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Abstract: Particulate matter (PM) in the air can cause various health problems and diseases in
humans. In particular, the smaller size of PM2.5 enable them to penetrate deep into the lungs, causing
severe health impacts. Exposure to PM2.5 can result in respiratory, cardiovascular, and allergic
diseases, and prolonged exposure has also been linked to an increased risk of cancer, including lung
cancer. Therefore, forecasting the PM2.5 concentration in the surrounding is crucial for preventing
these adverse health effects. This paper proposes a method for forecasting the PM2.5 concentration
after 1 h using bidirectional long short-term memory (Bi-LSTM). The proposed method involves
selecting input variables based on the feature importance calculated by random forest, classifying
the data to assign weight variables to reduce bias, and forecasting the PM2.5 concentration using
Bi-LSTM. To compare the performance of the proposed method, two case studies were conducted.
First, a comparison of forecasting performance according to preprocessing. Second, forecasting
performance between deep learning (long short-term memory, gated recurrent unit, and Bi-LSTM)
and conventional machine learning models (multi-layer perceptron, support vector machine, decision
tree, and random forest). In case study 1, The proposed method shows that the performance indices
(RMSE: 3.98%p, MAE: 5.87%p, RRMSE: 3.96%p, and R2:0.72%p) are improved because weights
are given according to the input variables before the forecasting is performed. In case study 2,
we show that Bi-LSTM, which considers both directions (forward and backward), can effectively
forecast when compared to conventional models (RMSE: 2.70, MAE: 0.84, RRMSE: 1.97, R2: 0.16).
Therefore, it is shown that the proposed method can effectively forecast PM2.5 even if the data in the
high-concentration section is insufficient.

Keywords: PM2.5 concentration forecasting; bidirectional long short-term memory; random forest;
weight method

1. Introduction

Particulate matter (PM) refers to materials scattered throughout the atmosphere. PM
with diameter 2.5 micrometers or less is defined as PM2.5 [1]. PM2.5 is readily absorbed
during breathing owing to their small size and lightweight. PM2.5 absorbed into the
body can cause bronchitis, pneumonia, chronic obstructive pulmonary disease, heart
disease, stroke, and respiratory diseases [2–4]. Therefore, many industrialized countries
have made significant efforts to reduce the risk of PM exposure. The U.S. Environmental
Protection Agency defines daily average PM2.5 concentrations of 35 µg/m3 or more as high-
concentrations and regulates daily average concentrations that do not exceed 12 µg/m3.
The European Environment Agency regulates PM2.5 emissions when the daily average
PM2.5 concentration exceeds 25 µg/m3. The South Korean Government defines high
concentrations of PM2.5 as 36 µg/m3 or more. When the PM2.5 concentration is 75 µg/m3 or
higher and lasts for 2 h, the government issues a PM2.5 alert and implements air pollution
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reduction measures. PM2.5 management requires continuous monitoring and accurate
forecasting of PM2.5 concentrations. In particular, high-concentration PM2.5 is difficult to
accurately predict due to natural sources, such as yellow dust and wildfire ash, as well as
non-natural sources, such as emissions from fossil fuel-powered power plants and factories
and automobile exhaust. Much research is underway to address these issues.

PM2.5 forecast models are categorized into numerical modeling and data-driven fore-
casting based on a methodology [5–7]. Numerical modeling entails numerically converting
meteorological conditions, air pollution emissions, and traffic volumes to a model for fore-
casting. The numerical modeling method includes chemical transport models [8], weather
research and forecasting models [9], weather research and forecasting models coupled with
chemistry [10], weather research, and forecasting community multi-scale air quality mod-
els [11]. The numerical method is powerful for modeling air quality with detailed spatial
and temporal resolution and complex chemical and physical modeling. However, these
methods require large amounts of meteorological information, air pollution emissions, and
traffic data. Moreover, they have low forecasting performance owing to the enormous com-
putational complexity of the process and uncertainty of the meteorological factors owing to
complex pollutant diffusion mechanisms [12]. Data-driven modeling analyses patterns and
trends in time-series data to make forecasts. Traditional time-series forecasting methods
include the autoregressive moving average (ARMA) model [13], autoregressive integrated
moving average (ARIMA) model [14], and multiple linear regression (MLR) [15]. These
methods are relatively simple and more intuitive than the numerical model. However, the
performance of these methods is limited in PM2.5 forecasting because of the non-linearity
between meteorological factors and air quality pollutants [16,17]. To overcome these short-
comings, models have been implemented using machine learning techniques, such as
multi-layer perceptron [18], recurrent neural network [19], decision trees [20], random
forests [21], and support vector machines [22]. Following recent developments in hard-
ware, convolutional neural networks [23,24], long short-term memory (LSTM) [7,24], gated
recurrent unit (GRU) [24,25], and bidirectional long short-term memory (Bi-LSTM) [26]
have been widely used to forecast PM2.5. In contrast to the models mentioned above,
LSTM, GRU, and Bi-LSTM can leverage the learning results from the hidden layers and
incorporate them into the current forecast. This characteristic has led to their widespread
adoption in time-series data forecasting.

Forecasting the PM2.5 concentration involves the selection of an appropriate model
and careful consideration of which input variables to include in the analysis [27]. The input
variable selection is categorized into filter methods, wrapped methods, and embedded
methods [28]. The filter methods select variables according to statistical criteria to analyse
the features between the input and forecaster variables. Filter methods such as the corre-
lation coefficient [29] and chi-square test [30] are employed for input variable selection.
Filter methods are typically applied to large datasets because they involve simple calcula-
tions and can quickly obtain results. However, the forecasting performance of the model
could be improved because it only considers linear relationships with forecasters. The
wrapped methods generate subsets of input variables, train a prediction model, and then
evaluate the model performance for the generated subsets used to select the best subset.
Wrapped methods include recursive feature elimination [31] and stepwise regression [32].
These methods directly affect the performance of the forecasting model. Thus, the input
variables are likely to increase the accuracy of the forecasting model. However, they are
computationally more expensive than the other methods. Consequently, the methods are
difficult to use when there are too many variables because the model performance can
vary significantly for different subsets of input variables. The embedded method calculates
variable importance to only select helpful variables for training a model. Unlike wrapped
methods, the embedded methods have a relatively low computational cost. Moreover, they
can be applied to both linear and non-linear models because the relationship of data is
not assumed.
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The effectiveness of PM2.5 forecasting models heavily relies on the distribution of
the training data. When training a model with imbalanced data, the problem arises that
the model is trained biased towards the data of the majority class. Training on data from
minority classes is insufficient, resulting in incorrect predictions for minority classes. Fur-
thermore, since the model is trained biased toward the majority class, its generalization
ability may suffer. These data imbalance issues can limit the model’s performance and
reduce its reliability. Various methods have been proposed to solve this data imbalance
problem. Solving imbalanced data requires sampling-based methods and cost-sensitive
learning methods [33]. Sampling-based methods adjust the proportion of the data via
data sampling. The sampling-based methods are divided into undersampling and over-
sampling. Undersampling only uses a portion of the data from a large number of classes
to balance the ratio of data from a large number of classes to a small number of classes,
such as Tomek links and cluster centroids. These methods are more accessible to scale
than oversampling; however, they result in data loss because they reduce the existing data.
Oversampling addresses data imbalance by augmenting the minority class data and in-
cludes synthetic minority oversampling, adaptive synthetic sampling, borderline synthetic
minority oversampling techniques, and Kriging [34]. Unlike undersampling, oversampling
does not result in data loss. However, because it replicates the data from fewer classes,
it may overfit the training data and degrade the performance of the test data. Moreover,
the replicated data for minority classes may not resemble the existing data. When this
occurs, the newly generated data can be considered as noise, which may negatively affect
the overall forecasting performance of the model. Cost-sensitive learning allocates greater
weight to minority classes to improve the classification performance of minority classes
in imbalanced data. The advantage of this method is that it preserves existing data and
does not result in information loss. Additionally, it avoids the problem of reducing the
generalization ability of the model owing to duplicate data. The contributions of this study
are summarized as follows:

1. Traditional time-series forecasting methods, such as ARMA, ARIMA, and MLR, often
have limited capabilities in accounting for non-linear relationships. Meanwhile,
machine learning models, such as SVM and decision trees, cannot incorporate past
time points during the forecasting process. In contrast, Bi-LSTM, a recursive model
that uses past output values as inputs to the hidden layer, can effectively solve the
above-mentioned limitations. When comparing recursive methods, LSTM and GRU,
which are unidirectional models that consider past output values in the hidden layer,
have concerns that prediction performance deteriorates as the forecast time point
becomes longer. On the other hand, Bi-LSTM, which is trained bidirectionally, can
reflect more information than unidirectional-based models.

2. Selection of input variables is necessary to accurately forecast PM2.5. In general, the
wrapping method, in which input variables are selected depending on experience,
is time-consuming and requires a lot of computational costs. RF can select variables
that are effective for prediction by calculating the importance of each variable. In
particular, RF can reduce the time cost compared to heuristically reliant wrapping
methods. In addition, unlike the filter method, it is effective when implementing a
PM2.5 concentration forecast model considering non-linearity.

3. To address the data imbalance problem, the proposed method utilizes the weighting
method, which is a cost-learning method used during model training. Unlike the
sampling method, which adjusts the proportion of data, the weighting method does
not result in information loss. Accordingly, the approach prevents any bias towards the
main class data during model training, which is a common problem with imbalanced
datasets.

The remainder of this paper is organized as follows. In Section 2, we provide detailed
descriptions of the study site, data used in this study, and the proposed method for
forecasting PM2.5 concentration. The experimental results are presented in Section 3, where
the performance of the proposed method is evaluated using various performance index.
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Finally, Section 4 discusses the results and their implications, as well as conclusions drawn
from this study.

2. Methodology

Figure 1 shows a flowchart of the PM2.5 concentration forecast method proposed in
this study. Figure 1a shows a flowchart for training a model to forecast PM2.5 concentra-
tions, and Figure 1b shows a flowchart for testing the trained models to forecast PM2.5
concentrations. In the preprocessing step, the outliers were removed from the air pollu-
tion and meteorological datasets. Any missing values in the data were obtained using
linear interpolation. The preprocessed data were then normalized using the min–max
normalization method. To select the input variables for the PM2.5 concentration forecast
model and generate weight variables to handle the data imbalance problem, we employed
a random forest model to classify the data into four grades (Good, Normal, Bad, and Worst).
Classified data were assigned weight variables, and a Bi-LSTM model was applied to the
selected input variables to train the PM2.5 concentration forecast model.

Figure 1. Flowcharts for training and testing the PM2.5 concentration forecasting model.

2.1. Study Sites and Data

In South Korea, air quality monitoring stations operated by the South Korean Ministry
of Environment are used to measure the average air quality concentrations in urban areas.
This helps understand the air pollution status, changes, and whether air quality standards
are met. In this study, we used air quality monitoring stations operated by the Korean
Ministry of Environment in Seoul’s Gangnam-gu, Geumcheon-gu, Seocho-gu, and Songpa-
gu neighbourhoods. The station locations are shown in Figure 2, and information on their
locations are listed in Table 1. The stations represent the air quality in the southern region
of Seoul, specifically in the area located south of the Han River.
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Figure 2. Locations of the air pollution monitoring stations.

Table 1. Information on the air quality monitoring stations.

Monitoring Station Address Latitude Longitude

Gangnam-gu 426, Hakdong-ro 37.5176◦ 127.0475◦

Geumcheon-gu 20 Geumha-ro 21-gil 37.4524◦ 126.9083◦

Seocho-gu 16 Sinbanpo-ro 15-gil 37.5045◦ 126.9944◦

Songpa-gu 236, Baekjegobun-ro 37.5028◦ 127.0925◦

Table 2 presents the sampling times and data units used in this study. Meteorological
data were provided by the Republic of Korea Meteorological Administration [35], which
provides eight variables (precipitation type, relative humidity, precipitation, sky condition,
temperature, thunderbolt, wind direction, and wind speed) at 1 h intervals for each region.
Three of the eight variables included in the dataset (precipitation type, sky condition, and
thunderbolts) are graded on a scale. Precipitation type is indexed from 0 to 3, where
0 indicates clear skies, 1 represents rain, 2 represents sleet, and 3 represents snow. The
sky condition is indicated by an index ranging from 1 to 4, which represents sky visibility
index. A value closer to 1 indicates clearer skies, whereas a value closer to 4 indicates
flowing weather conditions. Thunderbolt is represented by a Boolean, which indicates
the presence or absence of thunder. Air pollution data were provided by Airkorea [36],
a service of the Korean Ministry of Environment, which measures the concentration of
six pollutants (PM2.5, PM10, sulphur dioxide (SO2), ozone (O3), nitrogen dioxide (NO2),
and carbon monoxide (CO)) at monitoring stations every hour. Air pollution data are used
in both data and meteorological data, except for thunderbolts.
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Table 2. Sampling time and units for data variables.

Data Variable Unit Sampling Time

Meteorological data

Precipitation type code 1 h
Relative humidity % 1 h

Precipitation mm 1 h
Sky condition code 1 h
Temperature °C 1h
Thunderbolt code 1 h

Wind direction degree 1 h
Wind speed m/s 1 h

Air pollution data

PM10 µg/m3 1 h
PM2.5 µg/m3 1 h

O3 ppm 1 h
SO2 ppm 1 h
NO2 ppm 1 h
CO ppm 1 h

Table 3 presents the range of data observed at each monitoring station. Precipitation
type, sky conditions, and wind direction exhibit ranges of 0–3, 1–4, and 0–360 across all
stations. Relative humidity ranges from 9 to 100, while temperature and precipitation range
from −17.4–40.6 and 0–63.4, respectively. Gangnam-gu exhibits the lowest maximum of
precipitation values among all stations, whereas Songpa-gu has the highest. The wind
speed ranges from 0 to 11.6, with Geumcheon-gu and Gangnam-gu reporting the lowest and
highest values, respectively, at 7.1 and 11.6. Regarding air pollution data, PM10 ranges from
1 to 993, with the lowest maximum value observed in Geumcheon-gu at 329 and the highest
in Seocho-gu at 993, exhibiting a significant difference of 664. PM2.5, ranged from 1 to 175,
and the maximum value varied across stations, with the lowest reported in Songpa-gu at
140 and the highest in Gangnam-gu at 175. The range for O2 is 0.001–0.169, while the range
for NO2 is 0–0.169. CO ranges from 0.1 to 3.4, and SO2 ranges from 0.001 to 0.028. Owing to
the variability in the data range across monitoring stations, individual forecast models are
required to provide accurate forecasts. In this study, min-max normalization was applied
to the data from each monitoring station to normalize the data. The normalization equation
used in this study is expressed in Equation (1), where ymax and ymin represent the maximum
and minimum values of the normalization range, respectively, which were set to 1 and −1,
respectively. Moreover, max(X) and min(X) represent the maximum and minimum values
of the variable X, respectively.

Xnormalization = ymin +
(X−min(X))(ymax − ymin)

max(X)−min(X)
. (1)

Table 3. Data range by monitoring station.

Type Variable

Range

Monitoring Station

Gangnam-gu Geumcheon-gu Seocho-gu Songpa-gu

Meteorological data

Precipitation type 0∼3 0∼3 0∼3 0∼3
Relative humidity 10∼100 9∼100 11∼100 13∼100

Precipitation 0∼31.8 0∼37.1 0∼48 0∼63.4
Sky condition 1∼4 1∼4 1∼4 1∼4
temperature −17.3∼40.6 −17.2∼38.4 −17.4∼39.6 −16.6∼40
Thunderbolt 0∼1 0∼1 0∼1 0∼1

Wind direction 0∼360 0∼360 0∼360 0∼360
Wind speed 0∼11.6 0∼7.1 0∼11.3 0∼11
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Table 3. Cont.

Type Variable

Range

Monitoring Station

Gangnam-gu Geumcheon-gu Seocho-gu Songpa-gu

Air pollution data

PM10 1∼926 1∼329 1∼926 1∼858
PM2.5 1∼175 1∼158 1∼169 1∼140

O3 0.001∼0.145 0.001∼0.155 0.001∼0.145 0.001∼0.114
SO2 0.004∼0.114 0.001∼0.118 0∼0.104 0.001∼0.114
NO2 0.1∼1.6 0.1∼1.9 0.1∼3.4 0∼2.7
CO 0.002∼0.024 0.001∼0.028 0.001∼0.21 0.001∼0.025

2.2. Input Selection

To achieve an accurate forecasting of PM2.5 concentrations, it is crucial to carefully
select the influential input variables. Including unnecessary input variables in the model
can increase the complexity and reduce forecasting performance. Thus, selecting appro-
priate input variables is essential for implementing the forecast model. In this study, the
feature importance is calculated as shown in Equation (2) [37] to select the necessary input
variables when classifying data labels. This is an embedded method that selects the input
variables by calculating their importance when learning a model. In Equation (2), FIj
indicates the j-th feature importance and Tm indicates the m-th decision tree. I indicates the
indicator function. 4pm represents the weight difference when splitting the t-th node in the
m-th decision tree. Equation (3) is used to find4pm. In Equation (3), ple f t,m(t), pright,m(t),
and pparent,m(t) represent the weight ratios of the left, right, and parent of the t-th node,
respectively, of the m-th decision tree. Moreover, ile f t,m(t), iright,m(t), and iparent,m(t) represent
the impurity for the left, right, and parent of the t-th node, respectively, of the m-th decision
tree.

FIj =
1
M

M

∑
m=1

Tm

∑
t=1

I(jt = j)4pm(t), (2)

4pm(t) = ple f t,m(t)ile f t,m(t) + pright,m(t)iright,m(t)− pparent,m(t)iparent,m(t). (3)

2.3. Imbalanced Data

In South Korea, PM2.5 levels are managed through classification based on concen-
tration. The concentration range for each grade is presented in Table 4, where “Good”
corresponds to a concentration greater than 0 and less than 15, “Normal” corresponds to a
concentration greater than 16 and less than 35, “Bad” corresponds to a concentration greater
than 36 and less than 75, and “Worst” corresponds to a concentration greater than 76.

Table 4. Grade range of particulate matter concentration.

Grade Range

Good 0 ≤ PM2.5 ≤ 15
Normal 16 ≤ PM2.5 ≤ 35

Bad 36 ≤ PM2.5 ≤ 75
Worst 76 ≤ PM2.5

Table 5 presents the number of data points and the percentage of data in each grade for
each of the stations. The proportion of data classified as ‘normal’ was the highest among
all stations. The proportion of low-concentration data (PM2.5 ≤ 35; Good, Normal) is
consistently higher than that of high-concentration data (PM2.5 ≥ 36; Bad, Worst) across all
stations. Training a model with such a proportion of data will lead to a low-concentration
bias. We used the weighting method, which is cost sensitive, to solve the data imbalance
problem. The weighting method assigns weights to a small number of classes to learn
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unbiasedly from a large amount of data. In addition, unlike the sampling method, it does
not lose information about the data and is not affected by the problem of generalization
ability deterioration owing to the generation of redundant data. To assign weights, we
categorized it into four grades (Good, Normal, Bad, and Worst). The random forest method
was used for data classification. Random forest [38] is a supervised ensemble learning
method that uses multiple decision trees to select many outcomes that can be used for
classification and regressions. Since this method combines multiple decision trees to make
forecasts, it reduces the bias and variance of the model to solve the overfitting problem,
resulting in a relatively high forecast performance. Additionally, the importance of a
variable can be calculated using this model. Since the data distribution and range of
each station differs, the models were trained separately for each station and for Bayesian
optimization [39]. Table 6 lists the parameters of the model used in each station to train the
random forest.

Table 5. Ratio of data grade by station.

Station
Number of Data

Gangnam-gu Geumcheon-gu Seocho-gu Songpa-gu

Good 6900 (30.2%) 6239 (26.66%) 7764 (33.08%) 8236 (34.59%)
Normal 11,324 (49.56%) 11,863 (50.7%) 11,744 (50.03%) 11,664 (48.45%)

Bad 4269 (18.68%) 4934 (21.09%) 3714 (15.82%) 3884 (16.13%)
Worst 355 (1.55%) 364 (1.56%) 250 (1.07%) 198 (0.82%)

Total 22,848 (100%) 23,400 (100%) 23,472 (100%) 24,072 (100%)

Table 6. Parameters of the random forest by station.

Monitoring Station
Optimum Value

Number of Trees Learning Rate Criterion

Gangnam-gu 52 0.9853 Gini diversity index
Geumcheon-gu 10 0.5267 Gini diversity index

Seocho-gu 16 0.7445 Gini diversity index
Songpa-gu 17 0.7364 Gini diversity index

To assign weight variables to the data classified into four grades (Good: 1, Normal: 2,
Bad: 3, Worst: 4), the probability of each class was calculated by computing the proportion
of data in each class. We then used Equation (4), where c denotes a class, Nc denotes
the number of data points in the c-th class, and k represents the total number of data
classes. Equation (4) is simple to calculate and is an intuitive method. The resulting value
of Equation (4) is highly weighted towards prime number data, which can lead to better
learning. By applying Equation (4) we obtained the weight variable value (cwc) for the
c-th class.

cwc =
1

Nc

∑k
c=1

1
Nc

. (4)

2.4. Bidirectional Long Short-Term Memory

To address the challenge of long-term dependence in traditional recurrent neural
networks (RNNs), which arises owing to the vanishing or exploding gradient problem
when processing long sequence data, Hochreiter and Schmidhuber proposed LSTM [40].
LSTM consists of a forget gate (f t), input gate (it), update gate (gt), output gate (ot) and
a cell state (ct). Equations (5)–(9) compute each gate and cell state of the LSTM at time
t. In each equations, σ represents a sigmoid function, and tanh is the hyperbolic tangent
function. xt represents the input vector at time t, and ht−1 represents the hidden layer
output at time t− 1. W and b denote the weight and bias of the equations, respectively.
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Equation (5) expresses the forget gate operation, which determines which information to
retain from the previous time point.

ft = σ(W f [xt, ht−1] + b f ), (5)

The input gate is calculated using Equation (6) and is responsible for determining
which of the new information should be stored in the cell state.

it = σ(Wi[xt, ht−1] + bi), (6)

The update gate is a function that determines the amount of information to store in
the current cell state, calculated using Equation (7).

gt = tanh(Wi[xt, ht−1] + bc), (7)

The output gate is calculated using Equation (8) and is the gate that determines what
information to output.

ot = σ(Wo[xt, ht−1] + bo), (8)

The cell state is calculated by multiplying the cell state of the previous time by a value
of the forget gate, as shown in Equation (9), and then adding the product of the outputs of
the input gate and value of the update gate to add new information. The cell state contains
information from the previous time to the current time.

ct = ft � ct−1 + it � gt, (9)

Calculate ht at time t using the calculated cell state and output gate. Equation (10) is
used to calculate ht.

ht = ot � tahn(ct). (10)

LSTM was proposed to address the long-term dependence encountered by traditional
RNNs when processing long sequence data, they are still constrained by their unidirectional
processing. To overcome this limitation, Bi-LSTM was introduced [41]. Bi-LSTM performs
operations on the forward LSTM and on the backward LSTM. Figure 3 shows backward
LSTM in Bi-LSTM.

Figure 3. Bi-LSTM Cell:Backward LSTM [41].

In Figure 3, the backward layer consists of the same four gates (forget gate, input
gate, update gate, and output gate) and cell state as the forward layer. Unlike the gate
operation of the forward layer, the backward layer uses the output value of the hiding layer
at t + 1 as the input of each gate. The output values of the forward and backward layers
are then combined to determine the output value of the hidden layer. Since the Bi-LSTM
can consider both the forward and backward directions of the data, it can better reflect
the information generated at both ends. It can also utilize a large amount of information
because it uses the input data once again.

The Bi-LSTM is a type of neural network where the performance varies depending
on the number of nodes in the hidden layer. To select the appropriate number of hidden
nodes, we performed forecasts by increasing the number of nodes in the hidden layer
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from 16 (24) to 128 (27) in a doubling fashion [42,43]. The optimal number of hidden nodes
was determined as the one that resulted in the lowest root mean square error (RMSE).
Each model was optimized using the Adam (adaptive moment estimation) method [44].
Tables 7 and 8 shows the RMSE calculation results by the number of covert layer nodes for
each station. Where RMSE represents the RMSE of the training data, and bold indicates the
lowest RMSE per station. Table 9 shows the training options for the model used to select
the number of hidden layer nodes. Table 10 presents the number of nodes for each hidden
layer, where FC denotes a fully connected layer.

Table 7. RMSE results based on the number of hidden layer nodes for stations of Gangnam-gu and
Geumcheon-gu.

Number of Nodes in
the 1st Hidden Layer

Number of Nodes in the 2nd Hidden Layer

Gangnam-gu Geumcheon-gu

16 32 64 128 16 32 64 128

16 6.027 5.971 6.006 5.991 3.606 3.611 3.602 3.600
32 6.028 6.015 6.010 6.024 3.577 3.626 3.622 3.647
64 5.969 5.926 6.000 6.003 3.629 3.592 3.569 3.598

128 5.998 6.017 5.958 5.970 3.590 3.582 3.625 3.605

Table 8. RMSE results based on the number of hidden layer nodes for stations of Seocho-gu and
Songpa-gu.

Number of Nodes in
the 1st Hidden Layer

Number of Nodes in the 2nd Hidden Layer

Seocho-gu Songpa-gu

16 32 64 128 16 32 64 128

16 5.654 5.776 5.658 5.764 5.345 5.419 5.321 5.337
32 5.730 5.642 5.723 5.727 5.326 5.359 5.389 5.354
64 5.667 5.683 5.646 5.719 5.314 5.383 5.406 5.361

128 5.717 5.736 5.684 5.733 5.419 5.396 5.395 5.353

Table 9. Training options of the forecast model for selecting the number of hidden nodes.

Training Option Training Option Value

minibatchsize 32
maxEpoch 1000

Initial Learning Rate 0.001
EarlyStopping 15

Table 10. Structure of the hidden layer for each monitoring station.

Station Attribution
Layer

1st 2nd 3rd 4th

Gangnam-gu Layer type Bi-LSTM Bi-LSTM FC FC
Number of nodes 64 32 24 1

Geumcheon-gu Layer type Bi-LSTM Bi-LSTM FC FC
Number of nodes 64 64 24 1

Seocho-gu Layer type Bi-LSTM Bi-LSTM FC FC
Number of nodes 32 32 24 1

Songpa-gu Layer type Bi-LSTM Bi-LSTM FC FC
Number of nodes 64 16 24 1
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3. Experiments and Results

Air pollution data and meteorological data were used to forecast the PM2.5 concen-
tration. Data from four years (2015–2018) were used in the forecasting, and the training
data were from three years (2015–2017), and the test data was from 2018. To compare the
performance of the proposed model, we performed experiments for two cases. In case
study 1, we selected input variables to reduce the complexity of the model and increase
its comprehensibility and added weighting variables to solve the data imbalance problem
and compared the results of forecasting the model without doing so. Case study 2 com-
pares the performances of three deep learning models (LSTM, Bi-LSTM, and GRU) and
conventional machine learning models (MLP, SVM, decision tree, random forest) by the
station to compare the performances of the forecast models in the proposed method. In
both experiments (case study 1 and 2), in order to consider the past time points and that
from the current time point (t) to 23 h before the past time, point (t−23) was used as the
input to forecast one hour (t+1) later.

3.1. Performance Index

To numerically compare the experimental results of the case study, we used three
performance indices used in regression: RMSE, mean absolute error (MAE), relative root
mean square error (RRMSE), and R2. The RMSE was obtained by averaging the squares
of the error difference between the forecast and actual values and taking the square root
of the result. The MAE was calculated as the mean of the absolute errors. The RRMSE is
the relative value of the RMSE between the forecasted and actual values divided by the
average of the actual values. The lower the values of RMSE, MAE, and RRMSE, the better
the forecasting performance. R2 is an index that evaluates the extent to which the forecast
describes its true value. R2 has a value between 0 and 1. The closer it is to 1, the better the
model describes the data. Equations (11)–(14) are used to determine RMSE, MAE, RRMSE,
and R2. In each of these formulas, ŷi refers to the i-th forecasted value, and yi refers to the
i-th observed value, where ȳ denotes the mean of the observed values.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2. (11)

MAE =
1
n

n

∑
i=1
|(yi − ŷi)|. (12)

RRMSE =

√
1
n ∑n

i=1(yi − ŷi)2

ȳ
. (13)

R2 = r2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳi)2)

. (14)

3.2. Case Study 1: Comparing the Conventional Method with the Proposed Method

Case study 1 compares the proposed method with the conventional method. The
conventional method forecasts using all the variables in the data. The proposed method uses
a random forest to select the input variables and a weight variable to solve the unbalanced
data and uses Bi-LSTM to forecast the PM2.5 concentration. The results of calculating the
feature importance using a random forest to select the input variables are shown in Table 11.
In Table 11, PM2.5 has the highest value for all monitoring stations. PM10 is the second
highest at all stations except Geumcheon-gu. Among the meteorological variables, the
temperature had the highest value at all stations except Songpa-gu. Among the values
calculated in Table 11, non-zero and weight variables were used as input variables for the
forecasting model.
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Table 11. Feature importance value by station.

Data Variable
Monitoring Station

Gangnam-gu Geumcheon-gu Seocho-gu Songpa-gu

Meteorological data

Precipitation type 0 0 0 0
Relative humidity 0 0.0001 0 0

Precipitation 0 0 0 0
Sky condition 0 0 0 0
temperature 0.0001 0.0001 0.0001 0

Wind direction 0 0.0001 0 0
Wind speed 0 0 0 0

Air pollution data

PM10 0.0006 0.0001 0.0003 0.0005
PM2.5 0.0132 0.0179 0.0132 0.0133

O3 0.0001 0.0001 0.0001 0.0001
SO2 0.0001 0.0001 0.0001 0.0003
NO2 0.0002 0.0001 0.0002 0
CO 0 0.0001 0 0

In addition, to assign weighting variables, the data must be classified by thePM2.5 class.
Therefore, this paper performs the classification using a random forest. The input variables
are the same as those of the forecasting model selected earlier. Since each monitoring station
has a different data range and distribution, they were trained separately, and the input
variables at time t were used to classify the PM2.5 class at time t+1. To compare the classifi-
cation accuracy according to the selection of input variables, we conducted experiments
before and after the selection of input variables. Figures 4 and 5 show the confusion matrix
before and after the selection, respectively. In each figure, (a) and (b) show the confusion
matrices for Gangnam-gu, (c) and (d) for Geumcheon-gu, (e) and (f) for Seocho-gu, and (g)
and (h) for Songpa-gu. Using input selection for data classification improved the training
and test data classification accuracy. The most considerable improvement was observed for
Gangnam-gu, where the accuracy increased by 4.34%p in the training data and 2.37%p in
the test data.

Figure 4. Confusion matrix result before input selection by station: (a) Confusion matrix for the result
of the training data in Gangnam-gu; (b) confusion matrix for the result of the test data in Gangnam-gu;
(c) confusion matrix for the result of the training data in Geumcheon-gu; (d) confusion matrix for
the result of the test data in Geumcheon-gu; (e) confusion matrix for the result of the training data
in Seocho-gu; (f) confusion matrix for the result of the test data in Seocho-gu; (g) confusion matrix
for the result of the training data in Songpa-gu; (h) confusion matrix for the result of the test data in
Songpa-gu.
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Figure 5. Confusion matrix result after input selection by station: (a) Confusion matrix for the result
of the training data in Gangnam-gu; (b) confusion matrix for the result of the test data in Gangnam-gu;
(c) confusion matrix for the result of the training data in Geumcheon-gu; (d) confusion matrix for the
result of the test data in Geumcheon-gu; (e) confusion matrix for the result of the training data in
Seocho-gu; (f) confusion matrix for the result of the test data in Seocho-gu; (g) confusion matrix for
the result of the training data in Songpa-gu; (h) confusion matrix for the result on the test data in
Songpa-gu.

The results of calculating the weighting variables are shown in Table 12. In Table 12,
’Worst’ has the smallest data percentage and the highest weighting variable.

Table 12. Values of the weighing variables by station.

Grade
Monitoring Station

Gangnam-gu Geumcheon-gu Seocho-gu Songpa-gu

Good 0.0441 0.0502 0.0287 0.0184
Normal 0.0269 0.0264 0.0190 0.0126

Bad 0.0713 0.0634 0.0601 0.0395
Worst 0.8577 0.8600 0.8922 0.9295

Total 1 1 1 1

Figures 6–9 show the forecast results of each station using the conventional and pro-
posed methods. In the figures shown in Figures 6–9, (a) shows the test period; (b) shows the
period between the two green dashed lines, which is a section of active high-concentration;
while (c) shows the period between the two yellow dashed lines, which corresponds to a
low-concentration section. The x-axis in the figure represents time, and the y-axis represents
the concentration. The black solid line represents the actual PM2.5 concentration measured
at each monitoring station, while the red dashed line represents the forecasted value using
the conventional method. The blue circled line represent the forecasted values obtained
using the proposed method. The magenta dotted line indicates the threshold value of the
PM2.5 concentration at 35, which is the standard for high concentration. The proposed
and conventional methods are under forecasting when forecasting the PM2.5 concentration
in Gangnam-gu. Between 445 and 450 h, the target value continues to increase, and the
forecast value of the conventional method decreases. However, the proposed method
exhibits a lower error in forecasting by increasingly following the target value. In the low-
concentration period (Figure 6c), the forecast result of the conventional method is under
forecast, and it is evident that the forecast performance is lower than that of the proposed
method in the 5250–5300 h. In the high-concentration section of Geumcheon-gu (Figure 7b),
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which spans from 1950 to 1980 h, the conventional method shows a sharp decrease in
forecasted values, while the proposed method forecasts the target PM2.5 concentrations. In
Figure 7c, which shows the forecast result of the low-concentration section, the proposed
method forecasts better than the conventional method. In the high-concentration section
of Seocho-gu, the conventional and proposed methods are primarily under forecasting.
The proposed method has a better forecast performance from 330 to 380 h, where the
concentration is above 75 and changes rapidly. For the low-concentration section, the
conventional method over forecasts compared with the proposed method and has a lower
forecast performance than the proposed method. For the high-concentration section of
Songpa-gu, between 1090 and 1095 h, the conventional method does not forecast more
than 60, while the proposed method forecasts up to 80, exhibiting a lower error. However,
from 1165 to 1170 h, where the concentration is above 100, both methods have errors due to
under forecasting.

In Figures 6–9b, the high-concentration range of each station, it can be seen that the
conventional method under forecasts the proposed method because it is trained with a bias
towards low-concentration, which is the major class data.

Figure 6. Results of the PM2.5 concentration forecast by the model at the Gangnam-gu station:
(a) Test data section, (b) high-concentration section, and (c) low-concentration section.
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Figure 7. Results of the PM2.5 concentration forecast by the model at the Geumcheon-gu station:
(a) Test data section, (b) high-concentration section, and (c) low-concentration section.

Figure 8. Results of the PM2.5 concentration forecast by the model at the Seocho-gu station: (a) Test
data section, (b) high-concentration section, and (c) low-concentration section.
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Figure 9. Results of the PM2.5 concentration forecast by the model at the Songpa-gu station: (a) Test
data section, (b) high-concentration section, and (c) low-concentration section.

Tables 13–16 list the RMSE, MAE, RRMSE and R2 values of the conventional and
proposed methods, respectively. The values in each table are the averages of the results
of 10 iteration experiments. As listed in Table 10, the proposed method has an average
RMSE of 0.2095 (3.98%p), which is lower than that of the conventional method. Specifically,
in the high-concentration section, the proposed method is 0.3011 (3.21%p) lower than the
conventional method. Notably, the Gangnam-gu forecast model shows the most signifi-
cant difference, with the proposed method differing from the conventional method by
0.3262 (6.88%p) for the overall RMSE and 0.534 (6.42%p) for the RMSE of the high-
concentration section. Furthermore, even in the low-concentration section, the proposed
method shows an average RMSE of 0.1931 (4.78%p), which is lower than that of the con-
ventional method, with the smallest difference of 0.38 (7.43%p) observed for Songpa-gu.
Additionally, the performance improvement of the proposed method is more significant
in the high concentration range for Geumcheon-gu and Seocho-gu stations. Table 14
indicates that the proposed method has, on average, a 5.87% lower MAE than the con-
ventional method. In the high-concentration section, the proposed method outperforms
the conventional method by 4.36% for all stations. Moreover, the proposed method ex-
hibits a 6.63% lower MAE than the conventional method in the low-concentration section.
The largest differences in MAE between the proposed and conventional methods are
observed for the stations in Gangnam-gu, with reductions of 10.49, 8.65, and 11.29%, re-
spectively, for the entire test period, high-concentration, and low-concentration sections,
respectively. Among the high-concentration sections, the station in Songpa-gu shows the
largest difference of 0.0011 (0.11%p). Table 15 shows that the proposed method is, on
average, 0.0097 (3.96%p) lower than the conventional method. In the high-concentration
range, the proposed method is lower on average by 0.0056 (3.21%p), with the largest dif-
ference (0.0096, 6.46%p) in Gangnam-gu. In the low-concentration range, the proposed
method is also lower than the conventional method by 0.013 (4.76%p), with the most
significant difference (0.0263, 7.42%p) in Seocho-gu. Table 16 shows that the R2 value
of the proposed method is 0.0066 (0.72%p) higher than the conventional method. In the
high-concentration range, the proposed method is higher by 0.0007 (0.07%p). Especially in
the high-concentration range, Songpa-gu shows the most significant difference of 0.0011
(0.11%p). In the low-concentration range, the proposed method is also higher than the
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conventional method by 0.018 (2.23%p). Especially in Seocho-gu, the proposed method is
higher than the conventional method by 0.0094 (1.06%p) and 0.0398 (5.50%p) in the test
period and low-concentration range.

Table 13. RMSE for the forecast results of the conventional method and the proposed method.

Test Period High-Concentration Section Low-Concentration Section

Station Conventional
Method

Proposed
Method

Conventional
Method

Proposed
Method

Conventional
Method

Proposed
Method

Gangnam-gu 4.7384 4.4122 8.3142 7.7802 3.6736 3.4035
Geumchoen-gu 3.9179 3.8180 7.3199 7.1371 2.9432 2.8867

Seocho-gu 6.5666 6.2922 11.0503 10.9497 5.1178 4.7378
Songpa-gu 5.8446 5.7073 10.8168 10.4297 4.4210 4.3750

Average 5.2669 5.0574 9.3753 9.0724 4.0389 3.8458

Table 14. MAE for the forecast results of the conventional method and the proposed method.

Test Period High-Concentration Section Low-Concentration Section

Station Conventional
Method

Proposed
Method

Conventional
Method

Proposed
Method

Conventional
Method

Proposed
Method

Gangnam-gu 3.4142 3.0561 6.4705 5.9106 2.8313 2.5116
Geumchoen-gu 2.5575 2.4637 5.1476 4.9232 2.1051 2.0341

Seocho-gu 4.6788 4.3381 8.1944 8.1732 3.9321 3.5235
Songpa-gu 4.0299 3.9606 7.8609 7.4588 3.3556 3.3449

Average 3.6701 3.4546 6.9184 6.6165 3.0560 2.8535

Table 15. RRMSE for the forecast results of the conventional method and the proposed method.

Test Period High-Concentration Section Low-Concentration Section

Station Conventional
Method

Proposed
Method

Conventional
Method

Proposed
Method

Conventional
Method

Proposed
Method

Gangnam-gu 0.2203 0.2052 0.1486 0.1390 0.2460 0.2279
Geumchoen-gu 0.1777 0.1732 0.1349 0.1315 0.1792 0.1758

Seocho-gu 0.3053 0.2926 0.2019 0.2000 0.3543 0.3280
Songpa-gu 0.2775 0.2710 0.2118 0.2043 0.2801 0.2772

Average 0.2452 0.2355 0.1743 0.1687 0.2648 0.2522

Table 16. R2 for the forecast results of the conventional method and the proposed method.

Test Period High-Concentration Section Low-Concentration Section

Station Conventional
Method

Proposed
Method

Conventional
Method

Proposed
Method

Conventional
Method

Proposed
Method

Gangnam-gu 0.9366 0.9451 0.9928 0.9937 0.8463 0.8680
Geumchoen-gu 0.9476 0.9502 0.9940 0.9943 0.8828 0.8888

Seocho-gu 0.8861 0.8955 0.9855 0.9858 0.7233 0.7631
Songpa-gu 0.8748 0.8806 0.9850 0.9861 0.7760 0.7806

Average 0.9113 0.9179 0.9893 0.9900 0.8071 0.8251

3.3. Case Study 2: Comparing the Deep Learning Model and Conventional Machine Learning

In case study 2, we evaluate the forecasting accuracy of PM2.5 concentrations using
deep learning models (LSTM, GRU, and Bi-LSTM) with superior forecasting performance
and conventional used machine learning models (MLP, SVM, DT, and RF). The input
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variables of the models are those proposed in case study 1. The forecast results of the LSTM,
GRU, and Bi-LSTM models for each station are illustrated in Figures 10–13. The x-axis
represents time, and the y-axis represents the PM2.5 concentration. The black line represents
the actual values of each station, while the red and blue dashed lines indicate the forecasting
results of the LSTM and GRU models. The forecast result of Bi-LSTM is indicated by the
purple dashed line. The magenta-coloured dotted line represents the point where the PM2.5
concentration value is 35. In each figure, (a) represents test periods; (b) represents the
period between the two green dashed lines, which are sections of high-concentration; while
(c) shows the period between the two yellow dashed lines, which is the low-concentration
section.

Regarding comparing forecast performance among different models in case study 2,
it can be observed that all models underestimate the actual PM2.5 concentration in the
high-concentration section of Gangnam-gu shown in Figure 10b. However, the Bi-LSTM
model provides the best forecasting performance among the areas with a concentration
above 75, particularly between 350 and 390 h. In the low-concentration section, all models
over forecast. For the high-concentration section of Geumcheon-gu, the Bi-LSTM model
performs better than the other two models during 1940–2010 h, where the concentration
changes rapidly. On average, in the low-concentration section, the Bi-LSTM over fore-
casted, while LSTM and GRU under forecasted. The Bi-LSTM exhibits better forecasting
performance in the normal range of 15 and above and 35 and below. Within the PM2.5
concentrations between 0 and 15, LSTM exhibits the most accurate forecasting performance.

In the high-concentration section of Seocho-gu, all models under forecast on average,
and Bi-LSTM outperforms LSTM and GRU in the range of 330–400 h. All models over
forecast in the low-concentration section, and the GRU exhibits the best performance in
the range of 0–10, followed by Bi-LSTM. For Songpa-gu, GRU exhibits the best forecasting
performance in the high-concentration section of 1080–1095 h, and LSTM exhibits the best
forecast performance in the increasing section of 1240–1285 h, followed by Bi-LSTM with
the second best forecasting performance. In the low-concentration section, LSTM and GRU
over forecast on average, while Bi-LSTM under forecasts. Therefore, it exhibits the best
overall forecasting performance in this section.

Figure 10. Results of the PM2.5 concentration forecast by deep learning models at the Gangnam-gu
station: (a) Test data section, (b) high-concentration section, and (c) low-concentration section.



Atmosphere 2023, 14, 968 19 of 24

Figure 11. Results of the PM2.5 concentration forecast by deep learning model at the Geumchoen-gu
station: (a) Test data section, (b) high-concentration section, and (c) low-concentration section.

Figure 12. Results of the PM2.5 concentration forecast by deep learning model at the Seocho-gu
station: (a) Test data section, (b) high-concentration section, and (c) low-concentration section.
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Figure 13. Results of the PM2.5 concentration forecast by deep learning model at the Songpa-gu
station: (a) Test data section, (b) high-concentration section, and (c) low-concentration Section

Tables 17 and 18 list the performance indices for the PM2.5 concentration forecast
results using the deep learning model. The numbers in Tables 17 and 18 are the averages of
the results from 10 replicates. In the case of RMSE,MAE, and RRMSE, Bi-LSTM performs
better at all stations except for Geumcheon-gu. Comparing the average RMSE, Bi-LSTM
outperforms LSTM and GRU by 0.1405 (2.6977%p) and 0.15 (2.8748%p), respectively. Com-
paring the average MAE of the models, the performance of Bi-LSTM is higher than LTSM
and GRU by 0.0295 (0.844%p) and 0.1302 (3.6264%p), respectively. When using Bi-LSTM,
we can see that the RRMSE is lower than LSTM and GRU by 0.0070 (2.8866%p) and 0.0074
(3.0266p%), respectively. For R2, the LSTM performance is best for the Geumcheon-gu
and Songpa-gu stations, whereas the Bi-LSTM performance is best for the Gangnam-gu
and Seocho-gu stations. With respect to the average R2, Bi-LSTM outperforms LSTM and
GRU by 0.0029 (0.3196%p) and 0.0044 (0.4759%p), respectively. Tables 19 and 20 show
the performance index values of conventional machine learning. Among the machine
learning methods, the performance index shows the best performance when forecasting
is performed using RF. Compared to Bi-LSTM, the best performer in deep learning, Bi-
LSTM was better than RF by RMSE: 26.96%, MAE: 32.56%, R2: 5.02%, and RRMSE: 20.83%.
To summarize case study 2, Bi-LSTM has the best performance regarding RMSE, MAE,
RRMSE, and R2 compared to other deep learning and machine learning methods because it
considers bi-directionality to make a forecast.

Table 17. RMSE and MAE values for the deep learning models.

RMSE MAE

Station LSTM GRU Bi-LSTM LSTM GRU Bi-LSTM

Gangnam-gu 4.7690 4.7380 4.4122 3.1017 3.2853 3.0561
Geumchoen-gu 3.8340 3.9400 3.8180 2.4833 2.6173 2.4894

Seocho-gu 6.3340 6.4560 6.2992 4.3589 4.4671 4.3381
Songpa-gu 5.8930 5.7340 5.7073 4.0181 3.9954 3.9606

Average 5.2075 5.2170 5.0591 3.4905 3.5913 3.4610



Atmosphere 2023, 14, 968 21 of 24

Table 18. RRMSE and R2 values for the deep learning models.

RRMSE R2

Station LSTM GRU Bi-LSTM LSTM GRU Bi-LSTM

Gangnam-gu 0.2218 0.2203 0.2052 0.9341 0.9366 0.9451
Geumchoen-gu 0.1739 0.1787 0.1732 0.9497 0.9469 0.9502

Seocho-gu 0.2945 0.3002 0.2926 0.8940 0.8899 0.8955
Songpa-gu 0.2798 0.2722 0.2710 0.8808 0.8794 0.8806

Average 0.2425 0.2429 0.2355 0.9146 0.9132 0.9179

Table 19. RMSE and MAE values for the machine learning models.

RMSE MAE

Station MLP SVM DT RF MLP SVM DT RF

Gangnam-gu 6.3755 6.6377 7.1953 6.0420 4.5595 4.3955 5.0105 4.0118
Geumchoen-gu 6.1839 5.7206 5.4665 4.5156 4.3120 3.3895 3.7392 3.0054

Seocho-gu 9.0127 9.3729 8.3952 7.9718 6.2222 6.2260 6.0515 5.4270
Songpa-gu 6.1787 7.2686 8.2504 6.9803 4.3435 4.8768 5.7261 4.7145

Average 6.9377 7.2686 7.3269 6.3775 4.9598 4.7219 5.1318 4.3009

Table 20. RRMSE and R2 values for the machine learning models.

RRMSE R2

Station MLP SVM DT RF MLP SVM DT RF

Gangnam-gu 0.2962 0.3084 0.3343 0.2807 0.8847 0.8751 0.8532 0.8965
Geumchoen-gu 0.2805 0.2595 0.2480 0.2048 0.8691 0.8879 0.8976 0.9301

Seocho-gu 0.4260 0.4431 0.3968 0.3768 0.7785 0.7604 0.8080 0.8270
Songpa-gu 0.2899 0.3445 0.3871 0.3275 0.8688 0.8147 0.7660 0.8325

Average 0.3232 0.3389 0.3415 0.2975 0.8503 0.8312 0.8312 0.8715

3.4. Discussion

This study aims to forecast the concentration after 1 h of PM2.5 that can harm the
human body. The proposed method is conducted in two steps; (1) selection of appropriate
input variables and weight assignment using random forest, and (2) forecasting of PM2.5
using Bi-LSTM. Appropriate input variables for forecasting were selected by calculating
the importance of each variable using RF. However, the data usually consists of imbalanced
data where the categories are not proportioned. Imbalanced data can lead to bias problems
and degrade predictive performance. To improve this problem, a weight variable was
added according to the grade classified through RF and used as an input variable for the
forecast. Finally, the PM2.5 concentration was forecasted by applying Bi-LSTM to the input
and weight variables selected through RF. To validate the proposed method, two case
studies were applied to monitoring stations in South Korea. Case study 1 (Section 3.2)
compares the prediction performance according to the selection of the input variables. Case
study 2 (Section 3.3) compares the forecast performance between the deep learning and
conventional machine learning methods. Experimental results confirm that the proposed
method is improved compared to conventional methods, such as LSTM, GRU, MLP, SVM,
DT, and RF. In particular, it is shown that the prediction can be effectively performed even
if there is a data imbalance problem by assigning weights using RF. In future work, we
will discuss various multi-step forward forecasting strategies such as recursive, direct, and
multi-input multi-output to perform long-term forecasting.
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4. Conclusions

As the incidence of disease caused by PM2.5 exposure increases, it is essential to forecast
PM2.5 concentrations to prevent PM2.5 exposure. In this study, we proposed a method
for forecasting PM2.5 after 1 h from PM2.5 data with imbalanced data. Appropriate input
variables were selected through RF and then used to add weight variables to improve the
prediction performance. Consequently, using RF reduces model complexity and improves
the forecasting performance. Then, PM2.5 forecasting was performed using Bi-LSTM, one
of the deep learning models. For the number of nodes in the hidden layer, the node
with the smallest RMSE was selected as an appropriate node through trial and error.
The performance of the proposed method was verified through two case studies at four
monitoring stations in Korea: Forecasting performance according to preprocessing of input
variables and forecasting performance between deep learning and machine learning. The
experimental results showed that the proposed method improved RMSE: 3.98%, MAE:
5.87%, RRMSE: 3.96%, and R2: 0.72% when comparing the conventional method and the
proposed method. In particular, at high concentrations, the proposed method outperformed
each of the performances indicated by RMSE: 3.21%, MAE: 4.36%, R2: 0.07%, and RRMSE:
3.21%. In addition, the proposed method outperforms other deep learning models on
average with RMSE:2.79%, MAE: 2.25%, RRMSE: 2.96%, and R2: 0.40%. Furthermore,
compared to machine learning, the proposed method outperformed RMSE:27.38%, MAE:
27.57%, RRMSE: 27.60%, and R2: 7.71%.
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