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Abstract: Measurements of net ecosystem exchange (NEE), solar global radiation, photosynthetically
active radiation (PAR) and meteorological parameters were carried out on a subtropical conifer
plantation in China from 2013 to 2016. These observations were used to develop and evaluate an
empirical model of gross primary production (GPP) (EMGPP) with 3-factor and 2-factor models.
Using a 3-factor model, the simulated hourly GPP values were consistent with observations with
a relative bias of 9.96% and normalized mean square error values of 0.07 mg CO2 m−2 s−1 for the
scattering factor S/Q (S and Q are diffuse and global solar radiation) < 0.5 and 15.52% and 0.15 mg
CO2 m−2 s−1 for S/Q ≥ 0.5. Validations of the EMGPP for hourly, daily, monthly, and annual GPP
values were carried out and showed that both 3-factor and 2-factor EMGPP models can accurately
capture diurnal, seasonal and interannual variations in GPP, but most simulated GPP overestimated
the observed value. When the scattering factor is not available, the 2-factor EMGPP can be used. The
EMGPP using 3-factor and 2-factor models was applied to simulate GPP under all sky conditions
from 2013–2016, and the estimated GPP were in reasonable agreement with the measured values
and showed systematic overestimations of 31% and 29% for mean hourly GPP and 41% and 29% for
annual amounts, respectively. The sensitivity test demonstrated that GPP values were more sensitive
to changes in PAR than to changes in water vapor and scattering factor at low S/Q, but were more
sensitive to changes in water vapor than to PAR and S/Q at high S/Q. The sensitivity test revealed
some mechanisms of GPP and its related processes, including the relationships between GPP and
scattering of PAR, GPP and water vapor, which were in good agreement with other observations and
model studies. An empirical model based on PAR energy balance can better describe the multiple
interactions between GPP and its driving factors (PAR, water vapor, S/Q). The ratio of the emissions
of biogenic volatile organic compounds (BVOCs) to net ecosystem exchange clearly varied between
forests in different climate zones.

Keywords: net ecosystem exchange; gross primary production; biogenic volatile organic compounds;
PAR energy balance; multiple interactions

1. Introduction

Global warming, especially in the Antarctic, Arctic and Tibetan Plateau during the
20th century, has attracted extensive interest and has been reported on by the Intergovern-
mental Panel on Climate Change (IPCC) and other studies [1–5]. Increases in greenhouse
gas (GHG, mainly CO2, CH4, N2O) emissions due to anthropogenic activities are consid-
ered a common reason [6,7]. Thus, it is important to reduce greenhouse gas emissions and
accurately estimate CO2 flux and carbon storage of terrestrial vegetation. It is known that,
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as a large carbon sink, the terrestrial biosphere sequesters 20–30% of global anthropogenic
CO2 emissions [8].

Two methods are used to study carbon sources and sinks. (1) Monitoring and quanti-
fying net carbon storage by forests is necessary in the validation of carbon sequestration
estimates and in assessing the possible role of these ecosystems in offsetting fossil fuel
emissions. The eddy covariance (EC) technique is reliable for measuring CO2 exchange
(or NEE) over periods ranging from hours to years [9], and EC flux data are usually used
in validations. (2) Models are useful tools to understand the processes and mechanisms
of CO2 flux, net ecosystem exchange (NEE) and gross primary production (GPP). Models
simulate NEE and GPP and investigate interactions between NEE, GPP, and their driving
factors and further potential effects on regional and global climate change [10–12]. Large
quantities of models have been developed and used, mainly including empirical models
(light use efficiency (LUE), machine learning, etc. [13,14], process models [12,15–18], and
atmospheric inversion models [19,20]. Most empirical models consider limited processes,
use several parameters and lack understanding of mechanisms, especially multiple in-
teractions between vegetation and the atmosphere. Process models can consider more
detailed processes in vegetation, soil and atmosphere and gain a better understanding
of the processes and mechanisms than empirical models. Process-based dynamic global
vegetation models (DGVMs) are also widely used to estimate natural land sinks as part
of the global carbon budget (GCB). Globally, the DGVM multimodel mean estimate of
global natural land sinks is consistent with the estimate of global carbon budget residual
land sinks, but there is a significant spread across models [18]. In addition, these compli-
cated models have many hypotheses and assumed parameters due to our current limited
knowledge of the processes involved in carbon balance [21]. Until now, there have been
large uncertainties in CO2 flux measurements (e.g., random and system errors) and model
predictions [9,22–26]. Therefore, internal processes and external driving factors, along with
their inherent connections, should be investigated thoroughly by using another method,
i.e., the principle of PAR balance over the canopy as it was used in previous empirical
model studies [27]. The advantages of the PAR energy method are its ability to study
multiple interactions between vegetation and the atmosphere thoroughly, its use of fewer
hypotheses and variables and its shorter computing time. Despite the development of
measurement techniques and models, further studies on reducing measurement and model
simulation errors are still needed [28–30].

As a part of carbon emission into the atmosphere, biogenic volatile organic compounds
(BVOCs) emitted from vegetation should be considered in global carbon balance [27,31–35].
They are easily oxidized to produce/contribute all kinds of gases, liquids and parti-
cles (GLPs), such as O3, HCHO, methyl vinyl ketone (MVK) and methacrolein (MaCR),
CH3(CO)OONO2 (PAN), secondary organic aerosol (SOA), clouds [31,36–39], using ultravi-
olet (UV) and visible radiation, through photochemical reactions with OH and H2O. GLPs
(gases, liquids, aerosols, clouds, etc.) attenuate UV and visible radiation and influence
biological processes as well as BVOC emissions [40]. Therefore, BVOCs also play significant
roles in atmosphere and climate, both as participants with high chemical reactivity and
as an important bridge between the gases, liquids and particles in chemical and photo-
chemical reactions in the atmosphere [41–44]. Thus, close attention should be paid to
the bidirectional impacts of GLPs and BVOC emissions [27]. In order to calculate BVOC
emissions, BVOC emission models, MEGAN (Model of Emissions of Gases and Aerosols
from Nature) [36,45–47] and others [27,48–51] were developed from various algorithms
expressing photosynthesis-based schemes and are now widely used.

China has several climate zones and diverse ecosystems. It is necessary to better
understand terrestrial carbon balance and its underlying mechanisms. Many studies have
been carried out in China and show large differences in the magnitude of the carbon
budget [52–55]. Based on reliable flux measurements and a previously used PAR energy
balance method [27], it may be feasible to develop an empirical model for simulating GPP
and understanding the processes and mechanisms associated with GPP.
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The aim of this study is to (1) develop an empirical model of GPP using PAR energy
balance to simply the complicated CO2 process and then grasp/express its main processes,
(2) evaluate the model’s performance against the observed data from a subtropical conif-
erous forest in China, (3) study the responses/mechanisms of GPP to its main driving
factors, (4) simulate GPP from 2013–2016 under all sky conditions to deeply understand
the processes and mechanisms associated with GPP and (5) study the relationships be-
tween BVOCs and NEE in several climate zones for a full understanding of carbon balance
(sources and sinks).

2. Instrumentation and Methods
2.1. Site Description

This study was carried out on a conifer plantation at Qianyanzhou Subtropical Forest
Ecosystem Research Station, Chinese Academy of Sciences (Qianyanzhou Station for short)
in Taihe County, Jiangxi Province in subtropical China (26◦44′48′′ N, 115◦04′13′′ E, 110.8 m).
The main tree species are Pinus massoniana, Pinus elliottii, Cunninghamia lanceolata and
some broadleaf trees, with coverages of 42.0%, 49.6%, 5.8% and 2.6% of this landscape,
respectively. These trees were planted in 1985. The leaf area index is 3.6 m2 m−2 [56].
The average canopy height is 18 m. The mean slope of this study region is 2.8–13.5◦. The
shrubs are mainly Loropetalum chinense, Adinandra millettii and Lyonia compta [35]. The mean
annual precipitation is 1485.1 mm, and the annual temperature is 17.9 ◦C [57]. The annual
quantity of global solar radiation was 4579 MJ m−2 in 2013 and 4496 MJ m−2 in 2014, and
the annual quantity of photosynthetically active radiation (PAR) was 7998 mol m−2 in 2013
and 7656 mol m−2 in 2014 [35]. Most of the atmosphere at the Qianyanzhou site had high
GLP loads, i.e., most S/Q (S and Q are diffuse and global solar radiation, respectively)
values were larger than 0.5, and their hourly averages from May 2013–December 2016 were
0.85 (S/Q = 0–1, sample point n = 14,748), 0.38 (S/Q < 0.5, n = 91) and 0.76 (S/Q ≥ 0.5,
n = 985).

2.2. Instruments and Measurements

Solar global radiation (Q) and direct radiation (D) were measured at a frequency of
1 Hz using radiometers (model TBQ-4-1 and TBS-2, 322, Institute of Jinzhou, Jinzhou,
China) at Qianyanzhou Station, 800 m away from the flux tower [35]. Diffuse radiation (S)
is derived from Q-D × cosZ, where Z is the solar zenith angle. PAR was measured using a
LI-190SA Quantum Sensor (LI-COR, Inc., Lincoln, NE, USA, relative error < ±5%), except
from 1 January to 21 May 2013, when Q and PAR were obtained from the weather station
at Qianyanzhou Station. All solar radiation sensors were cleaned every morning and when
needed, such as after rain. Detailed explanations of the solar radiation system are reported
in [58]. Meteorological parameters (temperature and relative humidity) were measured
using a HOBO weather station (Model H21, Onset Company, Bourne, MA, USA) [35]. The
measurement frequency was 1 Hz for solar radiation and meteorological parameters.

CO2 fluxes, together with another set of solar radiation and meteorological parameters,
were measured at a 42-m tower starting in 2003 [59]. The eddy covariance technique has
been extensively used for the direct measurement of net carbon exchange between the atmo-
sphere and ecosystems [60]. The eddy covariance system included a 3-D sonic anemometer
(Model CSAT3, Campbell Scientific Inc., Logan, UT, USA), open-path CO2/H2O analyzer
(Model LI-7500, Li-cor Inc., Lincoln, NE, USA) and a CR5000 data logger (Campbell Scien-
tific Inc., USA) located 23.6 m above the ground to measure CO2 flux at the Qianyanzhou
subtropical evergreen conifer plantation [59], and observational data (NEE, GPP) measured
at 23.6 m from 1 January 2013 to 31 December 2016 were used in this study.

Additionally, BVOC emission fluxes were measured using a relaxed eddy accumu-
lation (REA) system, which was installed on a platform 23 m off the ground in the flux
tower [35]. The REA system was composed of a 3-dimensional sonic anemometer (RM
Young, Traverse City, MI, USA, Model 81000), a data logger (Campbell Scientific, Logan,
UT, USA, Model CR1000) and a data acquisition and control unit and was used to collect
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air samples in stainless steel cartridges filled with Tenax GR and Carbograph 5TD (Markes
International Inc., Gold River, CA, USA). The cartridges were analyzed in the laboratories
at the National Center for Atmospheric Research (NCAR) in Boulder, CO, USA and at the
Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP, CAS) in Beijing, China.
The procedures for sample analysis by gas chromatograph equipped with flame ionization
detector (GC-FID) at the Beijing laboratory (IAP, CAS) were similar to those described
by Greenberg et al. [32,35]. BVOC emission fluxes were measured from 22 May 2013 to
4 January 2016: air samples of BVOCs were collected around noon or five times with 3 h
interval per day from sunrise to sunset, and a more detailed introduction to BVOC studies
is reported by Bai et al. [35]. The measurement frequency was 10 Hz over 30 min for CO2
flux, NEE and BVOC data collection.

2.3. Flux Data Processing and Data Selection

To ensure reliable processing of flux data, ChinaFLUX developed standard method-
ologies for processing flux data, including data quality control; coordinate rotation; Webb,
Pearman and Leuning density correction (WPL) correction (correction for density fluc-
tuations); canopy storage calculation; gap filling; and flux component partitioning [61].
These methods were applied to process the flux data from the Qianyanzhou site using the
software program MATLAB R2014a (MathWorks Inc., Natick, MA, USA). The raw data
were corrected using double coordinate rotations [62] and WPL correction [63]. Abnormal
or missing data were mainly caused by rainfall, dew, frost, power failure or instrumental
malfunction. The Lloyd–Taylor and Michaelis–Menten equations were used for gap filling
of carbon flux at nighttime and in daytime, respectively [64,65]. The observed nighttime
carbon flux equals ecosystem respiration (Re), which represents the CO2 released by veg-
etation and soil respiration. The Lloyd–Taylor equation was also used to extrapolate the
daytime Re. The directly observed daytime carbon flux was net ecosystem CO2 exchange
(NEE), whose absolute value equals net ecosystem productivity (NEP, NEP = −NEE). After
the calculations of daytime Re, GPP was determined by the equation GPP = Re + NEP
and regarded as the observed GPP in this study. Based on the continuous daytime and
nighttime datasets, GPP was obtained [66]. The threshold method was used to remove
spurious environmental data, and the data gaps were filled using linear interpolation or
mean diurnal variation methods [67].

2.4. Empirical Model of Gross Primary Production (EMGPP)

Based on PAR energy balance at the canopy level, an empirical model of gross primary
production (EMGPP) considering 3-factor and 2-factor situations was developed. It was a
further application of an empirical model simulating BVOC emission fluxes (EMBEs) that
was previously developed for this conifer plantation, a temperate forest and a subtropical
bamboo forest in China [27]. This EMBE model can reasonably estimate BVOC emissions
for the above forests in China as assessed by different evaluations. At the Qianyanzhou
conifer plantation, the measured mean and maximum emission fluxes in 2013 were 0.137
and 1.610 mg m−2h−1 for isoprene, respectively, and 0.474 and 2.711 mg m−2h−1 for
monoterpenes, respectively. Monoterpene emission fluxes dominated the total BVOC
emission fluxes with a contribution of 71.6% of BVOC emission fluxes, displaying clear
diurnal variations (higher in the afternoon and lower in the early morning and late evening)
and seasonal variations (higher in summer and lower in winter) [35]. Therefore, considering
the assuming similarities between the processes and PAR utilization on BVOC emissions
(e.g., isoprene production) [68] and GPP, further application of EMBE was investigated,
i.e., similar PAR transfer in the atmosphere (absorption, scattering), and different PAR
attenuation by BVOCs or CO2 in the atmosphere, i.e., only one difference in the description
of BVOCs and CO2 term (or GPP term). More specifically, an empirical model development
of GPP is reported as follows.

The PAR energy balance on a horizontal plane above the canopy level is calculated
using three terms (the GPP term and photochemical and scattering terms, representing
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CO2 attenuation, GLP attenuation (except CO2) and scattering of PAR, respectively) and
described as:

PAR = A1e−0.1aGPPtm × cos(Z) + A2e−kWm × cos(Z) + A3e−S/Q + A0 (1)

Then an empirical model of GPP was developed following procedures similar to
those previously used to describe the BVOC emissions at this conifer plantation as well as
other forests in China [27,69,70], i.e., a further application of the empirical model of BVOC
emissions (EMBE):

e−0.1aGPPtm × cos(Z) = B1PAR + B2e−kWm × cos(Z) + B3e−S/Q + B0 (2)

where in the GPP term, e−0.1aGPPtm, a is the attenuation coefficient for CO2 in the atmosphere
(set to 1 mg CO2

−1 m2 s−1), m is the optical thickness of the air mass in the center of the
averaging window, GPP is the hourly gross primary production in the sampling period
(mg CO2 m−2 s−1), t (hour, converted from 0.5 h in CO2 flux) is the sampling period and
0.1 is a normalizing coefficient for GPP and yields e−0.1aGPPtm × cos(Z) < 1. According to
the Beer–Lambert law, the GPP term was expressed as e−0.1aGPPtm. In the photochemical
term, e−kWm, W = 0.021E × 60, where E is the mean water vapor pressure (hPa) at ground
level during the sampling period and k is the average absorption coefficient of water vapor
in the wavelength range of 0.70–2.845 µm. In the scattering term, e−S/Q, S/Q is a scattering
factor that objectively describes the relative quantities of GLPs in the atmosphere, including
clouds, haze and rain [58]. Cos(Z) = 1/m and Z is the solar zenith angle (degree). Ai and Bi
are coefficients that are determined empirically by using an hourly observational dataset of
solar radiation, water vapor pressure and GPP.

To reduce the influence of errors in the carbon flux (i.e., NEE, mg CO2 m−2 s−1)
and solar radiation measurements in the EMGPP model development, the following data
were not used: (1) NEE larger than two times the standard deviation calculated from all
individual measurements and the corresponding GPP and (2) global solar radiation with a
solar zenith angle greater than 75◦.

The EMGPP model was developed utilizing a dataset that includes GPP, with PAR,
photochemical and scattering terms (3-factor model, Equation (2)). Considering the practi-
cality of the EMGPP model when direct or diffuse solar radiation is not available, a 2-factor
model was developed (i.e., without the scattering term in Equation (2)).

e−0.1aGPPtm × cos(Z) = C1PAR + C2e−kWm × cos(Z) + C0 (3)

Therefore, the EMGPP models were developed for these two conditions (3-factor
and 2-factor).

3. Results
3.1. Model Development and Evaluation for the Subtropical Coniferous Forest

Because PAR transfers in the atmosphere and the interactions between PAR and
atmospheric substances are different under different atmospheric conditions, two atmo-
spheric conditions (expressed as the scattering factor, S/Q) were studied, i.e., S/Q < 0.5
and S/Q ≥ 0.5, representing a relatively clean and sunny atmosphere (low GLP loads, e.g.,
low quantities of clouds and aerosols) with high solar radiation and air temperature and a
misty and cloudy atmosphere (high GLP loads, e.g., large amounts of cloud, high aerosol
loads, rain) with low solar radiation and air temperature, respectively.

3.1.1. EMGPP Models Using 3-Factor and 2-Factor for S/Q < 0.5 Conditions

Generally, GPP, NEE and BVOC emissions in this coniferous forest show clear diurnal,
seasonal and interannual variations and vary with key driving factors and atmospheric
conditions, including PAR, air and soil temperature, precipitation, water vapor pressure,
vapor pressure deficit (VPD), soil water content, cloud density, drought and other fac-
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tors [35,59,71–73] and are higher around noon and in summer. Daily emission peaks occur
around noon.

Based on the above data criteria in Section 2.4, 91 measurements (n = 91 for S/Q < 0.5)
from 22 May 2013 to 31 December 2014 were selected in the model developments for
using the 3-factor and 2-factor methods. These valid data were used together with the
mean water vapor pressure at ground level (E) and the solar radiation measurements
(PAR, S and Q) averaged over the duration of each NEE measurement to determine the
coefficients Bi of the 3-factor and Ci of the 2-factor EMGPP models. Table 1 shows the
results and statistical metrics, including coefficient of determination (R2), average and
maximum of the absolute relative bias, δavg and δmax (%), (δ = |ycal − yobs|*100/|yobs|,
where ycal and yobs are calculated and observed GPP), normalized mean square error

(NMSE = (ycal − yobs)
2/(ycal × yobs)) [74], standard deviations of calculated and observed

fluxes (σcal and σobs), mean absolute deviations (MAD, in mgCO2 m−2 s−1 and percentage
of mean measured value, %), and root mean square errors (RMSE, in mgCO2 m−2 s−1 and
in percentage of mean measured value).

Table 1. Coefficients of the EMGPP model (3-factor and 2-factor) (Equation (2)) determined using
carbon flux and solar radiation measurements under low GLPs (S/Q < 0.5) in the Qianyanzhou
conifer plantation during 2013–2014, statistical metrics, i.e., coefficient of determination (R2), average
and maximum of the absolute relative bias (δavg, δmax (%)), normalized mean square error (NMSE), and
standard deviations of calculated and observed fluxes (σcal and σobs), together with mean bias errors
(MAD, mg CO2 m−2 s−1 and %) and root mean square errors (RMSE, mg CO2 m−2 s−1 and %) (n = 91).

Model B1 B2 B3 B0 R2 δavg δmax NMSE σcal σobs
MAD RMSE

(mg CO2 m−2 s−1) (%) (mg CO2 m−2 s−1) (%)

3 factor 0.029 0.992 −0.087 0.085 0.999 9.96 44.04 0.013 0.14 0.13 0.06 9.46 0.07 11.33

Model C1 C2 C0 R2 δavg δmax NMSE σcal σobs
MAD RMSE

(mg CO2 m−2 s−1) (%) (mg CO2 m−2 s−1) (%)

2 factor 0.027 1.014 0.025 0.999 10.25 29.49 0.016 0.14 0.13 0.06 10.12 0.08 12.55

Figure 1 displays the calculated hourly GPP using 3-factor and 2-factor EMGPP models
and measured GPP for S/Q < 0.5 conditions. Figure 2 shows a scatter plot of calculated
versus measured hourly GPP. Generally, the 3-factor and 2-factor EMGPP models agree
with the measurements for S/Q < 0.5 conditions.

3.1.2. EMGPP Models Using 3-Factor and 2-Factor for S/Q ≥ 0.5 Conditions

It is necessary to develop an EMGPP model for high GLP conditions (i.e., S/Q ≥ 0.5).
The data criteria were similar to those for S/Q < 0.5, but the only difference was for S/Q,
i.e., S/Q ≥ 0.5, and all other corresponding observational data were used in EMGPP model
development for S/Q ≥ 0.5. Similarly, the simulated and observed hourly GPP, along with
statistical metrics, is reported in Table 2. In general, the calculated hourly GPP was also
in line with these measured values, but with larger estimation errors (δavg, NMSE, MAD
and RMSE) compared to those for S/Q < 0.5, which was caused by a larger observational
error (σobs) of 0.23 mg CO2 m−2 s−1 at S/Q ≥ 0.5 compared to 0.13 mg CO2 m−2 s−1 at
S/Q < 0.5. Figure 3 shows a scatter plot of calculated versus measured hourly GPP under
all sky conditions for S/Q ≥ 0.5.
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Table 2. Same as Table 1 but for S/Q ≥ 0.5 (n = 985).

Model B1 B2 B3 B0 R2 δavg δmax NMSE σcal σobs
MAD RMSE

(mg CO2 m−2 s−1) (%) (mg CO2 m−2 s−1) (%)

3 factor 0.012 1.128 −0.092 0.072 0.994 15.52 47.91 0.035 0.228 0.226 0.12 15.21 0.15 18.74

Model C1 C2 C0 R2 δavg δmax NMSE σcal σobs
MAD RMSE

(mg CO2 m−2 s−1) (%) (mg CO2 m−2 s−1) (%)

2 factor 0.005 1.171 0.027 0.993 16.20 67.15 0.037 0.235 0.226 0.13 15.66 0.16 19.35
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3.2. Evaluation of the EMGPP Models under All Sky Conditions
3.2.1. Evaluation of EMGPP Models for S/Q < 0.5 Conditions

First, we investigated the performance of 3-factor and 2-factor EMGPP models for
GPP estimates from 22 May 2013 to 31 December 2016. The hourly GPP calculated using
the coefficients in Tables 1 and 2 was compared with the observations for S/Q < 0.5. To
thoroughly investigate performance in detail, we also show the results for the periods of
2013–2014, 2015, 2016 and 2013–2016. The results in Tables 3 and 4 and Figure 4 show that
the estimated monthly GPP using 3-factor and 2-factor models overestimated GPP with a
relative bias of 78.41% and 76.19% during 2013–2016, respectively, and their corresponding
ratios of the mean calculated hourly GPP to the observed were 1.03 and 1.05. Hourly GPP
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calculated using the 2-factor model was generally slightly different from that calculated
using the 3-factor model. Overall, the 3-factor modeled GPP was somewhat closer to the
observed GPP. It is noted that it is not an accurate validation of the EMBE models for these
same data in 2013 and 2014 were used/overlapped for model development and testing,
and the others without 2013 and 2014 data (e.g., 2015, 2016 and 2015–2016) were used
as validations.

Table 3. Hourly GPP simulations in 2013–2016 using 3-factor EMGPP for S/Q < 0.5. The statistical
metrics are the same as in Table 1, along with the ratios of average calculated versus to the observed
GPP during the different time periods (cal/obs).

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mgCO2 m−2 s−1) (%) (mgCO2 m−2 s−1) (%)

2013–2014 83.34 0.365 0.382 0.247 1.01 873 0.259 42.27 0.510 83.08
2015 62.61 0.283 0.334 0.258 1.03 445 0.265 41.60 0.515 80.90
2016 90.21 0.460 0.389 0.301 1.07 322 0.335 53.29 0.580 92.23

2013–2016 78.41 0.357 0.369 0.260 1.03 1665 0.274 44.08 0.378 60.69

Table 4. Same as Table 3 but using the 2-factor EMGPP model (S/Q < 0.5).

Time Period δavg NMSE σcal σobs cal/obs n
MAD RMSE

(mg CO2 m−2 s−1) (%) (mg CO2 m−2 s−1) (%)

2013–2014 76.46 0.333 0.369 0.247 1.04 873 0.252 41.03 0.502 81.84
2015 62.44 0.272 0.329 0.258 1.04 445 0.265 41.59 0.515 80.89
2016 97.44 0.508 0.420 0.301 1.11 322 0.361 57.43 0.602 95.74

2013–2016 76.19 0.349 0.368 0.260 1.05 1665 0.276 44.27 0.378 60.65
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It should be noted that hourly, monthly and annual amounts/averages of GPP were
calculated starting from June 2013 for 2013 (i.e., the hourly data during January–May 2013
were not considered), resulting in the amount of hourly sampling points (2013–2014, 2015,
2016) being less than that in 2013–2016 in Table 3.

According to the hourly GPP estimates, daily, monthly and annual averages and
amounts of GPP were obtained. Monthly amounts of simulated and observed GPP for
S/Q < 0.5 are shown in Figure 4 and Table 5. A scatter plot of calculated versus measured
monthly amounts of GPP is displayed in Figure 5. The 3-factor and 2-factor empirical
models can well capture the GPP monthly and seasonal variations, i.e., higher values in
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summer and lower values in winter [72]. Generally, the 3-factor model performs better
than the 2-factor model. The 2-factor model can also be used when the scattering factor
(e.g., direct or diffuse solar radiation) is not available. The estimated monthly GPP using
3-factor and 2-factor models overestimated GPP with relative biases of 35.66% and 33.19%
during 2013–2016, respectively.

Table 5. Same as Table 3 but for simulations of monthly amounts of GPP (mg CO2 m−2) (S/Q < 0.5).

3-F
Time Period δavg δmax GPPcal GPPobs cal/obs 2-F

Time Period δavg δmax GPPcal GPPobs cal/obs

2013 51.08 137.92 40.74 36.32 0.84 2013 37.88 105.36 41.21 36.32 0.97
2014 33.62 87.80 21.23 23.43 0.77 2014 30.09 86.06 22.14 23.43 0.83
2015 26.82 56.51 29.15 28.35 0.95 2015 22.28 54.46 29.48 28.35 0.99
2016 36.10 139.35 19.72 18.40 1.16 2016 43.52 139.93 20.36 18.40 1.24

2013–2014 40.05 137.92 28.42 28.18 0.80 2013–2014 32.96 105.36 29.16 28.18 0.88

2013–2016 35.66 139.35 26.21 25.53 0.93 2013–2016 33.19 139.93 26.82 25.53 1.01
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Similarly, comparisons of annual amounts of GPP are given in Table 6, and better
estimates were also performed, e.g., the ratios of annual amounts of GPP calculated as
observed were 1.03 (ranging from 0.91 to 1.12) and 1.05 (0.95–1.13). Additionally, the
relative errors were 2.66% (7.20–12.17%) and 5.06% (4.00–13.46%), respectively, for using
3-factor and 2-factor models.

Table 6. Same as Table 5 but for annual amounts of GPP simulations (mg CO2 m−2) for S/Q < 0.5.

3-F
Time Period δavg GPPcal GPPobs cal/obs 2-F

Time Period δavg GPPcal GPPobs cal/obs

2013 12.17 285.17 254.23 1.12 2013 13.46 288.45 254.23 1.13
2014 9.38 254.74 281.11 0.91 2014 5.50 265.66 281.11 0.95
2015 2.83 291.47 283.46 1.03 2015 4.00 294.79 283.46 1.04
2016 7.20 216.94 202.36 1.07 2016 10.68 223.98 202.36 1.11

2013–2014 0.85 539.91 535.34 1.01 2013–2014 3.51 554.11 535.34 1.04
2013–2016 2.66 1048.32 1021.16 1.03 2013–2016 5.06 1072.87 1021.16 1.05

3.2.2. Evaluation of the EMGPP Model for S/Q ≥ 0.5

Similar to the above GPP evaluations for S/Q < 0.5, hourly GPP was also com-
puted using the 3-factor and 2-factor models and compared against the observations from
22 May 2013 to 31 December 2016 for S/Q ≥ 0.5. Compared to measured GPP, the modeled
hourly GPP was overestimated by 41% (range from 28% to 54%) in 2013–2016 (Table 7)
when using the 3-factor model and 38% (26% to 50%) (Table 8) when using the 2-factor
model. In contrast to the GPP estimates at S/Q < 0.5, the calculation errors (δavg, σcal, MAD,
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RMSE) at S/Q ≥ 0.5 increased to different extents, which was mainly caused by the larger
and increased observational errors in GPP, solar radiation and meteorological variables. For
example, the standard errors (σobs) were 0.298 and 0.260 mg CO2 m−2 for observed GPP at
S/Q ≥ 0.5 and S/Q < 0.5 during 2013–2016, respectively, increasing by 15% at S/Q ≥ 0.5
compared to that at S/Q < 0.5. Similarly, the standard error of the observed S/Q, 0.144
at S/Q ≥ 0.5 also increased compared to 0.075 at S/Q < 0.5 during 2013–2016, implying
the high atmospheric substance (e.g., aerosols, clouds, fog) loads and the complicated
scattering processes in PAR transfer lead to large errors in observations and calculations at
S/Q ≥ 0.5 conditions. In addition, the averages of the observed hourly PAR values during
2013–2016 were 3.641 and 1.540 MJ m−2 for S/Q ≥ 0.5 and S/Q < 0.5, respectively.

Table 7. Same as Table 3, but for hourly GPP estimates in 2013–2016 using 3-factor EMGPP
(S/Q ≥ 0.5).

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mg CO2 m−2 s−1) (%) (mg CO2 m−2 s−1) (%)

2013–2014 143.80 0.582 0.388 0.293 1.42 5759 0.295 70.83 0.543 130.46
2015 156.93 0.653 0.387 0.287 1.54 3617 0.332 79.89 0.576 138.75
2016 156.01 0.626 0.368 0.312 1.28 3552 0.349 73.65 0.591 124.73

2013–2016 150.73 0.611 0.382 0.298 1.41 13031 0.320 73.93 0.402 92.83

Table 8. Same as Table 7 but for hourly GPP estimates using 2-factor EMGPP for S/Q ≥ 0.5.

Time
δavg NMSE σcal σobs cal/obs n

MAD RMSE

Period (mg CO2 m−2 s−1) (%) (mg CO2 m−2 s−1) (%)

2013–2014 137.05 0.522 0.368 0.293 1.39 5759 0.282 67.83 0.531 127.66
2015 148.56 0.557 0.366 0.287 1.50 3617 0.306 73.83 0.554 133.34
2016 146.65 0.576 0.353 0.312 1.26 3552 0.328 69.25 0.573 120.95

2013–2016 143.08 0.545 0.364 0.298 1.38 13,031 0.302 69.71 0.375 86.71

The monthly amounts of the calculated and observed GPP for S/Q≥ 0.5 are displayed
in Figure 6 and Table 9. Overall, most monthly GPP estimates agreed with the observed
values within 2 times the standard deviations of the observed values. Monthly amount
GPP estimates overestimated by 32% (the range of the ratio of calculated to observed GPP
was 0.28–1.90) and 27% (0.29–1.90) during 2013–2016 using 3-factor and 2-factor models,
respectively. Both monthly amount GPP simulations using 3-factor and 2-factor models can
also easily capture seasonal variations (higher in summer and lower in winter) and have
similar GPP values, indicating that both models can be used to compute GPP for S/Q ≥ 0.5.
A scatter plot of calculated versus measured monthly amounts of GPP is given in Figure S1
(in Supplementary Material).

Generally, the 3-factor model generates a better simulation than the 2-factor model.
The 2-factor model can also be selected. Both the 3-factor and 2-factor models overestimated
GPP with a relative bias of 45.91% and 45.66% from 2013–2016, respectively.

The comparisons of annual amounts of GPP are given in Table S1 (In Supplementary
Material), and EMGPP models generated reasonable simulations. The ratios of annual
amounts of GPP calculated versus observed were 1.41 (ranging from 1.26 to 1.54) and 1.38
(1.25–1.50) using 3-factor and 2-factor models, respectively. It is evident that the estimation
errors using 3-factor and 2-factor models increased the most compared to those of S/Q < 0.5
conditions, which is understandable and caused by the increased measurement errors
accompanying high GLP loads (including aerosols, clouds, fogs, dews and smogs).
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Figure 6. Observed and calculated monthly amounts of GPP using the 3-factor and 2-factor EMGPP
models (GPPobs, GPPcal 3F and GPPcal 2F, respectively) with error bars showing 2 times standard
deviations in the observed GPP during 2013–2016 (S/Q ≥ 0.5).

Table 9. Same as Table 5 and for simulations of monthly amounts of GPP (mg CO2 m−2) (S/Q ≥ 0.5).

3-F
Time Period δavg δmax GPPcal GPPobs cal/obs 2-F

Time Period δavg δmax GPPcal GPPobs cal/obs

2013 43.62 77.66 169.86 134.17 1.19 2013 42.62 74.40 169.71 134.17 1.19
2014 51.87 92.51 183.79 121.52 1.37 2014 50.90 90.06 178.56 121.52 1.31
2015 50.20 95.21 193.13 125.12 1.45 2015 48.70 89.28 187.62 125.12 1.39
2016 36.99 65.80 179.30 140.17 1.20 2016 39.15 70.01 175.86 140.17 1.16

2013–2014 48.83 92.51 178.66 126.18 1.30 2013–2014 47.85 90.06 175.30 126.18 1.26
2013–2016 45.91 95.21 182.87 129.79 1.32 2013–2016 45.66 90.06 178.89 129.79 1.27

3.3. GPP Simulations and Measurements under All Sky Conditions during 2013–2016

To fully investigate GPP levels and variations under all sky conditions, all hourly GPP
was calculated by the 2-factor and 3-factor EMGPP models and combined coefficients for
S/Q < 0.5 and S/Q≥ 0.5 (all hourly GPP during 1 January 2013–21 May 2013 was calculated
using the 2-factor EMGPP model, as the direct radiation and S/Q values were not available).
All statistical metrics are shown in Tables S2 and S3 (in Supplementary Material) for the
3-factor and 2-factor models, respectively. Under all sky conditions, hourly GPP estimates
(including S/Q < 0.5 and S/Q ≥ 0.5) were generally larger than the observed values, and
simulation errors (δavg, σcal, MAD, RMSE) were larger than those for S/Q < 0.5 conditions
and slightly smaller than those for S/Q ≥ 0.5 conditions. Specifically, the mean simulated
hourly GPP was overestimated compared to observed GPP by 31% (ranging from 15% to
43%) from 2013–2016; RMSE values were 0.398 mg CO2 m−2 s−1 and 87.60% when using the
3-factor model, and the corresponding values were 29% (17%-39%), 0.378 mg CO2 m−2 s−1,
83.23% when using the 2-factor model. Generally, the EMGPP models showed similar
performance over the model development and nonmodel development periods. Thus, the
EMGPP model can be applied to simulate GPP under all skies.

Likewise, the mean simulated daily GPP overestimated the observed GPP by 31%
during 2013–2016; RMSE values were 3.55 g C m−2 and 87.60% when using the 3-factor
model, and the corresponding values were 29%, 3.43 g C m−2 and 83.23% when using the
2-factor model.

Monthly amounts of calculated and observed GPP for S/Q = 0–1 are displayed in
Figures S2 and S3 (in Supplementary Material) and Table S4 (in Supplementary Material).
Most monthly amounts of GPP estimates showed reasonable agreement with the obser-
vations within 2 times the standard deviations of the observed. For using 3-factor and
2-factor models: (1) The estimated monthly amounts of GPP were overestimated compared
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to observed GPP by 22% (the range of the ratio of calculated to observed GPP was 0.28–1.90)
and 18% (0.23–1.86) from 2013–2016, respectively. (2) The R2 values between the estimated
and observed monthly amounts of GPP were 0.86 and 0.87, respectively. (3) Monthly
GPP estimates using 3-factor and 2-factor models can also capture seasonal variations and
have similar GPP values when S/Q = 0–1, indicating that both models can be applied to
calculate GPP under all sky conditions. (4) The annual mean GPP estimates overestimated
the observed GPP by 31% (ranging from 15% to 43%) and 29% (17–39%), respectively.

Annual amounts of GPP over different periods in 2013–2016 were calculated and
compared with the observed values (Table S5, in Supplementary Material).

The EMGPP models also displayed reasonable performance; the ratios of the annual
amounts of GPP calculated versus observed were 1.41 (ranging from 1.15 to 1.43) and
1.29 (1.17–1.39) when using the 3-factor and 2-factor models, respectively, that is, the
empirical models still overestimated the annual amounts of GPP by approximately 41%
(15–43%) and 29% (17–39%), respectively, while the 2-factor model presented a slightly
better performance. Generally, the model performance for S/Q = 0–1 was better than that
for S/Q ≥ 0.5 and worse than that for S/Q < 0.5.

Yale Interactive Terrestrial Biosphere (YIB) estimations reproduce measured GPP sea-
sonality (correlation coefficient R > 0.9) with low biases (−21–15%) at 5 out of 10 sites
in China. The calculated GPP shows reasonable seasonality in Qianyanzhou Forest, al-
though the YIB model overestimates its magnitude by 71% [75]. The mean RMSE for
GPP is approximately 3.21 g C m−2 day−1 for 57 evergreen coniferous forest (ENF) sites
calculated using the YIB model [76], which is in good agreement with the values of 3.55
and 3.44 g C m−2 day−1 in 2013–2016 obtained when using 3-factor and 2-factor models,
respectively (n = 1320). The YIB model yields mean biases of GPP of −33–50% (equivalent
to ratios 0.7–1.5) for 117 out of 195 sites [76]. The ratios are smaller than 1.50 (ranging from
1.15–1.43 and 1.17–1.39 for the 3-factor and 2-factor models, respectively) under different
conditions in this study (Table S5, in Supplementary Material). It should be mentioned
that the YIB model shows good GPP performance in model evaluations among 17 dynamic
global vegetation models (DGVMs) [77].

Specifically, YIB simulations show good performance at flux sites in China [75,76].
The predicted GPP shows reasonable seasonality at an EBF site (CN-Din) in the south,
although the model overestimates its magnitude by 71%. For the remaining 4 sites, the
model underestimates GPP by 49–90%. The lowest correlations (R < 0.6) are found at two
northern grassland sites (CN-Sw2 and CN-Du3) because simulations yield near-zero values
in winter, while observations still show high values. Additionally, the simulated biases
of annual GPP using the original Biome-BGC model and those from data assimilation are
−21.76% and −1.62%, respectively [78]. The RMSE values for estimated GPP at 8 days in
the Qianyanzhou coniferous forest were 13.41–20.44 g C m−2 and 35.35–53.88% between
the VPM (vegeration photosynthesis model), EC-LUE (eddy covariance-light use efficiency
model), TG (temperature and greenness model), and MODIS-PSN (moderate resolution
imaging spectroradiometer-photosynthesis) models compared to the observed GPP [79].

3.4. Sensitivity Analysis of GPP

The sensitivity/response of GPP to changes in its influencing factors (i.e., PAR, E and
S/Q changed by −80%, −40%, −20%, +20%, +40%, +80%, +160%) was calculated using
the 3-factor EMGPP model. Under realistic atmospheric conditions, the change in GPP
due to a change in each factor was studied while keeping all other factors at their original
levels. In this sensitivity test, the data in developing the EMGPP models were used for
the conditions of S/Q < 0.5 and S/Q ≥ 0.5. Their samples were 91 and 985, respectively.
The mean changes in GPP (%) in response to the change in each factor (%) are shown in
Figure S4 (in Supplementary Material) and Table S6 (in Supplementary Material) (taking
the change rates of 20% in each influencing factor as an example).

It is evident that GPP at this conifer plantation was more sensitive to PAR than
to water vapor and S/Q and more sensitive to water vapor than to S/Q at low S/Q,
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corresponding to better/cleaner atmospheric conditions (high PAR and air temperature
and low GLP loads, mainly aerosols, clouds and smog). At high S/Q corresponding to
the worse/smoggy atmospheric conditions (low PAR and air temperature, and large GLP
loads), GPP was most sensitive to E (meaning that the water supply/drought is a very
important and predominant factor in controlling/influencing GPP under most atmospheric
conditions) than to PAR and S/Q and was slightly more sensitive to PAR than to S/Q.
This result reveals that GPP would decrease significantly with only the increase in PAR
at low S/Q (e.g., under the conditions of stomatal closure at noon in the summer) and
a much smaller GPP decrease at high S/Q (Table S5, in Supplementary Material). The
increase or decrease in GPP with the decrease or increase in PAR reveals a mechanism by
which the PAR energy is absorbed and utilized by plants, while all other factors remain
at their original levels. GPP will increase similarly to the increase in water vapor under
both S/Q conditions, meaning that sufficient water supplies are beneficial to plant growth
and ecosystem carbon uptake. GPP will increase with a decrease in S/Q, implying that the
decrease in scattering GLPs in the atmosphere results in an increase in diffuse PAR arriving
at the canopy, followed by an increase in GPP, which corresponds to enhanced diffuse
radiation promoting carbon assimilation [80–86], and increased cloudiness reduces total
radiation, which decreases GPP [87]. The mechanism of and relationship between scattered
PAR (or scattered GLPs, S/Q) and GPP are also manifested when higher GLP loads (i.e.,
S/Q) cause a larger decrease in GPP (compared to lower GLP loads) when S/Q changes at
the same rate, and vice versa (Table S5, in Supplementary Material). The responses of GPP
to its influencing factors strongly depend on the levels of influencing factors, e.g., larger
responses of GPP to PAR at high PAR (4.57 µmol m−2 s−1, S/Q < 0.5) and to S/Q for high
S/Q (0.76, S/Q ≥ 0.5), along with closer responses of GPP to E at close E (~28.0 hPa) under
S/Q < 0.5 and S/Q≥ 0.5 conditions. The average S/Q value of 0.85 under all sky conditions
in 2013–2016 indicated that the atmosphere in the Qianyanzhou region was dominated by
high GLP loads, i.e., S/Q ≥ 0.5 (Section 2.1). Under these atmospheric conditions (common
situations), (1) GPP will increase with climate wetting and decrease with climate drought,
and climate drought will lead to a larger influence on GPP increase (i.e., enhancement
in carbon fixation capacity) than on GPP loss caused by climate wetting; (2) GPP would
increase with the cleaner atmosphere (decrease in S/Q), meaning that the carbon fixation
capacity of the forest would benefit from the cleaner air and improved air quality (low GLP
concentrations). It should be noted that the response of GPP to the decrease of each factor
was slightly larger than to the increase of each factor. Therefore, a cleaner atmosphere and
better air quality will be favorable for more carbon fixation in plants, i.e., carbon emission
peaks and carbon neutrality will lead to more GPP and slow climate warming. Furthermore,
air pollution control and carbon peak and carbon neutrality have beneficial and positive
effects on nature and human beings. Similar results to cobenefits of carbon neutrality and
air pollution reduction have been reported [88].

In addition, the sensitivity results can also be used as references to evaluate the uncertain-
ties of the empirical model, including with the changes in each factor or their combinations.

4. Discussion
4.1. EMGPP/CO2, PAR and Related Mechanisms

The EMGPP model expresses PAR transfer and usage in atmosphere–vegetation–land
associated with the PAR attenuation of the equivalent CO2 for producing GPP, absorption
and usage of PAR due to GLPs (except CO2), and GLPs scattering.

In brief, PAR absorption and indirect utilization by GLPs through chemical and
photochemical reactions mainly include NO2 + hv (λ > 420 nm) → NO2*, NO2* + H2O
→ HONO + OH [89], and BVOCs + OH + O3. The photochemical term represents the
total PAR utilization by all atmospheric GLPs (except CO2) associated with NO2* and OH
radicals. In Equations (1) and (2), the photochemical term, the scattering term and the
complex interactions between PAR and the three terms (absorbing, scattering and BVOC
terms, which are replaced by the GPP term in this study) are fully explained in previous
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papers [27,40,70]. In more specific, the chemical compositions (O3, NOx, SO2, HCHO,
etc.) react with BVOCs and anthropogenic VOCs (AVOCs) through OH radicals and H2O;
their roles are implicitly described in the photochemical term in EMBE and EMGPP. If
the individual roles of these species in GPP and BVOCs need to be studied quantitatively,
the specific constituents (e.g., O3) can be added and explicitly described in EMGPP and
EMBE, following the previous successful method [40,90]. The fact that high O3 results in
GPP decline in general [91,92] is an important issue, and the authors suggest studying it by
adding an O3 term to EMGPP in the future.

The EMBE model can reasonably simulate BVOC emission fluxes over different time
scales (diurnal to annual) and in different situations (e.g., single measurement and hourly
average in the measurement campaign) [27]. Although the BVOC concentrations (usually
in ppb or ppt) were very low in the atmosphere, their roles in PAR and interactions with
other factors (e.g., photochemical and scattering) can be readily captured and represented
in photochemical and scattering terms. Similarly, CO2 concentration (several hundred
ppm) is much higher than BVOCs in the atmosphere and its role can also be captured by
using the PAR balance method and expressed in their related terms.

PAR balance and EMGPP (Equations (1) and (2)) express the multiple interactions of
PAR, CO2 and other GLPs associated with the main energy processes of CO2, absorbing
and scattering GLPs, i.e., solar energy-atmospheric substances. Thus, the objective energy
relationships were quantified and then applied to compute GPP.

The signs of coefficients Ai are −, +, +, − in Equation (1) (corresponding to Bi +,
+, −, + in Equation (2)), demonstrating that GPP resulting from the presence of PAR is
attenuated by the equivalent CO2 in the atmosphere. The negative sign of A1 reveals
that this part of the energy is captured from the photochemical term/system through the
interactions between CO2 molecules and PAR photons, total PAR direct absorption and
indirect consumption by all atmospheric GLPs (excluding CO2). This is similar to the roles
of BVOCs in this coniferous forest [27].

4.2. Performance of EMGPP

Data quality plays a more vital role than data quantity in empirical model development
and evaluation. For example, though the small observational datasets 8 and 18 were used
in EMBE models for isoprene and monoterpenes, respectively [27], the EMBE showed
reasonable performance. Compare to EMBE development, more datasets were used in
EMGPP development and the GPP simulations (~4 years) were acceptable by similar
uncertainties with the observations (e.g., 20–50%) [26] and widely used models (e.g., RMSE).

It is difficult to find hourly results of other models for more comparisons and evalu-
ations of the EMGPP, which may be related to large uncertainties in GPP hourly simula-
tions/processes. This study focuses on the simulation of GPP as a first step, the simulations
of respiration and NEE (or the partitioning of GPP), as well as long-term variations in GPP,
respiration and NEE since 2003 will be investigated in other studies.

Accurate simulations of PAR and global solar radiation at high GLP loads (S/Q > 0.5)
are still significant challenges [93] for GPP calculations, compared to GPP estimates at
high with low S/Q levels. More studies in improving estimations of PAR and global solar
radiation as well GPP in high S/Q situations are needed.

It should be mentioned that once CO2 is emitted into the atmosphere, it takes part
in the attenuation, absorbing and scattering processes described/captured by GPP (corre-
sponding to total CO2), photochemical and scattering terms (temperature, water vapor, S/Q
factors), respectively, i.e., CO2 interacts with other atmospheric substances and PAR that
is attenuated by the absorption and scattering of GLPs. That means that CO2/GPP is not
controlled by PAR only. This is another reason to study GPP in this study and respiration
and NEE in other studies.

Dong et al. [26] reported a relative uncertainty of 20–50% for CO2 flux measurements
by eddy covariance, which depends on high or low CO2 flux magnitudes. Annual amounts
of net ecosystem CO2 exchange with an error bound of 600 ± 130 g C m−2 year−1 and
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300 ± 180 g C m−2 year−1 in different forests [24]. The uncertainty in the annual estimation
of NEE is 12–32%, as reported by Loescher et al. [25]. Comparisons between annual
estimates using traditional ecological models and eddy covariance measurements are in
agreement with 5%, 30% and 100% (for NEP) [22–24]. The RMSE values of the Breathing
Earth System Simulator (BESS) and MODIS 8-day composite GPP products evaluated
against flux tower observations are 2.58 (ranging from 1.37–3.86) g C m−2 d−1 and 2.86
(1.56–4.80) g C m−2 d−1, respectively [94]. All of the above results are beneficial and useful
for understanding the uncertainties in measurements and model simulations.

According to the calculations and evaluations of hourly, daily, monthly and annual
GPP and the similar RMSE values for GPP simulations with the widely used models [76–79],
as well as the above uncertainties in CO2 flux observations and model estimates, EMGPP
can be used to simulate GPP in this coniferous forest. As a first step, the application of
the EMBE model was suitable for GPP simulations at this site. Based on the previously
successful development of EMBE in this forest to other typical forests in China [27], further
development of EMGPP for other ecological systems in China, such as the grass ecosystem,
is necessary and beneficial, [95,96].

The EMGPP model performances for daily averages during 2013–2016 were similar to
those for hourly averages and are not shown for the purpose of saving space. To thoroughly
understand the absorbing and scattering processes, it is suggested to measure direct and/or
diffuse solar radiation at sites in China and around the world. The 3-factor model provides
a more thorough understanding of the processes than the 2-factor model.

There were larger drops in the measured monthly amounts of GPP in July and August
2016, which were found and caused by some problems in CO2 flux measurements. The
simulated hourly and monthly GPP can be used to correct these observed GPP (Figure S2).

The previous model studies are too complicated, and many CO2 processes/key pa-
rameters are simulated along with assumptions, most of which are interconnected and
difficult and time-consuming to express independently, whereas, the EMGPP model can
well study multiple interactions between solar radiation, atmosphere and vegetation, using
a few parameters which are obtained easily from weather and solar radiation stations,
requiring fewer assumptions and saving computing time.

4.3. GPP and Its Driving Factors under Different Sky Conditions

Water vapor pressure is an objective factor to represent the dynamic exchange and
balance (or vapor pressure deficit, VPD) of water and water vapor among the atmosphere,
plants and soil, as well as PAR use by GLPs, i.e., water vapor plays vital roles in not only
water circulation but also PAR energy use/transfer (through OH radicals) in atmosphere–
plant–land interaction. It should be mentioned that the responses of GPP to the changes in
air temperature and relative humidity are extrapolated from and similar to (i.e., positive or
negative) those in water vapor, as there is an inherent relation between water vapor and air
temperature and relative humidity (T and RH) [97]. Water vapor pressure acts not only as
a surrogate for T and RH, but in more significant and objective roles than T and RH in the
processes in the atmosphere, vegetation and land. The dominant roles of temperature in
GPP or BVOCs can be represented by/reflected in the water vapor factor (such as in the
sensitivity test) to some extent. In more detail, water supply and drought play different
roles under different sky conditions (e.g., high or low S/Q). For example, precipitation can
accelerate GPP in this subtropical Pinus forest [72,98]. Further investigations about water
supply (precipitation, drought, etc.) are still needed.

At the canopy interface, chloroplasts absorb the incoming PAR to convert CO2 and
H2O and decompose water into [H] and O2. The attenuated PAR by CO2 (equivalent to
GPP and described by GPP term) in the atmosphere was utilized by plants to produce GPP,
which is described by the GPP term. The GPP increase/decrease with the decrease/increase
in PAR clearly indicates this intrinsic relationship of PAR transfer, use and conversion
between the atmosphere and plants (sensitivity analysis). GPP increases with the decrease
in S/Q (corresponding to the increase in scattered PAR, i.e., the decrease in S/Q leads to
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the increase in scattering e−S/Q), and GPP increases with the increase in water vapor/water
supply. These results were in good agreement with several model studies and observations,
e.g., the increased diffuse radiation results in the enhancement of GPP [80,81,83–87,99,100],
indicating that similar mechanisms exist in the ecosystem in different regions and that
the EMGPP empirical model can reasonably describe some mechanisms in GPP. The PAR
energy point of view deserves further investigation to study complicated GPP processes
and multiple interactions in PAR–atmosphere–vegetation–land. In more detail, there
are dynamic exchanges of chemical components (e.g., CO2, BVOCs, water, particles) in
the atmosphere–vegetation (by stoma)–soil. It should be also emphasized that there are
multiple interactions in GPP and its influencing factors (PAR, E, S/Q) as well as their related
processes (absorption and scattering in the atmosphere), not one-direction interactions
acting as assumed in the sensitivity test. It is important and beneficial to develop an
energy method to reveal the inherent mechanisms/interactions associated with GPP and
capture/quantify its main processes. GPP and all its associated factors/processes change
synchronously, and PAR-CO2-other GLPs-biosphere-land is suggested to be studied as a
whole system.

4.4. The Relationship between BVOCs and NEE

The contributions of BVOC emissions (including isoprene and monoterpenes) to NEE
and GPP (BVOCs/NEE, BVOCs/GPP) were 3.5% and 0.8%, respectively, from
2013–2016, according to the hourly average estimates of BVOC emissions [27] and GPP and
the observed NEE. The ratio of BVOCs/NEE varies from a few percent in most forests to
25% in a mopane savanna woodland, Botswana (19◦54 S, 23◦33 E) [31–33,35]. The ratio of
BVOCs/GPP is 0.6% at a ponderosa pine plantation [34] and close to but slightly smaller
than that at the Qianyanzhou conifer plantation. The ratios of BVOCs/NEE were 3.5% from
2013–2016, which was an updated value compared to the previous 1.5% using the annual
NEE in 2003 [27], 4.0% in a ponderosa pine plantation (38◦53′ N, 120◦37′ W) [34], less than
1.0% in the Changbai Mountains temperate forest (42◦24′ N, 128◦6′ E) from June-September
(except for 1.4% in September) [70] and 0.63% at a poplar short-rotation plantation (51◦6′44′′ N,
3◦51′2′′ E), Belgium [101]. In the Inner Mongolia grassland (43◦26′–44◦08′ N, 116◦04′–117◦05′ E),
isoprene/NEE was 2.8–4.3% during the growing seasons of 2002 and 2003 [69]. It is specu-
lated that BVOCs/NEE is higher in the tropical zone, followed by a decline in subtropical
and then temperate zones. However, grasslands may have a larger ratio than forests, and
further confirmation is needed. It should be noted that BVOCs are necessary compositions
of carbon emitted by vegetation into the atmosphere; although they make up small fractions
in forests and grasslands, they play significant roles in O3 and aerosol formation as well as
cloud formation through chemical and photochemical reactions, influencing solar radiation
transfer and distribution in the atmosphere and global warming [5,31,38,43,93,102,103]. In
addition, as BVOC emissions are significant to carbon balance on a global scale [31,37],
total amounts of BVOCs emitted into the atmosphere should be considered in regional and
global carbon balance [34].

Strong linear and nonlinear relationships were found between BVOCs/NEE and
climate zones for the ecosystems except the Inner Mongolia grassland and the savanna
woodland (Figure S5).

The responses of BVOCs (using the REA technique and taking isoprene as a repre-
sentative) to changes in each driving factor (i.e., PAR, E, S/Q) were generally much larger
than those for GPP, which was observed and confirmed in a subarctic wet heath by [104]
that warming increases gross ecosystem production, but these increases are much lower
than those for BVOCs, and the responses to PAR and E (E also represents air tempera-
ture) were much higher than those to S/Q for BVOCs and GPP [27] (Tables S6 and S7,
in Supplementary Material). The nonlinear relationship is more reasonable for revealing
intrinsic interactions between BVOCs, GPP and their controlling factors described in EMBE
and EMGPP models. These mechanisms are the main reasons for the strong relationship
between BVOCs/NEE and climate zones, and BVOCs/NEE values are higher in tropical
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climates with high PAR and water vapor and lower in temperate climates with low PAR
and E. Based on this mechanism (BVOCs/NEE is mainly dependent on PAR and water
vapor), it is speculated that BVOCs/NEE is the largest in the tropical climate and the
smallest in the Arctic/subarctic, and more evidence is needed. A similar mechanism but for
a positive and nonlinear relationship between isoprene/CO2 and leaf temperature ranging
from 20 ◦C to 40 ◦C is observed [31].

4.5. Interactions between GLPs (CO2, BVOCs), Solar Radiation and Climate Change and Their
Potential Effects

It was found that the more GLPs there are in the atmosphere, the higher the air
temperature is, and a strong positive relationship exists in air temperature and scattering
factor at three sites (in the Arctic, Antarctic and mid-latitude in the Northern Hemisphere)
in long-term annual averages [5]. In the context of multiple interactions of GLPs (GHGs
and non-GHGs, air pollutants, etc.) and solar radiation (global, PAR, UV, etc.), an increasing
amount of carbon will be fixed in vegetation in a cleaner atmosphere (sensitivity section),
i.e., carbon emission peaks and carbon neutrality and better air quality will have positive
effects in controlling climate warming and promote the achievement of UN sustainable
development goals (SDGs).

Atmospheric GLPs, coming from primary emissions (e.g., NO2, NO, SO2, AVOCs,
BVOCs and particulate matter) and secondary production (e.g., O3, secondary organic com-
pounds, black carbon and HCHO) through chemical and photochemical reactions triggered
by solar UV and visible radiation, change with solar radiation over horizontal and vertical
scales. The interactions in solar radiation and all kinds of absorbing and scattering GLPs are
region dependent. Some GLPs absorb solar radiation in different wavelength bands (UV,
visible and near-infrared) [38,40,43,93], and others indirectly use solar radiation energy by
reacting with these absorbing GLPs, OH radicals, water, water vapor and reactive BVOCs,
including C2H2O2, CH3CO radical, NO3 radical, OClO, CHOCHO, biacetyl, butenedial,
NOCl, and thousands of AVOCs and BVOCs [40,46,89,103,105–107]. In addition, pyruvic
acid and all three α-dicarbonyl compounds have absorptions in the visible and UV re-
gions [108]. Thus, GLPs and solar radiation interact in 3 dimensions regionally and globally
and control climate and climate change. CO2, GHGs and non-GHGs, along with other
GLPs, should be considered together in mitigating global warming, as they are undergoing
different absorbing and scattering processes and later contributing to climate change [5,93].
In addition, astronomical factors should also be considered [109].

According to all the above results, i.e., GPP simulations, sensitivity analysis and its
revealed mechanisms and BVOCs/NEE, the PAR energy method is a good option and tool
to explore and understand the key processes as well as complex interactions/mechanisms
between radiation–atmosphere–biosphere–land and to avoid considering a large number
of specific processes and their complicated expressions. The application of EMGPP is time-
saving, makes fewer assumptions, and uses inputs which are easily obtained at stations.
They are the innovations of using energy balance principle.

5. Conclusions

With further application of a previously developed empirical model of BVOC emis-
sions at a subtropical conifer plantation, China, an empirical model of GPP in this plantation
was developed for a better understanding of the processes of GPP and the relationships
in GPP and its driving factors. In model development using 2013–2014 observations,
3-factor and 2-factor EMGPP models generally performed good simulations for hourly,
daily, monthly and annual GPP values. For example, when using a 3-factor model,
the hourly GPP overestimated the observed GPP by 9.96% and 15.52%, respectively,
for S/Q < 0.5 and S/Q ≥ 0.5 situations, and their corresponding RMSE values were
0.07 mg CO2 m−2 s−1 and 11.33% and 0.15 mg CO2 m−2 s−1 and 18.74%. Evaluations were
conducted for hourly, daily, monthly and annual GPP against observations in 2013–2016
under all skies (i.e., all S/Q conditions), and reasonable agreement was found between
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simulated and observed GPP. Generally, the modeled GPP values were still larger than the
measured values, and their standard deviations were relatively close. The GPP in 2013–2016
under all sky conditions was computed using 3-factor and 2-factor EMGPP models, and the
simulated annual amount of GPP overestimated these observed values by 41% and 29%,
respectively. The GPP empirical model captured some characteristics, such as diurnal and
seasonal variation patterns. The 2-factor empirical model indicated similar performance as
the 3-factor model and can be used when diffuse or direct solar radiation is not available.

Sensitivity analysis demonstrated that the responses of GPP to its driving factors (PAR,
water vapor and S/Q) evidently changed at different atmospheric GLP loads (i.e., S/Q < 0.5
and S/Q ≥ 0.5, the latter condition being a predominant state of the atmosphere), namely,
GPP was more sensitive to changes in PAR than that in E and S/Q at low S/Q, while
GPP was most sensitive to the changes in E than to PAR and S/Q at high S/Q. Therefore,
atmospheric column GLP contents should be taken into consideration in the processes of
GPP and the interactions in PAR–CO2–other GLPs. Some inherent relations between GPP
and scattered PAR, water vapor, and atmospheric scattered substances were investigated
extensively, which were confirmed by other observations and model studies.

The contributions of BVOC emissions to NEE (BVOCs/NEE) were small (3.5%) in this
coniferous forest and other forests in the world and exhibited a clear latitudinal variation.
It is assumed that BVOCs/NEE was the largest in the tropical region and lowest in the
Arctic/subarctic region, which was partially confirmed by laboratory measurements and
sensitivity analyses. BVOCs/GPP was 0.8% in this coniferous forest. BVOCs, due to their
very high reactivity, produce large quantities of new atmospheric GLPs, and they are also a
necessary part of carbon in the atmosphere and vegetation; thus, they should be considered
in regional and global carbon balance, as well as climate change and global warming.
Reducing both carbon emissions and air pollutants has beneficial effects on nature.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14061046/s1, Figure S1: Scatter plot of calculated versus
measured monthly sums of GPP in Qianyanzhou subtropical coiferous plantation under atmospheric
conditions S/Q ≥ 0.5, using the 3-factor (left) and 2-factor (right) EMGPP models; Figure S2: Ob-
served and calculated monthly sums of GPP using the 3-factor and 2-factor EMGPP models (GPPobs,
GPPcal 3F and GPPcal 2F, respectively) with error bars showing 2 times standard deviations of the
observed GPPs during 2013–2016 (S/Q = 0–1); Figure S3: Scatter plot of calculated versus measured
monthly sums of GPP in Qianyanzhou subtropical coniferous plantation under all-sky conditions
(S/Q = 0–1), using the 3-factor (left) and 2-factor (right) EMGPP models; Figure S4: GPP change
rates (%) with the change in one factor and other factors kept at their original levels under realistic
atmospheric conditions. a and b represent the change rates that respond to each influencing factor for
S/Q < 0.5 and S/Q ≥ 0.5, respectively; Figure S5: Linear (left) and nonlinear (right) relationships
between BVOCs/NEE and latitude for the forests. The lines are linear and nonlinear fits to the data
for BVOCs/NEE and latitude; Figure S6; Table S1: Same as Table 9 but for annual sums of GPP
simulations (mg CO2 m−2) (S/Q ≥ 0.5); Table S2: Same as Table 7 and for hourly GPP (mg CO2 m−2)
simulations (S/Q = 0–1) using a 3-factor model; Table S3: Same as Table S2 and for hourly GPP
(mg CO2 m−2) simulations (S/Q = 0–1) using a 2-factor model; Table S4: Same as Table 9 and for
simulations of monthly sums of GPP (mg CO2 m−2) (S/Q = 0–1); Table S5: Same as Table 9 but
for annual sums of GPP simulations (mg CO2 m−2) (S/Q = 0–1); Table S6: GPP change rates (%)
for S/Q < 0.5 and S/Q ≥ 0.5 due to the change of one factor (%), while keeping all other factors
at their original value. The averages of PAR, E, S/Q and air temperature (PARavg, Eavg, (S/Q)avg,
Tavg) in different time periods for S/Q < 0.5 and S/Q ≥ 0.5 are also given; Table S7: Isoprene and
monoterpene emission changing rates (Iso REA and MT REA, %) for using relaxed eddy accumula-
tion technique (REA) caused by the change of one factor (%), while keeping all other factors at their
original value [27].
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