t. In order to transform the con-
strained variational problem into an unconstrained problem, we introduce the Lagrange
multiplier λ and penalty factor β. Therefore, Equation (1) can be rewritten as:

L{ωk(t) · µk(t), λ} = β ∑
k
‖αt[(δ(t) +

j
πt

)× µk(t)]e−jωkt‖2
2 (4)

+ ‖ f −∑
k

µk(t)‖2
2 + 〈λ(t), f −∑

k
(t)〉.

Therefor, based on the literature [30], the Lagrange equation Equation (4) can be easily
solved in the Fourier domain, as follows:

µ̃n+1
k (ω) =

f̃ (ω)−∑i 6=k µ̃i(ω) + λ̃(ω)
2

1 + 2β(ω−ωk)2 . (5)

ωn+1
k =

∫ ∞
0 ω|µ̃(ω)|2dω∫ ∞

0 |µ̃(ω)|2dω
. (6)

λ̃n+1(ω) = λ̃n(ω) + σ( f̃ (ω)−∑
k

µn+1
i (ω)). (7)

where the real component k̃(t) can be obtained by an inverse fourier transformation, ωn+1
k is

the central frequency of the corresponding modal function and n is the number of iterations.
The original input sequence to be decomposed is introduced into the variational model
through the VMD algorithm, and each component is obtained by searching the optimal
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solution of the constrained variational model. In this process, each component adaptively
decomposes the frequency band of the signal and updates alternately in the frequency
domain until the K narrowband components are finally obtained. How to determine the
effective decomposition number will directly affect the result of the IMF decomposition.
The central frequency method can directly determine the decomposition scale K by using
the central frequency value obtained by VMD, so the central frequency method has been
widely used.

2.2. Sparrow Search Algorithm

The sparrow search algorithm (SSA) is a new type of group optimization algorithm
proposed by Xue and Shen [22]. In nature, the sparrow is a gregarious animal with a clear
division of labor. The predation process of the sparrow can be abstracted as a discoverer–
participator model, and the reconnaissance and early warning mechanism is considered.
The discoverer actively seeks the food source, while the participator monitors and obtains
the food through the discoverer. Create a sparrow population in a dimensional search
space, and the location of each sparrow is as follows:

X =


x1,1 · · · x1,D
x2,1 · · · x2,D

...
...

...
xN,1 · · · xN,D

 (8)

where N denotes the number of sparrows and D represents the dimension of the variable to
be optimized. Further, the fitness values of all sparrows can be expressed by the following
vectors:

FX =


f (x1,1 · · · x1,D)
f (x2,1 · · · x2,D)

...
...

...
f (xN,1 · · · xN,D)

 (9)

The value of each row in f (x) represents the fitness value of the individual. In the
SSA, the discoverer with a better adaptive value gives priority to food and guides the flow
of the whole flock during the search. During each iteration, the position change expression
of the discoverer is as follows:

Xt+1
i,j =


Xt

i,j · exp(
−i

γ · Imax
), R2 < S,

Xt
i,j + Q · L, R2 ≥ S.

(10)

In Equation (10), j = (1, 2, . . . , D), t represents the current number of iterations, and
Xt

i,j denotes the position information of the ith Sparrow in the j dimension. Imax is the
constant with the maximum number of iterations. γ(γ ∈ (0, 1]) is a random number, and
R2(R2 ∈ [0, 1]) and S(S ∈ [0.5, 1.0]) represent the alarm value and the safety threshold,
respectively. Q is a random number with a normal distribution. L denotes that each element
is the 1× D dimensional matrix of 1.

For the participants, they will not only follow the participants to find food, but also
constantly monitor them to compete for food to improve their predation rate. If there are
starving participants, they will fly to other places to find food to obtain a higher fitness.
The position change expression of the participant is as follows:

Xt+1
i,j =

Q · exp(
Xt

worst − Xt
i,j

i2
), i >

N
2

,

Xt+1
p + |Xt

i,j − Xt+1
p | · A∗ · L, else.

(11)
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In Equation (11), Xp is the best position occupied by the producer. Xworst is currently
the worst location globally. A∗ = AT(AAT)−1 is a 1× D dimension matrix, and each
element is 1 or −1. Further, we assume that the initial position of the early warning
sparrow is randomly generated in the population, and the position change expression of
the early warning is as follows:

Xt+1
i,j =


Xt

best + θ · |Xt
i,j − Xt

best|, fi > fg,

Xt
i,j + K(

|Xt
i,j − Xt

worst|
fi − fw + ε

), fi = fg.
(12)

In Equation (12), K(K ∈ [−1, 1]) is a random number. ε takes the lowest constant to
avoid a denominator of 0. Xbest is currently the best location globally. θ is a parameter that
controls the step size, and it is a normal distribution of random numbers with a mean of 0
and a variance of 1. fi is the current adaptation value of sparrows. fg and fw are the best
and worst global fitness values, respectively.

2.3. Opposition-Based Learning Strategy Based on the Lens Principle

Suppose there is an individual with a height of H in a dimensional space, and the
projection of the individual on the x axis is P̂, and P̂ is the new individual generated by
the reverse learning strategy based on the principle of lens imaging. The schematic is
as follows:

In Figure 1, the focal length is F, and O is not only the location point of the individual,
but also the midpoint of the upper and lower limit [Aj, Bj] of the current individual in the j
dimension. The corresponding point of XP is X̂P; we can then obtain:

(A+B)
2 − XP

X̂P − (A+B)
2

=
H
Ĥ

. (13)

Let H
Ĥ
= k represent the scale factor; we can obtain:

X̂P =
A + B

2
+

A + B
2k

− XP
k

. (14)

We extend Equation (14) to the n dimensional space:

X̂ j
P =

Aj + Bj

2
+

Aj + Bj

2k
−

X j
P

k
. (15)

where X̂ j
P and X j

P represent the j dimension variables of X̂P and XP, respectively.

Figure 1. Lens schematic diagram.
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2.4. Least Squares Support Vector Machine (LSSVM)

The least squares support vector machine (LSSVM) [31], as an improvement of the
support vector machine (SVM) [32], simplifies a large quadratic programming (QP) problem
to a set of smaller QP problems, and transforms the inequality constraint problem in the
SVM into an equality constraint problem, thus reducing the difficulty of solving.

In the training sample set T = {(xi, yi)|xi ∈ Rn, yi ∈ R, i = 1, 2, . . . , N}, xi represents
the k input vector, and yi represents the corresponding output value. N is the number of
training samples. The model of the LSSVM in the feature space is expressed as

y = ωT ϕ(x) + b. (16)

where ϕ(x) is the nonlinear mapping function, ω is the weight vector in the feature space
and b is the offset. The LSSVM regression is based on the principle of structural risk
minimization, and its expression is as follows:

R =
1
2
‖ω‖2 + C · Remp. (17)

where ‖ω‖2 represents model complexity, C represents regularization parameters and empirical
risk function is represented by Remp. Combined with the formulas Equations (16) and (17), the
objective function of LSSVM is

min J(ω, ξ) =
1
2
‖ω‖2 + C

N

∑
i=1

ξ2
i , (18)

s.t yi = ωT ϕ(x) + b + ξi.

where ξi represents the error variable. Further, the Lagrange multiplier method is used to
solve the Equation (18); the Lagrange equation is defined as follows:

L(ω, b, ξ, α) = J(ω, ξ)−
N

∑
i=1

αi[ω
T ϕ(x) + b + ξi − yi]. (19)

where αi ∈ R is the Lagrange multiplier. Through the KKT (Karush–Khun–Tucker) condi-
tion, we obtain the partial derivative of ω, b, ξ, α and make it zero.

∂L
∂ω

= 0→ ω = ΣN
i=1αi ϕ(xi),

∂L
∂b

= 0→ ΣN
i=1αi = 0,

∂L
∂ξi

= 0→ αi = C · ξi,

∂L
∂αi

= 0→ ωT ϕ(xi) + b + ξi − yi = 0.

(20)

The optimization problem can be transformed into a linear equation by Equation (20),
by eliminating ω and ξi, where the following matrix equation can be obtained.[

0 IT
N

IN Ω + C−1 I

][
b
α

]
=

[
0
y

]
(21)

where y = [y1, y2, . . . , yN ]
T , IN ∈ RN , I is a unit matrix, and Ωi,j = φT(xi)φ(xj) is a kernel

function. Through the Mercer condition, there is a mapping ϕ and a kernel function K(x);
we can obtain:

K(xi, xj) = ϕT(xi)ϕ(xj). (22)
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Therefore, the optimal linear regression function of the LSSVM is:

f (xi)j =
N

∑
i=1

N

∑
j=1

αi,jK(xi, xj) + bj. (23)

In this paper, the radial basis function (RBF) is chosen as the sum function of the least
square support vector machine, because the RBF can map samples to a high-dimensional
space and has a strong learning ability, less constraints and good local approximation
characteristics; the expression is as follows:

K(xi, xj) = exp(−‖xx − yi‖2

σ2 ). (24)

where σ2 is the kernel parameter.

3. Methodology
3.1. Our Method

First of all, the structure flow chart of this model is given intuitively in Figure 2, and
its main contribution is:

(a) Data processing and decomposition: Combined with VMD, the target data is decom-
posed to obtain the set component IMF1, IMF2, · · · , IMFK.

(b) Integrated prediction: The K components are predicted by VMD-TSSA-LSSVM and
the final target value is obtained by adding the results, and the prediction accuracy
is considered.

(c) Experimental analysis: Based on the UCI data set and the pollutant data set of the
Beijing–Tianjin–Hebei region, the prediction results of this model are verified.

(d) Comparison and verification: Compared with other models, five error indexes are
used to analyze its performance. At the same time, a reasonable statistical analysis
is given.

Figure 2. VMD-TSSA-LSSVM algorithm framework.
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3.2. Data Description

In order to verify the validity and reliability of the proposed method in the application
of time series data, in this part of the experiment, we select three sets of time series data sets,
including HCCEM and HCCEU (Hungarian Chickenpox Cases: a spatio-temporal dataset
of weekly chickenpox (childhood disease) cases from Hungary. The dataset consists of a
county-level adjacency matrix and time series of the county-level reported cases between
2005 and 2015. There are two specific related tasks: county level case count prediction and
nation level case count prediction), and the ISE (ISTANBUL STOCK EXCHANGE: Stock
exchange returns. The Istanbul stock exchange national 100 index, Standard and poors
500 return index, Stock market return index of Germany, Stock market return index of UK,
Stock market return index of Japan, Stock market return index of Brazil, MSCI European
index, MSCI emerging markets index) are from the UCI database (https://archive.ics.uci.
edu/ml/index.php (accessed on 27 July 2022)). The details are described in Table 1. In the
three datasets, 70% of the original data is selected as the training set and 30% as the test set.

Table 1. UCI dataset description.

HCCEM HCCEU ISE

Data Characteristics Time-Series Time-Series Multivaritate, Time-Series
Data scale 536× 20 536× 20 522× 8
Associated Tasks Regression Regression Classification, Regression

The data used in this paper comes from the national air quality online monitoring
platform (https://air.cnemc.cn:18007/ (accessed on 27 July 2022)). The platform converts
the main detection values of pollutants into alphanumeric form. In addition to the predicted
respirable particulate matter PM2.5 and PM10, there are also SO2, NO2, O3 and CO. In
addition, much literature shows that meteorological factors also affect air quality, so we
also consider temperature, humidity, wind speed and wind level. See Table 2 for details.

Table 2. Variable description.

Variable Unit Variable Unit Variable Unit Variable Unit

PM2.5 µg/m3 CO mg/m3 Temperature ◦C NO2 µg/m3

PM10 µg/m3 SO2 µg/m3 Humidity NA Wind speed m/s
O3 µg/m3 Wind level m/s

4. Experimental Analysis
4.1. Analysis and Results of the UCI Dataset
4.1.1. VMD Decomposition and Prediction Result

In the first step, in the process of decomposing the target data set using the VMD,
the main parameters that affect the decomposition result are the determination of penalty
factor α and the number of decomposition layers K. Based on relevant theories and many
experiments [23,26,27], the range of the penalty factor is selected in the range of 3000 to
8000 for the collected data in this paper. This is because the penalty factor is about the
narrower the bandwidth of the component signal is . This will further affect the final signal
sequence processing results.

In the second step, for the K value, because the distribution of the center frequency of
the µK components obtained by the VMD processing is from low to high, we choose the
K value from small to large during the experiment. When the center frequency of the last
layer of the µK components reaches the maximum and the region is stable, the K value is
determined to be optimal. Based on the above, the K on three UCI datasets is 5. The specific
decomposition results are shown in Figure 3.

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://air.cnemc.cn:18007/
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Figure 3. Decomposition and prediction based on UCI data. Res denotes Residual; the center
frequency value corresponding to each IMF (imf) component can be obtained by VMD; X-axis denotes
Number of time periods (weeks). (a) HCCEM decomposition; (b) HCCEM Forecast; (c) HCCEU

decomposition; (d) HCCEU Forecast; (e) ISE decomposition; (f) ISE Forecast.

In the third step, the parameters of TSSA optimization LSSVM are selected as follows:
the initial sparrow individual is a, the number of discoverers accounts for 15% of the total
population and the maximum number of iterations is set to 50. The parameter range of the
LSSVM is set to [10−6, 400], and in order to prevent the parameter from being zero, we set
the minimum value of the range parameter to 10−7, which is close to zero but not zero, to
prevent the prediction result from being inaccurate.

In the fourth step, we use Equation (25), which is commonly used in machine learning,
to obtain the prediction accuracy of the data set on the model in this paper. The details are
as follows:

ACC = 1− |x̂i − xi|
x̂i

× 100%. (25)
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where ACC indicates the accuracy of prediction, and xi and x̂i represent the real value and
predicted value, respectively.

We can directly observe from Figure 3 that the prediction results of VMD-TSSA-
LSSVM on HCCEM and HCCEU reach a very ideal state, and the prediction accuracy is
99.79% and 99.17%, respectively, which fully shows that the prediction effect of this model
can achieve the expected results on UCI data sets whose data characteristics are only time
series. Similarly, in order to fully compare and comprehensively consider, we also select
the multivariable dataset-ISE, which can be used for classification, and its prediction result
is 80.31%, and the accuracy also meets the basic prediction requirements. At the same time,
we can see from the chart that the prediction curve accords with the trend of the original
curve, which shows that the model in this paper is feasible on the UCI dataset.

4.1.2. Error Index and Analysis

To ensure a comprehensive inspection and evaluation of the model, this paper selects
five different error indicators to avoid the misleading caused by a single result. That
is,the MSE (Means Quare Error), RMSE (Root Means Quare Error), MAE (Mean Absolute
Error), MAPE (Mean Absolute Percentage Error) and SMAPE (Symmetric Mean Absolute
Percentage Error) to evaluate the effect of the model are defined as follows:

MSE =
1
N

ΣN
i=1(x̂i − xi)

2. (26)

RMSE =

√
1
N

ΣN
i=1(x̂i − xi)2. (27)

MAE =
1
N

ΣN
i=1|x̂i − xi|. (28)

MAPE =
1
N

ΣN
i=1|

x̂i − xi
xi
| × 100%. (29)

SMAPE =
1
N

ΣN
i=1

|x̂i − xi|
(|x̂i|+ |xi|)/2

× 100%. (30)

where N is the number of each dataset, and xi and x̂i represent the real value and predicted
value of the input variable, respectively. The smaller the value, the smaller the error. The
commonly used R2 (R-Squared) is not considered here because the limitation of the data
will cause its denominator to be zero.

In Table 3, we show the MSE, RMSE, MAPE, SMAPE and MAE analysis results of
VMD-TSSA-LSSVM under three UCI datasets. It is well known that the smaller the error
value based on statistical learning theory, the higher the accuracy of the model. As can be
seen from Table 2, the method proposed in this paper achieves better results in five kinds
of error analyses. The error results of HCCEM, ISE and HCCEU also correspond with the
prediction accuracy, which further shows the excellent performance of VMD-TSSA-LSSVM
in predicting time series data.

Table 3. MSE, RMSE, MAPE, SMAPE and MAE analysis results of VMD-TSSA-LSSVM under three
UCI datasets.

Index HCCEM HCCEU ISE Index HCCEM HCCEU ISE

MSE 1.39× 10−7 1.19× 10−7 28.44 MAPE (%) 0.24 1.42 25.60
RMSE 3.72× 10−4 3.46× 10−4 5.33 SMAPE (%) 3.77 4.57 17.36
MAE 2.99× 10−4 2.82× 10−4 4.42

4.2. Practical Application and Comparison

The study area is the Beijing–Tianjin–Hebei region, which mainly selected Beijing
(northern latitude 39◦26′–40◦15′, east longitude 115◦25′–117◦30′), Tianjin (northern latitude
38◦33′–41◦03′, east longitude 116◦42′–118◦04′) and Shijiazhuang (northern latitude 37◦27′–
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38◦47′, east longitude 113◦30′–115◦20′), the capital of Hebei Province, as this study. There
are 38, 24 and 51 monitoring points in the three cities. According to the same interval and
different time span in different periods, the data are obtained hour by hour. There are 1015
data in total, as shown in Table 4.

Table 4. Data information.

Datasets

Beijing Tianjin Shijiazhuang

Data size 412 h 264 h 336 h
Data type hourly hourly hourly
Training set 13:00 16 May 2022∼13:00 28 May 2022 00:00 22 May 2022∼15:00 29 May 2022 12:00 31 May 2022∼07:00 10 June 2022
Test set 14:00 28 May 2022∼16:00 2 June 2022 16:00 29 May 2022∼23:00 1 June 2022 08:00 10 June 2022∼11:00 14 June 2022
Predicted target PM2.5; PM10 PM2.5; PM10 PM2.5; PM10
Average value 21.54; 53.46 23.53; 60.03 31.46; 72.72
Data range 2–54; 12–106 5–58; 16–108 9–69; 0–361

Furthermore, the time series data of PM10 and PM2.5 of Beijing, Tianjin and Shiji-
azhuang are visually shown in Figure 4. Among them, a few missing points are completed
by average interpolation.
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Figure 4. PM10 and PM2.5 under three datasets. X-axis denotes Number of time periods (weeks).
(a) PM10 time series data; (b) PM2.5 time series data.

Experiment and Comparison

In this section, we first give the VMD decomposition results of six datasets: Beijing
PM10 (BPM10), Beijing PM2.5 (BPM2.5), Tianjin PM10 (TPM10), Tianjin PM2.5 (TPM2.5), Shiji-
azhuang PM10 (TPM10) and Shijiazhuang PM2.5 (TPM2.5). The range of K values is 4–6, as
shown in Figure 5.
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Figure 5. Cont.
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Figure 5. Decompositio of six groups of pollutant data. Res denotes Residual; the center frequency
value corresponding to each IMF (imf) component can be obtained by VMD; X-axis denotes Number
of time periods (weeks). (a) BPM10; (b) BPM2.5; (c) TPM10; (d) TPM2.5; (e) SPM10; (f) SPM2.5.

After verifying the excellent performance of this model on UCI data sets, we consider
not only the prediction performance of the Beijing–Tianjin–Hebei region on VMD-TSSA-
LSSVM, but also back the propagation neural network (BPNN), least square support
vector machine (LSSVM), classical particle swarm optimization (PSO-LSSVM) and VMD-
LSSVM,SSA-LSSVM, TSSA-LSSVM related to this model. As can be seen from Figure 6,
compared with the actual value, all models can obtain the approximate trend, among
which the prediction curve of VMD-TSSA-LSSVM is the most close to the actual value;
especially on the data set BPM10 and BPM2.5, the prediction accuracy is 96.72% and 98.79%,
respectively.
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Figure 6. Prediction results of pollutant data under seven models. X-axis denotes Number of time
periods (weeks). (a) BPM10; (b) BPM2.5; (c) TPM10; (d) TPM2.5; (e) SPM10; (f) SPM2.5.

The results of each data under five kinds of error evaluations are shown in Table 5.
Among them, the smaller the value is, the better the prediction performance is. We bold
the best predictives as black in each group of data. It can be seen from the table that the
performance of VMD-TSSA-LSSVM is the best compared with the other six models. In
particular, there is a difference of between VMD-TSSA-LSSVM and PSO-LSSVM under
MSE, RMSE, MAE, MAPE, SMAPE. It is obvious that its prediction performance has been
greatly improved. At the same time, the prediction accuracy of VMD-LSSVM and TSSA-
LSSVM is similar, which shows that it is meaningful for us to use the lens principle to
optimize the sparrow algorithm. At the same time, the VMD method can decompose and
reconstruct time series data, obtain models with high stability, high efficiency and learning
speed and help VMD-TSSA-LSSVM get rid of the disadvantage of autocorrelation.

Table 5. Comparison of error results.

Case BPNN LSSVM PSO-
LSSVM

SSA-
LSSVM

VMD-
LSSVM

TSSA-
LSSVM

VMD-TSSA-
LSSVM

MSE

BPM10 17.27 5.71 3.40 2.55 2.02 2.04 0.85
BPM2.5 79.70 24.98 11.81 9.83 5.74 5.50 4.46
TPM10 36.93 9.32 8.15 7.04 5.12 5.01 3.72
TPM2.5 99.12 43.68 34.01 31.45 25.19 25.76 7.05
SPM10 62.28 33.45 32.61 24.05 21.53 18.38 2.73
SPM2.5 99.98 84.31 79.88 74.89 70.02 67.88 9.29
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Table 5. Cont.

Case BPNN LSSVM PSO-
LSSVM

SSA-
LSSVM

VMD-
LSSVM

TSSA-
LSSVM

VMD-TSSA-
LSSVM

RMSE

BPM10 4.16 2.39 1.84 1.60 1.42 1.43 0.92
BPM2.5 8.93 4.50 3.44 3.14 2.40 2.34 2.11
TPM10 6.08 3.05 2.86 2.65 2.26 2.24 1.93
TPM2.5 9.99 6.61 5.83 5.61 5.02 5.08 2.66
SPM10 7.89 5.78 5.71 4.90 4.64 4.29 1.65
SPM2.5 9.96 9.18 8.94 8.65 8.37 8.24 3.05

MAE

BPM10 3.01 1.94 1.45 1.29 1.14 1.15 0.77
BPM2.5 6.59 3.95 2.92 2.72 2.05 2.01 1.74
TPM10 4.99 2.44 2.29 2.18 1.72 1.72 1.64
TPM2.5 7.53 5.75 4.89 4.81 4.17 4.25 1.93
SPM10 6.51 4.67 4.73 4.05 3.90 3.51 1.38
SPM2.5 7.59 7.18 7.07 7.31 7.07 6.98 2.29

MAPE (%)

BPM10 13.63 9.31 6.97 7.06 6.15 6.11 4.28
BPM2.5 10.96 8.18 5.35 4.90 3.97 3.85 2.86
TPM10 20.62 11.67 10.66 9.86 8.60 8.53 7.46
TPM2.5 13.04 10.22 8.60 8.51 7.40 7.54 2.69
SPM10 15.04 10.90 11.12 9.65 9.50 8.70 3.72
SPM2.5 13.23 7.56 7.43 9.35 9.40 9.28 2.98

SMAPE (%)

BPM10 9.25 6.13 4.59 4.68 4.09 4.06 2.86
BPM2.5 7.40 5.52 3.40 3.29 2.66 2.58 1.90
TPM10 14.39 7.87 7.19 6.64 5.74 5.69 4.98
TPM2.5 8.86 6.83 5.77 5.71 4.96 5.05 1.80
SPM10 10.17 7.34 7.47 6.48 6.33 5.79 2.48
SPM2.5 9.21 5.24 5.14 6.22 6.23 6.15 1.99

5. Statistical Analysis

In this section, we want to use the famous Friedman test [33] to analyze the differences
between the seven models on the UCI data set and the pollutant data set. The Friedman
test is chosen because it can make full use of the information of the original data and has
the advantages of a safe and reliable nonparametric test. First of all, the prediction accuracy
of the seven models on nine datasets is visually shown in Table 6 and Figure 7. It can be
seen from the chart that the prediction accuracy of VMD-TSSA-LSSVM is higher.

Table 6. Summary of prediction accuracy for all datasets.

BPNN LSSVM PSO-LSSVM SSA-LSSVM VMD-LSSVM TSSA-LSSVM VMD-TSSA-
LSSVM

Datasets ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)

BPM10 77.36 80.72 88.04 92.81 93.43 93.46 96.72
BPM2.5 79.58 90.28 91.00 91.77 94.51 94.55 98.79
TPM10 74.32 86.12 87.61 88.28 91.70 90.91 94.45
TPM2.5 72.79 89.47 91.40 91.57 92.61 92.47 93.85
SPM10 80.76 80.23 81.02 81.71 83.10 83.52 86.86
SPM2.5 81.89 81.26 82.38 83.70 84.25 83.37 85.47
HCCEM 90.01 93.27 95.38 96.19 97.82 97.74 99.79
HCCEU 89.23 92.54 93.66 95.05 95.33 96.48 99.17
ISE 68.11 69.62 73.91 75.24 77.18 77.94 80.31
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Figure 7. Prediction accuracy.

Next, to facilitate the statistical analysis, Table 7 shows the average ranking and
accuracy of all models on nine data sets. It can be seen from Table 7 that the accuracy of this
model is 13.48%, 7.99%, 5.66%, 4.34%, 2.83% and 2.77% higher than that of BPNN, LSSVM,
PSO-LSSVM, SSA-LSSVM, VMD-LSSVM and TSSA-LSSVM, respectively. And it is higher
in the rankings.

Table 7. Average accuracy and ranking.

BPNN LSSVM PSO-LSSVM SSA-LSSVM VMD-LSSVM TSSA-LSSVM TSSA-LSSVM

Avg.ACC 79.34 84.83 87.16 88.48 89.99 90.05 92.82
Avg.rank 6.78 6.22 5 3.89 2.56 2.56 1

The formula for Friedman statistical variables is as follows:

χ2
F =

12N
k(k + 1)

[∑
i

R2
i −

k(k + 1)2

4
] = 51.87. (31)

where k is the number of algorithms in this paper, and N is the number of selected data
sets, including UCI data sets and pollutant data sets. In this paper, the values of k and N
are 7 and 9, respectively, and Ri represents the average ranking of seven algorithms.

In addition, according to the χ2
F distribution with k− 1 degrees of freedom, we can

obtain:

FF =
(N − 1)χ2

F
N(k− 1)− χ2

F
= 194.82. (32)

where FF((k− 1), (k− 1)(N − 1)) obeys the F-distribution, and its degree of freedom is
(k− 1) and (k− 1)(N − 1). In this paper, we choose α = 0.1 and we can obtain Fα(6, 48) =
1.90. Obviously, FF is much larger than Fα, so we reject the zero hypothesis.

Next, through the Nemenyipost-hoctest, we can further compare the errors of the
seven algorithms in this paper. Comparing the average rank difference with the critical
value, the greater the numerical difference is, the more obvious the difference in algorithm
performance is. Therefore, we use the following formula to calculate the critical difference
(CD) and obtain qα = 2.394.

CD = qα=0.05 ×
√

k(k + 1)
6N

= 2.4379. (33)

To better analyze the advantages of the method presented in this paper, we visualized
the statistical analysis results in Figure 8. We see that VMD-TSSA-LSSVM has significant
statistical differences compared to BPNN, LSSVM, PSO-LSSVM and SSA-LSSVM, and thus
our method is better than these four algorithms, because the difference between them is
less than the CD value. Furthermore, we can observe that there is no significant difference
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between VMD-TSSA-LSSVM and TSSA-LSSVM, VMD-LSSVM, as the difference is smaller
than the CD value. Therefore, based on the statistical analysis, it is safe to conclude that the
VMD-TSSA-LSSVM is performs better. This shows that the prediction performance of the
new hybrid model based on TSSA-LSSVM and VMD-LSSVM has been further improved.

Critical Distance=2.4379

7 6 5 4 3 2 1

BPNN
LSSVM
PSO-LSTBSVM
SSA-LSSVM

TSSA-LSSVM
VMD-LSSVM

VMD-TSSA-LSSVM

Figure 8. Visualization comparison of statistical analysis of seven methods.

6. Conclusions

The following is the summary and prospect of this study.

1. Selecting the VMD method to decompose non-stationary time series data, including
UCI data and pollutant data, can effectively reduce the complexity of original data,
eliminate autocorrelation, reduce the number of non-stationary features and abrupt
changes and obtain more regular sub-series. By constantly adjusting the size of the set
K value to avoid incomplete decomposition and over-decomposition, this operation
can reduce the computational cost and eliminate frequency overlap. In future research,
we can use some novel time series methods (such as phase space reconstruction (PSR),
energy entropy (EE), etc.) to obtain the optimal K value.

2. In this paper, the important parameters of the LSSVM are optimized by the TSSA. The
results show that the TSSA is better than the SSA. This is because the lens principle
can optimize the current solution and projection solution at the same time, and obtain
a better solution. However, based on machine learning, there are still many methods
(such as the extreme learning machine(ELM) and deep learning(DL)) that can be used
in pollutant problems, and more optimization algorithms are worth exploring, not
limited to heuristic algorithms.

3. By comparing the results of the proposed model with the results of BPNN, LSSVM,
PSO-LSSVM, VMD-LSSVM, SSA-LSSVM and TSSA-LSSVM models, it is verified that
higher prediction accuracy can be obtained in either the UCI data set or the Beijing–
Tianjin–Hebei region pollutant data set. The results of nine data sets are 96.72%,
94.45%, 93.85%, 86.86%, 85.47%, 99.79%, 99.17% and 80.31%, respectively. At the same
time, MSE, RMSE, MAE, MAPE and SMAPE are used to evaluate the performance of
the model. VMD-TSSA-LSSVM is superior to other models. Therefore, the proposed
hybrid model can be used as a tool to predict the concentration of pollutants.
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