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Abstract: This paper assessed the impacts of environmental smog early-warning signals on road
traffic deaths. For an accurate assessment, we used the daily traffic death data from 2016 to 2020
in 295 Chinese cities and constructed a rigorous Regression Discontinuity Design (RDD) strategy
to identify the causality and adopted the high-dimensional fixed-effect method to deal with the
interference of meteorological factors. The results indicate that light smog and moderate smog early
warnings decreased road fatalities by about 3.6% and 4.3%, respectively. Surprisingly, the heavy smog
early-warning signal had no significant effect, possibly because of the self-consciousness mechanism
instead of the early-warning signal mechanism. Further heterogeneity analysis showed that women
drivers, highly-educated drivers, older drivers (over 60 years), two-wheeled vehicle drivers, and
drivers on country roads and freeways are more sensitive to smog early-warning signals.

Keywords: smog early-warning; environmental policy; road traffic deaths; Regression Discontinuity
Design

1. Introduction

Traffic deaths account for most of the unnatural deaths of human beings, and about
1.3 million people die from traffic accidents every year worldwide. Investigating the causes
of traffic accidents and improving the corresponding prevention policies are crucial to
reducing the volume of traffic deaths. Many studies have indicated that in addition to
internal subjective factors such as careless driving and external meteorological factors such
as rain, snow, and fog, environmental factors such as smog pollution [1] are also important
drivers of traffic deaths. Many countries have formulated meteorological warning poli-
cies, including heavy fog warnings, high-temperature warnings, etc., and environmental
warning policies such as smog pollution warnings. It should also be noted that research
in the field of traffic safety includes extensive literature on early-warning policies, but
almost all of them focus on meteorological early-warning policies, while environmental
early-warning policies are largely ignored.

There are obvious differences between environmental early warnings and meteorologi-
cal early warnings. Taking a meteorological heavy fog early warning and an environmental
smog early warning as examples, the former mainly affects people’s vision but does not
cause harm to their health, while the latter mainly damages the health of individuals and
its influence on vision is much less than the former [2]. Previous studies have proved that
environmental smog pollution is more likely to result in traffic deaths by exacerbating
drivers’ physiological and psychological states to reduce their driving performance, rather
than blurring the drivers’ sight as the heavy fog does [1], since the most serious extremely
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heavy smog early-warning can only cause a visual impact of around 1000 m, which has
limited impacts on road driving.

In this paper, we will assess the effects of the environmental smog early warning on
road traffic deaths. To accurately evaluate the effects, we need to resolve two technical
problems. The first is the reverse causal relationship between smog pollution and traffic.
Traffic vehicles are important contributors to the formation of smog pollutants through
the emission of particulates. While many scholars have investigated the effect of traffic on
smog pollution formation, we assess the impact of smog pollution on traffic in reverse. The
second problem is the interference of complex and changeable meteorological factors. The
formation of smog pollution and the occurrence of traffic accidents are strongly related
to weather conditions such as temperature, humidity, heavy fog, wind, etc. We need to
remove the interference of these meteorological factors.

In this paper, we utilized the Regression Discontinuity Design (RDD) strategy and
the high-dimensional fixed-effect method to address the issue of reverse causality and
meteorological interference. The RDD is a quasi-natural experimental method based on the
fundamental idea that smog early-warning signals, which are issued based on different
PM2.5 concentrations, are the sole factor contributing to the reduction of traffic deaths
within small windows near the breakpoints of the early-warning signals. Meanwhile, the
other factors must remain relatively unchanged within that range. The slight rise in PM2.5
concentration only causes the occurrence of early-warning signals, and if they lead to dis-
continuous changes in the number of traffic deaths, those changes may manifest the effects
of early-warning signals on traffic deaths. In the RDD strategy, we can also control the
high-dimensional fixed effects of temperature, humidity, fog, rain, snow, wind, and other
weather factors by groups, which can strictly exclude the interference of meteorological
factors on the estimation.

We collected the records of all traffic death cases from 2016 to 2020 on the Chinese
Judicial Document Network and sorted out the number of traffic deaths per day in 295 pre-
fectural cities. According to the PM2.5 concentrations of different smog pollution levels
(for light smog, moderate smog, and extremely heavy smog, the corresponding PM2.5
concentration thresholds are 150 µg/m3, 250 µg/m3, and 500 µg/m3, respectively), we
constructed RDD models to estimate the effects of different smog pollution early-warning
signals on reducing traffic deaths. In addition, we also conducted a heterogeneity analysis
of the different driver characteristics, vehicle types, and road locations.

This paper contributes to the existing literature in three aspects. Firstly, this paper
contributes to the literature regarding the evaluation of environmental policies. Previous
researchers focused on “environmental regulation” policies, including environmental laws,
environmental administrative regulations [3], or government environmental initiatives and
campaigns, and their impacts on human health, economic growth, enterprise performance,
or social welfare, while little literature involved “environmental warning” policies. This
article concentrates on the effect of environmental smog early-warning policy on traffic
deaths, which can enrich the literature on environmental policy from the perspective of
“warning” rather than “regulation” and extend the research of environmental policy to the
field of traffic safety as well.

Secondly, this paper reveals a new early-warning policy to prevent traffic deaths from
the environmental aspect rather than from the meteorological perspective. Existing studies
of traffic safety early warnings have paid attention to severe weather conditions, including
heavy fog warnings, rain and snow warnings, typhoon warnings, and high-temperature
warnings. However, the effect of environmental early-warning signals has been neglected.
It is hoped that the conclusion of this paper will inspire traffic sectors to further enrich
traffic safety policies from the environmental aspect.

Thirdly, this paper designs a rigorous econometric method for assessing environmental
smog early-warning policies. Scholars usually use panel data with the fixed effects model
or Difference-in-Differences methods to evaluate environmental policies, while we design
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a stricter RDD strategy based on the PM2.5 concentration thresholds of the smog early
warnings which can offer methodological ideas for follow-up research.

The contents of this article are arranged as follows. The second section introduces the
policy background and includes a literature review, the third section explains the research
strategies and methods, the fourth section shares the main empirical results, the fifth section
discusses the results, and the sixth section provides a conclusion.

2. Policy Background and Literature Review
2.1. Environmental Smog Early-Warning Policy

While China’s economy has maintained high-speed growth, it has also brought about
increasingly severe environmental pollution problems since the 21st century [4,5]. The
Chinese government has carried out a nationwide early-warning environmental policy
aiming to inform the public to avoid pollution harm, known as the smog early-warning
policy. Small particles in smog pollution (such as PM2.5) can enter people’s pulmonary
alveolar or even the blood from breathing, inducing a variety of diseases of the human
respiratory system and circulatory system, thus increasing their prevalence in the popula-
tion and mortality, reducing the regional life expectancy [6]. In recent years, some of the
literature has pointed out that smog also reduces people’s cognitive abilities and behavioral
performance, and thus has an invisible impact on economic and social activities based on
individual behaviors, such as population migration [7], crime rate, labor productivity, etc.
The China Environment Protection Administration (CEPA) began monitoring fine particles
in the air (such as PM2.5 and PM10) in 2011 and formulated smog early-warning levels
based primarily on PM2.5 concentration to warn everyone to reduce outdoor activities or
wear protective masks when going out starting in 2013.

Different from similar meteorological heavy fog warnings, which focus on visual
effects, the smog warnings pay more attention to the extent of exposure to health dam-
age from particulate matter. The heavy fog weather warning policy is mainly for traffic
drivers, to remind them to drive carefully. The transportation sector usually attaches great
importance to such warning signals, and accordingly takes some preventive traffic control
measures, such as closing roads and artificially guiding traffic flow [8], to minimize the
negative impact of meteorological factors on traffic safety. Compared with the explicit
influence of meteorological factors such as heavy fog on traffic safety, smog, as an environ-
mental pollution factor, has a more hidden impact on safe driving, mainly through health
effects, other than through the visual effects of heavy fog. The smog warning policy is
aimed at the public to remind them to reduce outdoor activities to avoid the harm caused
by tiny particulate matter. However, since the warning is not traffic-oriented, the traffic
departments usually do not take any traffic control measures when they only receive the
smog warning signals [9]. To the best of our knowledge, there seems to be no research on
the effect of environmental warning policy on traffic safety.

2.2. Smog Pollution and Traffic Safety

Since car driving is a continuous, independent, and long-term process that consumes
a lot of human energy and physical strength, it is necessary that the driver have good
physiological functions such as vision and hearing, and fine physical capabilities such
as concentration, reaction speed, and coordination, as well as a healthy psychological
quality and the mental state which can accurately predict the road condition and sensibly
evade danger [10]. Heavy smog will significantly reduce the driver’s visibility, resulting in
delayed response and avoidance, thus increasing the risk of road traffic accidents. However,
Sager’s [1] study shows that even light smog pollution that is not easy to detect visually,
such as the invisible fine particles of PM2.5, will also affect safe driving on the road.

Smog pollution acts covertly on the driver’s physiology and mental or cognitive state,
and then influences safe driving behaviors. Smog pollution can also cause individual
physical discomfort. People breathe in fine particles floating in the air, such as PM2.5, into
the pulmonary alveolar, inducing a variety of respiratory diseases [11], such as cough,
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dyspnea, chest pain [12], etc. It can also permeate into the bloodstream, elevating the risk
of cardiovascular diseases within the circulatory system, such as hypertension and my-
ocardial infarction. This can result in symptoms such as palpitations, dizziness, headaches,
fatigue, and other physical discomforts [13,14]. These physical discomforts may reduce
safe driving practices through subtle changes in driving behaviors since driving distracted
is a significant cause of traffic accidents.

Smog pollution can also worsen the psychological state of individuals, resulting in
more negative emotions [15]. Smog can exacerbate feelings of nervousness, worry, anxiety,
and depression, along with other detrimental psychological effects. Additionally, it can
contribute to heightened irritability, impulsivity, aggression, hatred, disgust, and other
antagonistic negative emotions [16]. Furthermore, it may result in decreased cognitive func-
tion, slower thinking, and cognitive decline [17]. These negative psychological emotions, on
the one hand, can reduce the driver’s judgment and reaction velocity to the potential risks,
and on the other hand, may also cause more “road rage”, thus increasing the possibility of
traffic accidents.

3. Methodology
3.1. Model

We utilized the RDD to assess the impact of smog warning signals on traffic fatalities.
The smog warning signal primarily relies on the PM2.5 concentration. When the concentra-
tion surpasses the warning threshold, the CEPA issues a warning signal, prompting drivers
to adjust their driving behavior accordingly. Conversely, when the concentration is slightly
below the threshold, no warning signal is issued, yet drivers may still be influenced by the
warning. Therefore, we can regard the smog warning signal as an exogenous shock of a
quasi-natural experiment, taking the samples with a PM2.5 concentration higher than the
threshold as the experimental group and the samples lower than that concentration as the
control group. In a small window around the concentration threshold, only the warning
signal changes suddenly, while other factors remain continuous. If, in this smaller window,
we observe that the number of traffic deaths in the experimental group also jumps suddenly
before and after the warning signal compared to the control group, then the change in
traffic deaths can be attributed to the effect of the warning signal.

We constructed independent RDD models based on three types of light smog, moder-
ate smog, and extremely heavy smog early-warning signals.

Deathsit = α0 + α1WarningJ
it + α2f

(
ConcerntrationJ

it

)
+ α3Controlit+∑χw + γt + λi + νit (1)

In Formula (1), Deathsit represents the number of traffic deaths in city i at the time
t (date including the year, month, and day). WarningJ

it is the policy treatment variable.
When the city i has a smog warning J on day t, its value is equal to 1, otherwise its value is
0. J is the level of smog warning, when J = 1, 2, and 3, it represents yellow, orange, and red
warning signals, respectively. ConcerntrationJ

it is the running variable of the model, which

represents the PM2.5 concentration value of city i on day t. f
(

ConcerntrationJ
it

)
is the

polynomial expression of the running variable. According to the suggestion of Gelman and
Imbens, we conducted estimations in linear and quadratic polynomial forms. Controlit are
continuously changing meteorological factors, such as temperature and humidity, etc.; the
discrete control variables χw represent different weather conditions and they are controlled
using the high-dimensional fixed-effect method; γt is a daily time fixed effect, λi is a city
fixed effect, and νit is the error term.

3.2. Data

The traffic death data in this paper came from the Chinese Judicial Document Network
(https://wenshu.court.gov.cn/), accessed on 22 April 2022. The Supreme People’s Court
of China stipulates that starting from 2014 the people’s courts must post their effective
judgments on the Chinese Judicial Document Network. For severe cases such as traffic

https://wenshu.court.gov.cn/
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deaths, as long as the driver is at fault, the regional people’s procuratorate will prosecute
him for suspected “traffic accident crime”, and the court will form a judgment document
and record it in China Judgments online. We focused on the “traffic accident crime”
judgment texts from 2014 to 2021 and downloaded them from the China Judgments online.
We found that the number of judgment documents collected before 2016 was small, which
means that samples are missing; at the same time, since the legal proceedings of traffic
crime usually take several months, the judgment documents of traffic death cases in 2021
were not likely to be all concluded in the same year. Therefore, we decided to use a five-year
study period from 2016 to 2020.

The text content of the court’s judgment had a consistent logical structure, especially
for cases with relatively simple circumstances such as “traffic accident crime”. The content
usually included the following four aspects in sequence: the first is the introduction of the
demographic information of the driver who caused the accident and the judicial processes
he experienced; the second is the prosecution’s statement to the driver of the accident
and its outcome, as well as the corresponding charges; the third is the defense statement
of the driver who caused the accident as the defendant against the charges of the public
prosecution agency; and the fourth is the statement of the court’s decision. Therefore, the
verdict text of “traffic accident crime” contained significant helpful information, which
could fully meet the research needs of this paper. At the same time, the logically consistent
text content also provided convenience for us to obtain structured research data.

This article used the text recognition and crawling functions of EXCEL and Python to
obtain traffic death data from the text of the “traffic accident crime” judgment through the
following steps. Firstly, we deleted the judgment documents from the second and third
trials because the driver who caused the accident may have had an appeal, which would
lead to multiple judgment documents in the same case, resulting in a large and inaccurate
research sample. Secondly, we identified the text associated with “death” and deleted those
“traffic crime” records that did not cause death, such as drunk driving and so on, to ensure
that each sample was a case of traffic death. Thirdly, we extracted the number of people
who died in the accident from the summary statement of the judgment. Fourthly, from
the detailed process statement by the public prosecutor, we located and crawled the exact
date and city of the accident, the characteristics of the driving vehicle (two or four wheels),
and the road section characteristics (city or country, freeway or non-freeway). We also
crawled the driver’s population characteristics (sex, education, and age) from the driver’s
information. Finally, we calculated the daily traffic fatalities for 295 cities in China from
2016 to 2020.

Compared with existing traffic accident research datasets, our traffic crime data from
the Chinese Judicial Document Network may have had three advantages. First, our data
were a national overall sample. Much of the existing evidence on traffic crashes is based
on regional samples, whereas we used broader overall data. Next, we selected the daily
high-frequency data to facilitate the integration of weather and daily smog pollution data
on the spatial and temporal dimensions, which was expected to improve the precision of the
estimates. Finally, every criminal record contained detailed information such as the driver’s
population characteristics, the specific location of the collision, and the characteristics of
the vehicle which could be used to conduct a detailed heterogeneity analysis to discover
more about the effects.

3.3. Variables
3.3.1. Explained Variables

Our main explained variable was the daily traffic deaths in China’s 295 cities from 2016
to 2020. From the documents, we collated the drivers’ personal characteristics, vehicle types,
and road locations. Based on the information extracted above, we classified driver-culpable
traffic deaths into the following sorts to further study the different effects on different
drivers, vehicles, and roads: man driver, woman driver, older driver (age ≥ 60 years old),
young driver (age ≤ 35 years old), middle-aged driver (35 < age < 60 years old), driver
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with less-education (under university), well-educated driver (university and above), four-
wheeled vehicle, two-wheeled vehicle, city road, country road, freeway, and non-freeway.

3.3.2. Treatment Variable and Running Variable

The treatment variable “whether early-warning” represents whether the daily PM2.5
concentration reached the corresponding early-warning critical value. In this paper, it
was assumed that when the daily PM2.5 concentration exceeded the critical threshold
for early warning, it was considered a warning sample, and the corresponding value
was set to 1. Otherwise, it was set to 0. The running variable was also expressed by the
daily concentration of PM2.5, and the PM2.5 data were from the China Environmental
Monitoring Station.

The effectiveness of our RDD strategies depended on the continuity of the running
variables. If the running variables were not randomly and continuously distributed at the
cutoffs, then the estimated effect may have been due to the running variables rather than
the early-warning policy, making our RDD strategies unreliable. To resolve the above issue,
we adopted the approach of Cattaneo, Jansson, and Ma [18] to conduct the DC−density
test on the daily PM2.5 concentration of the running variables. As depicted in Figure 1, the
density distributions of the running variables exhibited smooth and continuous patterns
around the thresholds for the light smog, moderate smog, and extremely heavy smog
early-warning signals. There were no evident “jumps” observed around the cutoff points,
suggesting that the continuity assumption of the running variables held true.
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3.3.3. Controlling Variables

Taking the daily meteorological factors related to smog pollution and traffic as con-
trolling variables, including continuous and discrete variables, could not only improve
the accuracy of the estimation but also prevent an estimation error as much as possible.
The continuous variables were humidity and temperature. The discrete variables included
eleven weather categories: sprinkle, middle rain, hard rain, thundery rain, sleet, slight
snow, great snow, multi-cloud, clear day, dull day, and foggy; nine wind directions, eastern,
northeast, southeast, northern, northwest, southwest, western, southern, and windless; and
four wind velocity classifications, 0~3, 3~4, 4~5, and above 5. The descriptive statistics for
the control variables are presented in Table 1. All the meteorological data were obtained
from the China National Environmental Monitoring Centre.

Table 1. Summary statistics.

N Mean S.D. Min. Max.

Total road deaths 538,965 0.418 0.156 0 11
PM2.5(µg/m3) 538,965 46.654 30.142 0 1033

Maximum temperature (◦C) 538,965 19.928 3.570 −41 52
Minimum temperature (◦C) 538,965 9.554 3.529 −56 36

Mean temperature (◦C) 538,965 14.654 3.684 −20 38
Humidity (%) 538,965 67.424 18.245 3 100

Weather categories 538,965 3.812 2.380 1 11
Wind direction 538,965 3.543 2.645 1 9
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Table 1. Cont.

N Mean S.D. Min. Max.

Wind velocity class 538,965 1.384 0.667 1 4
Deaths caused by different drivers

Male 538,965 0.202 0.164 0 11
Female 538,965 0.215 0.135 0 5

The elderly (above 60) 538,965 0.072 0.059 0 4
The young (below 35) 538,965 0.179 0.107 0 11

The middle-aged (from 36 to 59) 538,965 0.165 0.096 0 6
The less-educated (under university) 538,965 0.281 0.173 0 11

The well-educated (university and above) 538,965 0.134 0.084 0 5
Deaths caused by different vehicles

Four-wheel 538,965 0.212 0.169 0 11
Two-wheel 538,965 0.203 0.124 0 3

Deaths on different roads
City 538,965 0.218 0.172 0 11

Country 538,965 0.198 0.114 0 7
Freeway 538,965 0.168 0.093 0 11

Non-freeway 538,965 0.247 0.128 0 6
Note: Table 1 provides a summary of the statistics of the dataset. The variable “N” represents the sample size,
indicating the number of observations. “Mean” represents the average value of the samples, providing a measure
of central tendency. “S.D.” represents the standard deviation, indicating the dispersion or variability of the data
points around the mean. “Min.” refers to the minimum value observed in the samples, representing the lowest
data point; similarly, “Max.” refers to the maximum value observed, representing the highest data point in the
samples.

4. Results
4.1. Basic Results
4.1.1. Discontinuity Fitting Curves

To obtain a more intuitive understanding of the effect of smog early-warning signals
on traffic deaths, we presented linear and quadratic trends in the number of traffic deaths
before and after the three early warnings, with fitting curves as shown in Figures 2–4. Each
point in the graph represents the number of traffic deaths at the corresponding PM2.5
concentration, and the solid line represents a non-parametric fit to the data; a jump in the
number of daily traffic fatalities is evident after the light smog and moderate smog early-
warning thresholds, while the jump at the extremely heavy smog early-warning threshold is
less pronounced than at the light smog and moderate smog early-warning thresholds. From
the point of scatter distribution, the light smog early warning is relatively concentrated,
better than the moderate smog early-warning distribution; last is the extremely heavy smog
early warning. The light smog and moderate smog early warnings are relatively stable in
the trend change of the curve before and after the breakpoints, while the extremely heavy
smog early warning is in the opposite direction.
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Figure 2. The light smog early−warning fitting. (a) Linear and (b) quadratic.
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Figure 3. The moderate smog early−warning fitting. (a) Linear and (b) quadratic.
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Note: In Figure 2, “.1“ represents “0.1“ and “.15“ represents “0.15“. Similarly, in other
figures, similar numbers should be interpreted accordingly.

4.1.2. Estimating Results

We used model (1) to conduct RDD estimation of the light smog, moderate smog,
and extremely heavy smog early-warning signals on traffic deaths. In Table 2, the first
and second columns illustrate the linear and quadratic regression results of the light smog
early-warning signal, respectively. The coefficients of the early-warning policy before the
treatment variable are significantly negative, signifying that the light smog early-warning
signal will significantly reduce traffic deaths. Specifically, one light smog early-warning
signal will reduce the total death traffic deaths by about 3.6% (0.015/0.418). Columns
(3) and (4) are the regressions of the moderate smog early-warning signal. Similarly, its
coefficients before the policy treatment variable are significantly negative, indicating that
issuing a moderate smog early-warning signal will reduce the total traffic deaths by about
4.3% (0.018/0.418). Surprisingly, we find from columns (5) and (6) that the estimated
coefficients for extremely heavy smog early-warning signals, although negative, are not
significant, which means that an extremely heavy smog early-warning signal would not
cause a reduction in traffic deaths.
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Table 2. RDD estimations of smog early warnings on traffic deaths.

Light Smog Moderate Smog Extremely Heavy Smog

(1) (2) (3) (4) (5) (6)

Linear Model Quadratic Model Linear Model Quadratic Model Linear Model Quadratic Model

Early-warning −0.014 ***
(0.004)

−0.015 ***
(0.004)

−0.018 **
(0.009)

−0.018 **
(0.011)

−0.008
(0.010)

−0.009
(0.010)

Control Y Y Y Y Y Y

Weather fixed
effects Y Y Y Y Y Y

Date fixed effect Y Y Y Y Y Y

City fixed effect Y Y Y Y Y Y

N 72,574 72,574 36,454 36,454 8356 8356

Note: The standard errors are in brackets. ** p < 0.05, and *** p < 0.01.

The RDD results indicate that the light smog and moderate smog early warnings
significantly reduce traffic accident fatalities, but the extremely heavy smog early-warning
signals do not, which is consistent with the results shown by discontinuity fitting curves.
There are two mechanisms that may determine an individual’s response to smog pollution.
The first is the self-awareness mechanism, that is, individuals autonomously perceive smog
pollution through visual observation or other physiological methods, and actively take
protective measures without the early-warning signal; the second is the early-warning
signal mechanism, that is, individuals are less sensitive to the occurrence of smog pollution,
and the issuance of the early-warning signal of smog makes them aware of the high degree
of outdoor environmental pollution and take corresponding preventive measures. We
believe that when PM2.5 concentrations are close to the light smog and moderate smog
early-warning breakpoints, drivers often cannot directly perceive environmental smog
pollution through sight lines. At this time, they need to receive the smog early-warning
signal before making a behavioral response to drive carefully, that is, the self-recognition
mechanism does not work while the early-warning signal mechanism works. When the
concentration of PM2.5 is near the extremely heavy smog early-warning critical value, the
driver will notice the smog pollution, and take countermeasures spontaneously. In this
case, the extremely heavy smog early-warning signal will no longer serve as a reminder.
We believe that the failure of the extremely heavy smog early warning is due to the self-
awareness mechanism, not the early-warning signal mechanism.

4.2. Robustness Tests
4.2.1. Continuity Tests

We tested the continuity of PM2.5 concentration as a running variable in the 3.3 Vari-
ables section, and here we further test the continuity of other covariates. The covariates in
this paper are continuous weather variables that affect traffic safety and smog pollution,
mainly including maximum temperature, minimum temperature, mean temperature, and
humidity. If these covariates show a significant jump at the cutoffs when the smog early
warnings are issued, the effects of sudden “jumps” in traffic deaths could possibly be due
to these jumping covariates other than the smog early-warning signal, thus resulting in the
bias of our previous estimates.

We examined the continuity of covariates at cutoffs by plotting the fitted curves of
PM2.5 concentrations to those covariates. Figures 5–7 show the results of the covariates
test at the light smog, moderate smog, and extremely heavy smog early-warning policy
cutoffs. It can be seen from the figure that each covariate shows a good continuity before
and after the policy cutoffs and that there are no obvious jumps, indicating that the co-
variates satisfy the continuity assumption, which confirms the reliability of our RDD basic
estimation results.
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4.2.2. Bandwidth Tests

The RDD estimation results are also affected by the bandwidth range [19]. In this
section, we used parametric and non-parametric methods to test the sensitivity of band-
width selections. First, we used the parametric method to test. The results are shown
in Table 3. Based on the initial bandwidth {−40, 40} in the benchmark regressions, we
adjusted the bandwidth to {−30, 30}, {−20, 20}, and {−10, 10} to re-estimate. As shown in
Figure 3, the estimated coefficients of the light smog and moderate smog early warnings are
still significantly negative in the new bandwidths, while the extremely heavy smog early
warning is also insignificant. Regarding the value of the estimated coefficients, although
the absolute value is slightly larger than the basic results, they are basically consistent with
the previous results, which shows that our RDD estimation strategy does not depend on
the selection of bandwidth.

Table 3. RDD results within different bandwidths.

Light Smog Moderate Smog Extremely Heavy Smog

B = 30 B = 20 B = 10 B = 30 B = 20 B = 10 B = 30 B = 20 B = 10

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Early warning −0.016 ***
(0.002)

−0.017 ***
(0.003)

−0.018 ***
(0.003)

−0.020 **
(0.011)

−0.022 **
(0.011)

−0.022 **
(0.012)

−0.009
(0.007)

−0.006
(0.008)

−0.006
(0.009)

Control Y Y Y Y Y Y Y Y Y

Weather fixed
effects Y Y Y Y Y Y Y Y Y

Date fixed
effect Y Y Y Y Y Y Y Y Y

City fixed effect Y Y Y Y Y Y Y Y Y

N 52,464 26,432 12750 24,436 15,285 10,242 6246 3524 1688

Note: The standard errors are in brackets. ** p < 0.05, and *** p < 0.01.
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We further conducted a bandwidth test by non-parametric estimation. Based on the
optimal bandwidth of the RDD non-parametric estimation, we estimated by sequentially
expanding 10% of the optimal bandwidth in the range of 20–200% so as to test its sensitivity
to the selections of bandwidth. As shown in Figure 8, the estimated results are mainly
distributed between 0.013 and 0.015, with significance at the 5% confidence level, which
is mostly consistent with the basic estimate and also convinces us that our benchmark
parameter estimation results are robust.
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4.3. Heterogeneous Effects
4.3.1. Driver Characteristics

As in Table 4, we first inspected the heterogeneous effects of smog early-warning
signals on driver groups of different sexes, education levels, and ages.

The estimations of different sexes are in Panel A. In the light smog and moderate
smog early-warning signals, the regression coefficients of the treatment variables were
remarkably negative at 1% confidence levels for men and women drivers. Nonetheless,
in the extremely heavy smog early-warning signal, only the man driver’s coefficient was
remarkable at the 10% confidence level, while the woman driver’s coefficient was not
remarkable. The estimated results specified that three early-warning signals affect men
drivers significantly, but the extremely heavy smog early-warning signal does not affect
women drivers significantly. One possible explanation for the differences is that women
generally have more extraordinary sensitivity and insight to environmental pollution be-
cause of their mental and physical sensitivities. When the smog rises to the extremely heavy
smog early-warning critical value, the self-awareness mechanism works more potently in
women drivers, which means that women drivers more easily recognize potential risks
and take preventive measures without relying on the extremely heavy smog early-warning
signals. In addition, from the values of estimated coefficients, the absolute values of women
in the light smog and moderate smog early-warning models were significantly larger than
that of men, which indicates that women drivers are more likely than men to take precau-
tions when receiving light smog and moderate smog early-warning signals. It was also
correlated with their higher level of risk awareness in smog-polluted environments. When
receiving the same pollution early-warning signal, women tend to respond more positively
than men.
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Table 4. Heterogeneous effects based on drivers’ characteristics.

Panel A: Heterogeneous Effects on Sex

Light Smog Moderate Smog Extremely Heavy Smog

Man Woman Man Woman Man Woman

Early
warning

−0.005 ***
(0.002)

−0.028 ***
(0.009)

−0.008 ***
(0.003)

−0.028 ***
(0.010)

−0.008 *
(0.005)

−0.009
(0.011)

Panel B: Heterogeneous Effects on Education

Light smog Moderate smog Extremely heavy smog

Less-educated Well-educated Less-educated Well-educated Less-educated Well-
educated

Early
warning

−0.011 ***
(0.004)

−0.022 ***
(0.006)

−0.012 ***
(0.004)

−0.024 ***
(0.004)

−0.009
(0.007)

−0.007
(0.007)

Panel C: Heterogeneous Effects on Age

Light smog Moderate smog Extremely heavy smog

Young Middle Older Young Middle Older Young Middle Older

Early
warning

−0.007 *
(0.004)

−0.009 **
(0.004)

−0.024 ***
(0.008)

−0.008 ***
(0.003)

−0.017 ***
(0.003)

−0.029 ***
(0.004)

−0.006 **
(0.003)

−0.007
(0.007)

−0.005
(0.003)

Control Y Y Y Y Y Y Y Y Y

Weather
fixed

effects
Y Y Y Y Y Y Y Y Y

Date
fixed
effect

Y Y Y Y Y Y Y Y Y

City
fixed
effect

Y Y Y Y Y Y Y Y Y

N 72,574 72,574 72,574 36,454 36,454 36,454 8356 8356 8356

Note: The standard errors are in brackets. * p < 0.1, ** p < 0.05, and *** p < 0.01.

Panel B is the result of the heterogeneity estimates for different education levels. The
estimated coefficients of the well-educated group and less-educated group were both
negatively significant at the 1% level in the light smog and moderate smog early-warning
models, while they were not significant in the extremely heavy smog early-warning. At
the same time, in the light smog and moderate smog early-warning models, the absolute
coefficient of drivers with less education was statistically smaller than that of well-educated
drivers, indicating that early-warning signals have a greater impact on highly educated
drivers. There are several possible explanations. Firstly, they usually have a broader
knowledge base and better comprehension skills, allowing them to accurately understand
the meaning and urgency of haze warning signals. Secondly, they possess higher risk
awareness and decision-making abilities, enabling them to assess the threat of haze on
driving safety more accurately and take appropriate measures to mitigate it. Lastly, they
place a greater emphasis on health awareness and social responsibility, being willing to
take proactive actions to protect their own and others’ health [2].

The estimated coefficients of the age group are exhibited in Panel C. In the light
smog and moderate smog early-warning models, the estimated results of the three age
groups were negative; while in the extremely heavy smog early-warning model, only
the coefficient of the young group was significant, which indicates that drivers of all
age groups are susceptible to the light smog and moderate smog early-warning signals,
while the extremely heavy smog early-warning signal only has an effect on young drivers.
We believe that younger drivers may be more tolerant of environmental risks. When
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confronting the possible harm caused by environmental risks, they need to receive external
early-warning signals before taking preventive actions [20]. Comparing the estimated
coefficient values of the three groups, it was found that elderly people had the largest
absolute value of the coefficient, implying that elderly drivers are most affected when
light smog and moderate smog early-warning signals are issued. Elderly drivers generally
have more fragile and susceptible health conditions compared to younger drivers, making
them more vulnerable to the impact of external environmental factors. Hazy weather can
cause a decline in air quality, with harmful particulate matter and pollutants posing a
greater threat to health. Elderly drivers may be more susceptible to the negative effects of
hazy weather due to respiratory, cardiovascular, or other health issues, thus making them
more sensitive to warning signals. Additionally, elderly drivers generally possess a strong
awareness of safety and risk perception, prioritizing their own and others’ safety. In hazy
weather, reduced visibility and slippery roads increase the risk of traffic accidents. Due to
their heightened sensitivity to driving risks, elderly drivers may be more attuned to the
driving safety threats posed by light or moderate haze and therefore more vigilant towards
warning signals [21].

4.3.2. Vehicle Types

Different types of vehicles will expose drivers to different risks of air pollution. For
example, four-wheeled vehicles can usually close windows to lower drivers’ direct exposure
to smog pollution, while drivers of two-wheeled vehicles are completely exposed. Our
results, as shown in Table 5, illustrate the effect of smog early-warning signals on four-
wheeled vehicles and two-wheeled vehicles.

Table 5. Heterogeneous effects based on vehicle types.

Light Smog Moderate Smog Extremely Heavy Smog

2-Wheel 4-Wheel 2-Wheel 4-Wheel 2-Wheel 4-Wheel

Early warning −0.024 ***
(0.004)

−0.007 ***
(0.003)

−0.027 ***
(0.008)

−0.012 **
(0.006)

−0.013 *
(0.006)

−0.008
(0.009)

Control Y Y Y Y Y Y

Weather fixed effects Y Y Y Y Y Y

Date fixed effect Y Y Y Y Y Y

City fixed effect Y Y Y Y Y Y

N 72,574 72,574 36,454 36,454 8356 8356

Note: The standard errors are in brackets. * p < 0.1, ** p < 0.05, and *** p < 0.01.

We discovered that in the light smog and moderate smog early-warning models,
the estimated coefficients of the two-wheeled and four-wheeled vehicles are significantly
negative, while in the extremely heavy smog early-warning model, only the coefficients
for the two-wheeled vehicles are significantly negative, indicating that the light smog
and moderate smog early-warnings affect both types of vehicles while the extremely
heavy smog early-warning affect only two-wheeled vehicles significantly. We further
compared the estimated coefficient values of the two types of vehicles and found that the
estimated coefficient of a two-wheeled is statistically higher than that of a four-wheeled one,
demonstrating that the early warning signal has a more evident effect on a two-wheeled
vehicle than on a four-wheeled vehicle. We believe that two-wheeled vehicle drivers,
who are in direct exposure to smog, are more easily subjected to physical and mental
damage [22]. Compared to the four-wheeled drivers, the early warnings may decrease the
interference of smog pollution on two-wheeled vehicle driving behavior.
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4.3.3. Road Locations

We further investigated the possible changes in traffic deaths due to the issuance
of smog early-warning signals at different road sections, such as city and country roads,
freeways, and non-freeways, as shown in Table 6.

Table 6. Heterogeneous effects based on road locations.

Panel A: Heterogeneous Effects on City and Country Roads

Light Smog Moderate Smog Extremely Heavy Smog

City Country City Country City Country

Early warning −0.012 ***
(0.005)

−0.018 *
(0.010)

−0.015 ***
(0.006)

−0.018 ***
(0.006)

−0.006
(0.008)

−0.013 **
(0.006)

Panel B: Heterogeneous Effects on Freeway and Non-freeway Roads

Light smog Moderate smog Extremely heavy smog

Freeway Non-freeway Freeway Non-freeway Freeway Non-freeway

Early warning −0.018 ***
(0.004)

−0.014 ***
(0.004)

−0.023 ***
(0.003)

−0.017 **
(0.006)

−0.013 **
(0.006)

−0.003
(0.008)

Control Y Y Y Y Y Y

Weather fixed effects Y Y Y Y Y Y

Date fixed effect Y Y Y Y Y Y

City fixed effect Y Y Y Y Y Y

N 72,574 72,574 36,454 36,454 8356 8356

Note: The standard errors are in brackets. * p < 0.1, ** p < 0.05, and *** p < 0.01.

Panel A illustrates the regression results for city and country roads. In the light smog
and moderate smog early-warning models, all the regression coefficients were remarkably
negative, showing that the light smog and moderate smog early-warning signals do reduce
road traffic deaths in city and country areas; in the extremely heavy smog early-warning
model, although the regression coefficient of the city road did not pass the significance test,
the regression coefficient of the country road is significantly negative at the 5% level, indi-
cating that the extremely heavy smog early-warning signal only significantly affects country
roads. Moreover, the absolute coefficient value of country roads was larger than that of
city roads, indicating that compared with city roads, all the early warnings showed a more
evident preventive effect on traffic deaths on country roads. This may be because drivers
on country roads are generally less educated and more tolerant of pollution risks [23],
consequently relying more on early-warning signs. Furthermore, compared to urban areas,
rural areas typically have limited rescue and medical resources. In the event of a traffic
accident during hazy weather, it may be more challenging for rural areas to provide timely
emergency rescue and medical treatment, resulting in more severe consequences of acci-
dents. Therefore, the issuance of smog warning signals has a more significant preventive
effect on traffic fatalities in rural road areas. It can prompt drivers to be more cautious and
attentive to traffic safety, thereby reducing the occurrence rate of accidents and the risk of
fatalities.

Panel B is an estimate for both freeway and non-freeway roads. We found that the three
early warnings reflected apparent effects on the prevention of freeway traffic death, but the
extremely heavy smog early-warning alert had no remarkable effect on the prevention of
non-freeway traffic death. Furthermore, the estimated absolute value of the coefficients for
a freeway was significantly larger than those for a non-freeway. The possible explanation is
that motorway traffic is faster and drivers tend to drive more cautiously, and when drivers
on the highway receive an early-warning signal, they change their driving behavior more
quickly to prevent smog from interfering. Another possible mechanism is that increased
smog pollution may reduce highway visibility, leading to a reduction in the number of
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vehicles on the highway, thereby reducing traffic accidents. Unfortunately, we do not have
access to detailed daily highway driving data to empirically test this possibility. However,
in our RDD strategy, we believe that in a small interval near the smog early-warning cutoff,
a slight increase in the PM2.5 concentration value will not significantly change the highway
visibility, and thus will not cause a significant reduction in the number of vehicles. In this
sense, our RDD strategy is able to exclude this possible mechanism.

5. Discussion

This paper assesses the impact of an early-warning environmental policy rather than a
regulatory one. The purpose of a “regulatory” environmental policy is to motivate polluters
to reduce pollution emissions, while the goal of an “early-warning” environmental policy
is to remind the public to prevent the harm caused by pollution. The former emphasizes re-
ducing pollution emissions, while the latter highlights adapting to environmental changes.
To deal with the deterioration of the ecological environment, such as greenhouse gas emis-
sions, both “reduction” and “adaptation” are indispensable ways to ensure the sustainable
development of mankind. Those two together form a combined policy system to deal
with changes in the ecological environment, and we should not favor one over the other.
However, the existing literature focuses on the roles of “regulatory” environmental policies,
such as environmental laws and regulations [24,25], administrative rules and regulations,
market-based emissions trading, the environmental protection tax mechanism [2], etc. In
contrast, the “early-warning” environmental policy has not been given enough attention.
Environmental early-warning policies can also play an essential role in promoting sus-
tainable economic and social development, just as this paper reveals that smog warning
signals will significantly reduce traffic fatalities. Future research on environmental policy
assessment should pay attention to adaptive policies such as early-warning policies other
than just regulatory ones.

There is much literature on traffic safety warnings, such as fog warnings, high-
temperature warnings, rainstorm warnings, typhoon warnings [26–28], etc., and signals
play a positive role in preventing traffic accidents. However, these warning signals are
for extreme weather, not environmental factors. Unfavorable weather conditions can
reduce traffic visibility or road adhesion, decreasing the driver’s ability to perceive the
surrounding environment and handle the vehicle well, resulting in more traffic accidents.
Compared with the explicit impact of meteorological factors on traffic safety, the effects of
smog pollution on traffic deaths are relatively implicit, which is more likely to cause traffic
deaths by worsening drivers’ physical and psychological states rather than their visibility.
This paper expands the research on early warnings for traffic safety from meteorological
factors to environmental factors.

6. Conclusions

To the best of our knowledge, this paper is the first to assess the impact of the environ-
mental smog warning policy on traffic deaths. We obtained almost a whole sample of daily
city traffic death data from 2016 to 2020 in China from the official China Judgment Online.
Based on the PM2.5 concentration thresholds for warning signals, we constructed a rigor-
ous RDD strategy to identify the smog warning policy and adopted the high-dimensional
fixed-effect method to eliminate the interference of various meteorological factors in order
to accurately estimate the positive effects of smog warning signals on traffic deaths.

This paper focuses on the impact of an environmental early-warning policy on traffic
safety, which may enrich the research on environmental policies from the perspective
of “warning” rather than “regulatory”, and expands the scope of environmental policy
into traffic safety, which is useful to policy-making that is both related to smog pollution
regulation and transportation safety. We suggest that the traffic department should work
with the meteorological department and environmental department to establish a joint
meteorological–environmental traffic warning system, involving both extreme weather
factors and environmental pollution factors, so as to reduce the number of traffic accidents
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on a larger scope. Considering the significant impact of yellow and orange haze warning
signals on reducing traffic accident fatalities, the government can more extensively utilize
these warning signals in traffic management. These signals serve to alert drivers to road
conditions and prompt them to take corresponding preventive measures, even when haze
does not significantly affect visibility, thereby lowering the likelihood of traffic accidents.
According to research findings, female drivers, drivers with higher education levels, elderly
drivers, motorcycle riders, and drivers traveling on rural roads and highways are more
susceptible to the influence of haze warning signals and exhibit corresponding preventive
driving behavior. We recommend that the government develop targeted educational and
training programs based on these characteristics to enhance awareness of haze warning
signals among other demographic groups and encourage them to adopt proactive driving
behavior. Future research on environmental policies can pay more attention to the “adap-
tive” policies, such as the smog warning policy, and can also learn from the RDD strategy
constructed in this paper in terms of methodology.

This article also has some limitations. Firstly, the findings of the study focusing on
traffic deaths in China may not be generalizable to other countries or regions with different
traffic patterns, environmental policies, and cultural contexts. Replicating the study in
diverse settings would be necessary to validate the results. Secondly, although the paper
uses a rigorous RDD strategy to identify the impact of smog warning signals on traffic
deaths, it is important to note that causality cannot be definitively established. There may
be unobserved confounding factors that affect both the implementation of smog warning
signals and traffic deaths which could introduce bias to the estimated effects. Lastly, while
the paper conducts a heterogeneity analysis based on driver characteristics, vehicle types,
and road locations to examine the differential effects of smog warning signals, the external
validity of these findings may be limited. The study also does not explore other relevant
factors that could influence the observed heterogeneity, such as regional differences in
pollution levels or driver behaviors.
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