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Abstract: When assimilating surface pressure data in synoptic-scale models, we find the utilization
rate of surface pressure data in zones with complex terrains is not high. Therefore, it is particularly im-
portant and urgent to carry out quality control of surface pressure data. Numerical weather prediction
model analysis and forecasting provide essential data that can be compared with surface observations.
The main adverse effects on surface pressure quality control include elevation differences between
the model terrain and the observation stations and continuous outliers with the same characteristics
in the initiation stage of quality control. Therefore, we propose a progressive empirical orthogonal
function (EOF) with simulated observation (EOFs) combining barometric height correction (BHC)
and biweight average correction (BAC) methods for the quality control of surface pressure data in this
study. From the quality control results of the surface pressure data in regions with complex topogra-
phy in China during June–August 2013, it was found that the BHC method could effectively reduce
the deviations caused by elevation differences between the model terrain and the observation stations,
and the BAC method could obviously reduce systematic deviations due to physical processes and the
parameterization schemes of the models. The BHC-BAC method integrated the advantages of both
methods and had the best correction effect. When continuous outliers with the same characteristics
occurred in the initiation stage of quality control, the progressive EOF method might unreasonably
eliminate observations. However, the progressive EOFs method could effectively solve this problem
and had better performance in data quality control. The progressive EOFs quality control method
with the combined BHC-BAC method could obviously reject outliers. The observation increment
(deviations between observations and background field) after quality control by the progressive EOFs
method was the closest to normal distribution, satisfying the Gaussian distribution assumption of
data assimilation.

Keywords: surface pressure; quality control; progressive EOFs; barometric height correction;
biweight average correction

1. Introduction

Surface observation data are obtained from observations at the land-atmosphere
interaction layer, which are closely related to the complex land surface and boundary layer
processes. With the development of observation technology, automatic weather stations can
regularly observe and record surface weather information at fixed points and can conduct
unattended observations over complex terrain [1]. However, the development of automatic
weather observation also brings some new problems. For example, with the realization of
automated observation, the instability of surface observation technology leads to quality
problems with surface observation data [2,3]. The greatest advantage of surface observation
data is that they can directly describe model state variables near the ground rather than
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remotely sensed variables such as radiation, and they have very high spatio-temporal
resolution. Surface observation data contain rich small- and meso-scale information, and
they are important sources of data for the assimilation of numerical models [4,5] However,
quality control (QC) of surface observation data is an essential step before assimilation [6].

Surface-based observations differ from those in the free atmosphere [7], and there
are few sources of observations that can be used for intercomparison. Therefore, data
QC based on the statistical and physical relationships of meteorological elements is the
main method for surface observation QC at present [8,9], mainly including extreme-value
check [10,11], temporal consistency check [12], interior consistency check [13], spatial con-
sistency check [14,15], background-field check [16], and comprehensive QC using two
or more of the above methods, e.g., [17–20]. In recent years, some scholars have also
conducted research on artificial intelligence (AI)-based QC methods. Li [21] proposed
an AI-based blackboard model for the QC of meteorological data, but it was only used
for surface-based aviation meteorological operation. Zhou [22] proposed a K-means dy-
namic cluster analysis method, which used a single-point temperature for comparison
with the overall temperature. This method had low complexity and was suitable for the
calculation of large input datasets, but it was extremely dependent on the threshold setting.
Ye [23] proposed a QC method based on autoregression and inverse distance weighting.
It could control the quality of meteorological data in both the temporal and spatial di-
mensions with high stability and high applicability. Although these AI-based methods
focused on the QC of surface observations, most of them focused on the correctness of
single-station observation.

With the development of computing capability and numerical models, the analysis
(forecast) fields of numerical models have become an essential data source for intercom-
parison with surface observations [24,25]. Qin [26] comparatively analyzed the period and
amplitude characteristics of the 2-m temperature observation and reanalysis data from the
National Center for Environmental Prediction. These authors well eliminated the influence
of weather variation on data quality by using the empirical orthogonal function (EOF)
analysis method to extract periodic variations, such as diurnal variation of temperature,
that may have induced large differences between the observation and reanalysis data.
Therefore, they provided an essential theoretical basis for establishing an EOF QC method
for the 2-m temperature. Based on this, Xu [27] proposed a 2-m temperature QC method
combining the biweight average correction (BAC) method with progressive EOF analysis,
which effectively improved systematic deviation in the model and identification of data
with consecutive errors. Zhao [28] further examined the assimilation effects of surface ob-
servations after applying the EOF QC method and demonstrated that the quality-controlled
surface observations could remarkably improve the short-term forecasts of precipitation.
Shen [29] proposed a data repair method based on iterative EOF, which obtained better
data spatial and temporal continuity with the surrounding observations. Shao [30] used
the EOF method to perform the QC of the temperature observed by automatic weather
stations with high spatial and temporal resolution in central-eastern China. This method
could reject anomalous observations well, showing the application prospects of the EOF
QC method.

However, over complex terrains, the periodic and amplitude characteristics of surface
pressure are different from those of the 2-m temperature for both observations and reanal-
ysis data. Therefore, the background analysis field needs to be revised from the model
terrain height to the terrain height of the automatic weather stations when performing
the QC of surface pressure data [31]. In addition, the reconstructed field in the initiation
period of the EOF-based QC considers continuous outliers with consistent characteristics
as the “real” state of atmospheric anomalies, which will affect the effects of QC in the
initiation period. Therefore, in this study, the progressive EOF method for surface pressure
QC was modified, and a progressive EOF with simulated observation (EOFs) for surface
pressure QC was proposed to solve the above problems, which combined barometric height
correction (BHC) and biweight average correction (BAC). To test the effectiveness of the
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modified surface pressure QC scheme for research and operational use, QC experiments
were performed on surface observations from China and the surrounding regions during
the period of June to August 2013.

The remainder of this paper is organized as follows. Section 2 introduces the data
and methods used in this study. Section 3 presents the correction of the background field.
Section 4 analyzes the data QC results. The conclusions and discussion are presented in
Section 5.

2. Data and Methods
2.1. Data

The 6-h surface pressure observations from June to August 2013 were used in this
research, and the data from stations with few observations were excluded. These data were
from observations in China and neighboring regions and labeled in the following format:

Pobs
k,t , k = 1, 2, . . . , m; t = 1, 2, . . . , n,

where Pobs
k,t denotes the surface pressure observation, k is the station serial number, and t

is the observation time. In addition, m is 3039, and n is 368. In this study, the 6-h surface
pressure (Pb), 2-m temperature (Tb), and 2-m humidity (RHb) of the T639 (CMA-T639L60
Global Medium Range Forecast System, 0.28125◦ × 0.28125◦) analysis from 17 May to 31
August 2013 were used as the background field. These background data were interpolated
with the first order Lagrange polynomial interpolation, and the interpolation results at the
observation stations were recorded as Pb

k,t, Tb
k,t, and RHb

k,t. The T639 surface pressure data
from 17 to 31 May 2013 were used to simulate observations, and those during June–August
2013 were selected as the background for QC.

2.2. Analysis Method for the Cycle and Amplitude

Power spectrum analysis can provide the average amplitude, phase, and power
contribution of a data series in the whole time domain, and it is widely applied in climatic
research. Wavelet analysis shows good local properties in the time and frequency domains
and can characterize the amplitude variation over time at a fixed frequency or cycle. In
addition, wavelet analysis can be used to analyze the daily variation characteristics of a
series, especially the amplitude variation corresponding to the diurnal cycle with time.
Therefore, power spectra were used to analyze the series cycle in this study, and wavelet
analysis was adopted to analyze the amplitude. The specific calculation methods are shown
in Appendix A.

2.3. Progressive EOFs Method

In the progressive EOFs QC method proposed in this research, a simulated observation
sequence was added prior to the original observation sequence. Then, the data QC was
performed starting from the simulated observation sequence, thus guaranteeing the quality
of data in the initial stage of QC. In order to guarantee the performance of QC on the actual
observations, the simulated observation sequence should be consistent with the actual ob-
servations to ensure a smooth transition to the actual observations. Therefore, the simulated
observations must satisfy two basic principles, i.e., the deviations between the simulated
observation and background field should meet Gaussian distribution characteristics, and
their mean square errors (or standard deviations) should be consistent with those between
the observation and background field. In this study, the Gaussian perturbation method
was used to simulate observations that satisfied the above two requirements. The method
steps are as follows:

First, the T639 surface pressure analysis during 17–31 May (a total of 60 times) was
selected to generate simulated observations, and the T639 data were interpolated to obser-
vation stations through the bilinear interpolation method. The correction method proposed
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in this study was used to correct the T639 surface pressure, and the corrected data were
expressed as Pb,cal

k,t (t = 1, 2, . . . , 60) .
Then, the Gaussian perturbation method was used to generate a Gaussian random

sequence. This method was proposed by Box and Muller [32] and improved by Marsaglia and
Bray [33] as a polar method. The basic principle of this method is that in the polar coordinate
system, the origin is taken as the unit circle center, and a random point series is selected in
the unit circle. X and Y denote the horizontal and vertical coordinates of this random series,
respectively. The sum of squares of this series can be expressed as S = X2 + Y2. When S ≥ 1
or S = 0, the random points are re-selected until all 60 samples are selected, thus obtaining
60 consistent deviations (S) at the interval of (0, 1). Two sets of standard normal distribution
random quantities, Z1 and Z2, are generated by Equations (1) and (2).

Z1 = X

√
−2 ln S

S
(1)

Z2 = Y

√
−2 ln S

S
(2)

Both Z1 and Z2 obey standard normal distribution, i.e., the mean values are zero and
the standard deviations are 1. Select the first set, Z1, as the Gaussian random sequence
PGauss

k,t (t = 1, 2, . . . , 60) .
Finally, the random perturbations, Pnoise

k,t , were generated by the standard deviation

product of the Gaussian random sequence PGauss
k,t (t =1, 2, . . . , 60) and Pobs

k,t − PT639,cal
k,t

(t =1, 2, . . . , 368 ; samples during June–August). PT639,cal
k,t represents the corrected T639

surface pressure analysis. The simulated observations PS−obs
k,t (t =1, 2, . . . , 60) were gener-

ated by adding the random perturbations Pnoise
k,t (t =1, 2, . . . , 60) to Pb,cal

k,t (t =1, 2, . . . , 60) .
The Kolmogorov-Smirnov goodness-of-fit method was adopted to test the normal-

ity of the simulated observations PS−obs
k,t (t =1, 2, . . . , 60) , and this normality passed the

significance test at the 95% confidence level. Thus, the simulated observations obeyed
normal distribution. The observation sequence used in the progressive EOF quality con-
trol method was only Pobs

k,t (t =1, 2, . . . , 368) , while that in the progressive EOFs quality
control method was the combination of Pobs

k,t (t =1, 2, . . . , 368) and the simulated obser-

vation sequence PS−obs
k,t (t =1, 2, . . . , 60) , where PS−obs

k,t (t =1, 2, . . . , 60) was in front of
Pobs

k,t (t =1, 2, . . . , 368) .

3. Background Correction

The terrain of a model surface is relatively smooth, but there are elevation differences
between the model and actual terrain [4]. Therefore, it is necessary to correct the surface
pressure analysis (forecast) of the model for surface pressure quality control. The selection
of an interpolation correction method is more critical in the Tibetan Plateau with complex
topography. Additionally, Liu [31] suggested that there was a great difference in the periodic
characteristic of surface pressure from the T639 analysis before and after correction in the
Tibetan Plateau. Therefore, the Tibetan Plateau (25◦ N–40◦ N, 74◦ E–104◦ E) was selected as
the study area for analyzing the cycle and amplitude characteristics of surface pressure.
In this study, three correction schemes were selected for comparative analysis, namely
the barometric height correction (BHC) method [31], the biweight average correction
method [27] (BAC), and the method of combining BHC with BAC (BHC-BAC). Note that
the principle of the BHC-BAC method is that the BHC method is carried out first, followed
by the BAC method.

As presented in Figure 1, the surface pressure observations (4 observation times each
day) showed semidiurnal and diurnal cycles in the Tibetan Plateau, corresponding to the
frequencies of 0.5000 and 0.2500, respectively. In addition, the observations had an obvious
cycle of about 10 days (passing the significance test at the 95% confidence level), and the
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corresponding frequency was 0.0273. The power spectrum value of the diurnal cycle of the
T639 surface pressure was about 10. The spectrum value of the surface pressure observation
was about 102. The results in winter were similar to those in summer, and there were also
obvious semidiurnal and diurnal cycles. The difference was that there was a long cycle of
about 16 days (figure omitted). Therefore, it was necessary to adjust the quality control of
the long period sequences by analyzing the long period characteristics of different seasons.
The signal strength of the diurnal cycle of the T639 surface pressure was far smaller than
that of the observations. The power spectra of the T639 surface pressure before and after
correction with the BAC method were basically similar. However, the power spectrum
values of the diurnal cycle of the T639 surface pressure corrected by the BHC and BHC-BAC
methods exceeded 102, which were larger than those before correction (Figure 1c,d). The
semidiurnal cycle signal was also apparently enhanced after correction with the BHC and
BHC-BAC methods, and the cycle characteristics were close to those of the observations.
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Figure 1. Power spectra of the T639 surface pressure before (a) and after correction with the (b) BAC,
(c) BHC, and (d) BHC-BAC methods, and (e) power spectrum of surface pressure observations. The
black lines indicate power spectrum, the blue short-dotted lines represent the spectra passing the
significance test at the 95% confidence level, and the red long-dashed lines denote the red noise
power spectra. Units of frequency are day−1, and those of variance are hPa2.

The daily amplitude of the T639 surface pressure data showed a great difference from
that of the observations in the Tibetan Plateau, which hardly captured the characteristics
of observed daily amplitude (Figure 2). The daily amplitude values of the T639 surface
pressure and their variation over time were much smaller than those of the observations,
especially during 3–5, 11–21, and 20–26 June, when the daily amplitude of the T639 surface
pressure could not catch the variation characteristics of the observed peak amplitude. The
daily amplitude of the T639 surface pressure corrected by the BAC method was slightly
improved but still much smaller than that of the observations. The daily amplitude of
the T639 surface pressure corrected by the BHC and BHC-BAC methods was markedly
improved, close to that of the observations. The daily amplitude of the T639 surface
pressure corrected by the BAC method differed greatly from the observed amplitude. The
daily amplitude of the T639 surface pressure corrected by the BHC and BHC-BAC methods
could accurately describe the actual situation, and thus the corrected data could be used
for comparison with the surface pressure observations.

Overall, the elevation difference between the model surface and the observation
stations cannot be ignored in regions with complex terrains such as the Tibetan Plateau. The
results of this study showed that the cycle and amplitude characteristics of the T639 surface
pressure corrected by the BHC method were basically consistent with the observations. The
T639 surface pressure should have been corrected by the BHC method since the pressure
varied nonlinearly with height. Although the BAC method performed well in correcting
the 2-m temperature [27], it could not effectively correct the cycle and amplitude of the
T639 surface pressure. Therefore, the cycle and amplitude of the T639 surface pressure
corrected by the BAC method still showed noticeable differences from the observations.
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Figure 2. Amplitude variation of the T639 surface pressure diurnal cycle before and after correction
with the BAC, BHC, and BHC-BAC methods, and the daily amplitude variation of surface pressure
observations (obs).

The performance of the three correction methods was evaluated from the perspective
of the daily variation cycle and amplitude above. In the following, the statistical indicators,
mean error and root mean square error (RMSE), were also used to evaluate the performance
of the three methods to correct the T639 surface pressure, as shown in Figure 3. The
results suggested that observation stations with large mean errors between the T639 surface
pressure and the observations were distributed with the terrain, i.e., the higher and more
complex the topography around the observation stations, the larger the mean errors. Note
that the maximum mean error value exceeded 100 hPa. Additionally, the stations with
large RMSE values between the T639 surface pressure and the observations were generally
distributed with the complex terrain, and these stations were mainly located in large
undulating topographic areas, such as western Sichuan and the Tibetan Plateau. The
maximum RMSE value was more than 5 hPa. For the T639 surface pressure corrected
by the BHC method, the RMSE values were greatly reduced compared with those before
correction, and the RMSE values at most stations in complex terrain regions, such as
western Sichuan and the Tibetan Plateau, decreased to below 1.2 hPa. In addition, the mean
absolute error (MAE) values were also obviously reduced (Table 1), but the magnitude
of the reduction was smaller than that for the BAC method. In terms of the T639 surface
pressure corrected by the BAC method, the mean errors decreased remarkably compared
with those before correction, with values ranging from −0.1 to 0.1 hPa at most stations.
However, the RMSE values were almost the same as those before correction. Hence, the
BHC method could effectively reduce the RMSE values between the T639 surface pressure
and the observations, while the BAC method could obviously decrease the mean errors.
The BHC-BAC method could reduce both the mean error and RMSE values, and mean
error and RMSE values for the BHC-BAC method were the smallest among the correction
results from the three methods. Therefore, the BHC-BAC method achieved the best data
correction among the three correction methods.
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(a2) represent the station terrain (unit: m). The boxes A–C in (b2) indicate three representative stations
with corrected T639 surface pressure results described in this study.

Table 1. Statistics of the observation stations with large MAE or RMSE values before and after correction.

Before and after
Correction

MAE
(Unit: hPa)

MAE
(Number of Observation

Stations)

RMSE
(Unit: hPa)

RMSE
(Number of

Observation Stations)

Without Correction 30 554 0.8 776
BAC 0.1 48 0.8 652
BHC 3 475 0.8 317

BHC-BAC 0.1 41 0.8 317

Further, three representative stations were selected for the 6-h time series analysis
of T639 surface pressure and the observations (Figure 4). The three stations are marked
as stations A, B, and C. Station A (28.5◦ N, 97.0◦ E) had an elevation of 1528 m, while
the elevation of the T639 model terrain at this location was 3448.9 m. The elevation of
station B (30.1◦ N, 118.2◦ E) was 1840 m, while the elevation of the T639 model terrain
at this location was 380.5 m. The elevations of station C (33.23◦ N, 126.55◦ E) and the
corresponding position of the T639 model terrain were 50 and 79.6 m, respectively. At
station A, obviously, there was a great difference between the T639 surface pressure and the
observations. Specifically, the observations at station A varied between 835 and 850 hPa,
with a clear daily cyclic variation. However, the T639 surface pressure was smaller than
the observations, ranging from 700 to 705 hPa, with a weak daily cyclic variation. In terms
of the mean values, the T639 surface pressure corrected by the BAC method was close to
the observations, suggesting that the BAC method could effectively correct the systematic
deviations of the T639 surface pressure. However, the daily cyclic variation of the corrected
T639 surface pressure was basically consistent with that before correction. The daily cyclic
variation characteristic of the T639 pressure data corrected by the BHC method was close
to that of the observations, but the corrected values were higher than the observations.
Moreover, in terms of the T639 surface pressure corrected by the BHC-BAC method, the
daily cyclic variation and values were close to those of the observations. Hence, for the
correction of the T639 surface pressure at station A, the corrected values from the BHC-BAC
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method were the closest to the observations, and thus the BHC-BAC method performed
best at station A among the three methods.
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Figure 4. The 6-h time series of the observations and T639 surface pressure at stations A (a),
B (b), and C (c) before and after correction with the BAC, BHC, and BHC-BAC methods. The
right coordinates indicate the T639 surface pressure before correction, and the left coordinates denote
the corrected results.
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From Figure 4b, it could be found that the diurnal cyclic variation characteristic of
the surface pressure observed at station B was weaker than that at station A, but the
observations at station B showed an apparent long-term periodic variation. The T639
surface pressure at station B was larger than the observations. In contrast, the values of the
T639 surface pressure corrected using the three methods were closer to the observations
than those before correction. For the T639 surface pressure corrected by the BAC method,
there were obvious deviations in some periods. For example, the corrected values on
1–5 and 7–15 June were apparently greater than the observations, while the corrected values
on 23–31 July and 5–19 August were obviously less than the observations. Hence, the values
corrected by the BHC method were close but slightly smaller than the observations. The
values corrected by the BHC-BAC method were the closest to the observations, and thus
the correction performance of the BHC-BAC method on the T639 surface pressure at station
B was the best.

Compared with the situation in stations A and B, the elevation difference between
station C and the corresponding position of the T639 model terrain was relatively small.
The diurnal cycle of the observed surface pressure at station C was not apparent, but there
was a clear long-term periodic variation similar to station B. In addition, the observations at
station C were greater than the T639 surface pressure. The T639 surface pressure corrected
by the BAC method was close to the observations, while that corrected by the BHC method
was smaller than the observations. Moreover, the T639 surface pressure corrected by the
BHC-BAC method was basically consistent with that corrected by the BAC method. In
comparison, the correction performance of the BHC-BAC method was still the best at
station C among the three correction methods.

The above analysis indicated that the BHC method could effectively reduce the surface
pressure deviations between the background field (model analysis or forecast field) and
the observations caused by elevation differences, thereby decreasing the RMSE values
and mean errors of the surface pressure. The BAC method could obviously reduce the
systematic surface pressure deviations between the background field and the observations
caused by physical processes and the parameterization schemes of the numerical models,
and it could decrease the mean errors of the surface pressure. However, the BAC method
showed little improvement in correcting the surface pressure in terms of the RMSE values.
The BHC-BAC method integrated the advantages of the BHC and BAC methods, which
could effectively reduce the RMSE and mean error values of the surface pressure between
the background field and the observations. Hence, the correction performance of the BHC-
BAC method was the best. From the time series analysis of single-station observations, it
was also found that although the BAC method performed well in correcting systematic
deviations, it could not reduce the large differences in cycle and amplitude of the surface
pressure between the observations and the background field caused by elevation differences
between the model terrain and the actual stations. Therefore, the BHC method was needed
to solve this problem. The correction performance of the BHC-BAC method was the
best among the three schemes, which made the corrected background field close to the
observations, guaranteeing the data quality of the background field used for the quality
control of surface pressure.

4. Result Analysis of Quality Control

The characteristic analysis of the data in Section 3 revealed that the surface pressure
not only had semidiurnal and daily cycles, but it also had a cycle of about 10 days (passing
the significance test at the 95% confidence level). Thereby, the progressive EOF and EOFs
methods used in this study took 10 days as a cycle, i.e., 40 time data as a set, to calculate the
EOF. The explained variance of the first mode was more than 99%, indicating that the first
mode could better characterize the daily and semidiurnal cycles of the surface pressure.
Thus, the first mode was selected to reconstruct the data series. The simulated observations
used in the EOFs method were generated from background fields greater than one cycle.
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Figure 5 shows the biweight standard deviations of the Pobs
k,t − PT639,cal

k,t after quality
control by the progressive EOF and EOFs methods. The biweight standard deviations
from the two quality control methods were the same, indicating that the simulated ob-
servations met the quality control requirements. The biweight standard deviations of the
Pobs

k,t − PT639,cal
k,t showed an east–west distribution, i.e., larger biases were concentrated in

the area west of 110◦ E, and smaller biases were mainly distributed in the area east of
110◦ E. This result was different from the north–south division of the 2-m temperature [34].
In the region with large biweight standard deviations, the difference between the observa-
tions and the background field was large. In order to better match the observations with the
background field, more outliers should be removed in areas with large biweight standard
deviations, and vice versa. The Z-score was 3.5 in the area west of 110◦ E and 4.0 in the
area east of 110◦ E.
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Quality control should both eliminate as many outliers as possible and should retain
as much correct data that characterizes anomalous atmospheric conditions as possible.
Figure 6 shows the deviation scatter plots of the data eliminated by the progressive EOF
and EOFs quality control methods. The data rejection rate of the progressive EOF method
was 0.74%, and that of the progressive EOFs method was 0.77%. Thus, the amount of data
eliminated by the progressive EOFs method was slightly more than that of the progressive
EOF method. From Figure 6, it could be found that the absolute values of the Pobs− PT639,cal

deviations eliminated by the progressive EOF method were generally more than 2 hPa. The
eliminated data were basically the data with large deviations between the T639 surface
pressure and the observations. The deviations between the rejected and background data
fluctuated slightly at different altitudes, which may have been due to the variable sliding
standard used in the progressive EOF method to reject data. Figure 6a shows that the
progressive EOF method retained a small number of observations with absolute values
of the deviation exceeding 4 hPa, while it unreasonably rejected some observations with
absolute values of the deviation less than 1 hPa. When the simulated observations were
used in the progressive EOFs method for quality control, these unreasonable phenomena
did not exist (Figure 6b).
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Figure 6. Scatter plots of Pobs − PT639,cal (O-B) and observations (O) before and after quality control
by the progressive EOF (a) and EOFs (b) methods. Black dots denote the retained data, and red dots
indicate the excluded outliers.

From the time series of the data elimination percentages of the progressive EOF and
EOFs methods from 1 June to 16 July 2013 (Figure 7), it could be found that the data
rejection rate of the progressive EOFs method was higher than that of the progressive EOF
method in the initial stage (before June 10) of quality control. After June 10, the elimination
percentages of the two quality control methods were close, indicating that the difference in
quality control performance between the progressive EOFs and EOF methods was mainly
in the early stage of quality control.
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Figure 7. Time series of the data elimination percentages of the progressive EOF and EOFs methods.

Figure 8 presents the skewness and kurtosis coefficients of the Pobs
EOFres

− PT639,cal
EOFres

before

and after quality control using the progressive EOF and EOFs methods. Pobs
EOFres

and PT639,cal
EOFres

respectively indicate the residual terms of the observations and the T639 surface pressure, as
detailed in the introduction of the progressive EOF quality control method [27] The results
showed that for both the progressive EOF and EOFs methods, the skewness coefficient of
the data after the background correction by the BHC-BAC method and quality control was
closer to 0 than before correction, and the kurtosis coefficient was closer to 3. The kurtosis
and skewness coefficients for the two methods were similar.
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Figure 8. Skewness and kurtosis coefficients of Pobs
EOFres

− PT639,cal
EOFres

before and after quality control
using the progressive EOF and EOFs methods.

The difference in the rejection rate between the progressive EOF and EOFs methods
mainly appeared in the initial stage of quality control, with little impact on quality control
in the later stage. Therefore, the spatial distribution of the data rejection rates of the two
quality control methods was quite similar (Figure 9), mainly showing that the data rejection
rate was relatively low in the eastern region and high in the western region. In addition,
the stations with data rejection rates higher than 3% were located in areas with large
RMSE values, such as western Sichuan, the Tibetan Plateau, northern Xinjiang, and the
surrounding regions with complex terrain.
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Figure 9. Spatial distribution of data rejection rates (unit: %) of the (a) progressive EOF and (b) EOFs
methods. Boxes A–D indicate four representative stations with quality control results described in
this paper.

Four representative stations with large differences in the data rejection rates of the two
quality control methods were selected to analyze the time series of the surface pressure.
These stations are marked in Figure 9 as stations A (38.4◦ N, 127.3◦ E; 352 m a.s.l.), B (38.5◦ N,
126.5◦ E; 97 m a.s.l.), C (28.2◦ N, 116.82◦ E; 47 m a.s.l.), and D (44.17◦ N, 87.97◦ E; 547 m a.s.l.).
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Figure 10 indicates that there was a difference in the quality control performance
between the progressive EOF and EOFs methods. The absolute O-B values of surface
pressure at station A were relatively large from 0000 UTC on 1 June to 1200 UTC on 7 June,
with most of the absolute O-B values greater than 5 hPa. The absolute O-B values were less
than 1 hPa from 1800 UTC on 7 June to 0000 UTC on 13 June, especially at 1800 UTC on
7 June (only 0.3 hPa). The progressive EOF method identified and rejected (indicated by
green and blue dots) some outliers from 0000 UTC on 1 June to 1200 UTC on 7 June, while
it identified and rejected all observation data as outliers in the period from 1800 UTC on
7 June to 0000 UTC on 13 June. The progressive EOFs method identified and rejected all of
the observation data with large absolute O-B values during 1–7 June, while it retained the
observations with small absolute O-B values in the subsequent period. After 0000 UTC on
13 June, the two methods had the same effect on identifying outliers, both for observations
with large absolute O-B values.
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surface pressure (hollow circles) and observation data rejected by the progressive EOF method (red
dots), progressive EOFs method (green dots), and both quality control methods (blue dots).

The time series of the observations at station B showed that the data at this station
were incorrect. The observations were larger than the T639 surface pressure before 16
July, while they decreased rapidly after 16 July and were far smaller than the T639 surface
pressure. Most absolute O-B values were above 5 hPa before 25 June and above 15 hPa
after 16 July. Although the progressive EOF and EOFs methods had the same elimination
effect on the observations at station B in the later period, the progressive EOF method
performed worse before 0000 UTC on 15 June, rejecting only a small number of outliers. In
contrast, the progressive EOFs method identified all of the outliers, showing a better effect
on quality control.

The absolute O-B values at station C were mostly above 5 hPa before 1800 UTC on
4 June, and both quality control methods were able to identify the outliers in this period.
However, the progressive EOF method also rejected the outliers with small absolute O-B
values in the subsequent period. This unreasonable phenomenon did not appear when
using the progressive EOFs method. At station D, the difference in surface pressure between
the observations and T639 surface pressure was small, and the results of the two quality
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control methods were similar. Specifically, the absolute O-B values of the outliers eliminated
using the progressive EOF method alone were 1.8 hPa, while those eliminated using the
progressive EOFs method alone were 2.2, 2.3, 3.0, and 2.7 hPa. Hence, using the progressive
EOFs method to reject outliers was more reasonable.

Overall, when the observations had continuous outliers with the same characteristic
at the initial stage of quality control, the progressive EOF method could not effectively
identify outliers, which may have affected data quality control in the subsequent period.
Nevertheless, this unreasonable phenomenon did not appear when using the progressive
EOFs method, mainly because the progressive EOF method used the reconstructed residual
field Pobs

EOFres
− PT639,cal

EOFres
(mainly including certain random errors) to identify outliers. The

progressive EOF method assumed only a few outliers in the samples. Suppose there were
continuous outliers with the same characteristic in the initial stage of quality control at a
station. In that case, the progressive EOF method considered that the samples consisting of
these outliers were correct and they were retained. These retained outliers could cause the
correct data to be identified as outliers and rejected in the next period. In the progressive
EOFs method, the background-based simulated observations with matching observation
characteristics were sequenced in front of the observation series. Thus, the progressive EOFs
method effectively avoided the influence of continuous outliers with the same characteristic
at the initial stage of quality control, ensuring the data quality in the whole period.

5. Conclusions and Discussion

In this study, we analyzed the cycle and amplitude characteristics of the 6-h T639
surface pressure data (background field) and observations on the Tibetan Plateau from June
to August 2013. Using different correction methods, we corrected the background field
from the elevation of the model surface to that of the observation stations. Based on this, a
progressive EOFs quality control method based on the BHC-BAC method was proposed
in this research for the quality control of surface pressure data. The main conclusions are
as follows.

The daily variation cycle and amplitude characteristics of the observed surface pres-
sure and the T639 surface pressure are inconsistent on the Tibetan Plateau, and the T639
analysis field can hardly describe the diurnal variation cycle and amplitude of the ob-
servations due to elevation differences between the model terrain and the observation
stations. After correcting the T639 surface pressure from the model surface to the elevation
of the observation stations using the BHC or BHC-BAC methods, the cycle and amplitude
characteristics of the corrected data showed good consistency with the observations. For
the T639 surface pressure corrected by the BAC method, the diurnal variation amplitude
was slightly improved while the cycle characteristics remained essentially the same as
before correction, which were obviously different from the observations.

The BHC method could effectively reduce the deviations and RMSE values between
the background field and the observations caused by elevation differences. The BAC
method could obviously decrease the systematic deviations caused by physical processes
and the parameterization schemes of models, and it could greatly reduce the mean errors.
However, the BAC method could not decrease the RMSE values. The BHC-BAC method
integrated the advantages of the BHC and BAC methods, which could effectively reduce
the RMSE and mean error values between background field and the observations. Thus,
the correction performance of the BHC-BAC method was the best.

The results of quality control using the progressive EOF and EOFs methods were close
to normal distribution. The two quality control methods had similar spatial distributions
of the data rejection rate, and the elimination percentage in the eastern region was lower
than that in the western region. In addition, the data rejection rate of the progressive EOFs
method was slightly higher than that of the progressive EOF method.

When there were outliers with the same characteristics at the initial stage of quality
control, the progressive EOF method could unreasonably reject observation data. The
progressive EOFs method effectively solved this problem, and the quality control effect in
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the subsequent period was not affected. Therefore, the progressive EOFs method performed
better than the progressive EOF method.

The BHC and BHC-BAC methods can be applied not only to the quality control and
assimilation scheme of surface pressure, but also to the processing of surface pressure
products for model analysis and forecasting. The differences in the results of the quality
control methods between the 2-m temperature and the surface pressure indicate that the
quality control of different observations and elements should be carried out based on an
analysis and understanding of the data characteristics. Developing corresponding quality
control methods according to the data characteristics is necessary rather than applying
them directly. There are still some shortcomings in this study. In the next step, it is necessary
to conduct research on observation stations with high missing test rates, combine model
background analysis and AI-based methods with alternate missed observation values, and
use data assimilation experiments to test the effect of improving quality control. Moreover,
we need to carry out corresponding research on different cycle and amplitude characteristics
in different seasons.
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Appendix A

Appendix A.1. Power Spectrum Analysis

Power spectra can diagnose the main cycle of the sequence, and frequency–domain
analysis based on the Fourier transform can decompose the total energy of the sequence
into different frequency domains. Then, the main period of the sequence is diagnosed
according to the wave power (variance contribution) with different frequencies.

The specific calculation process is as follows, and the algorithm refers to Wei [35].
Here, the summer surface pressure observations on the Tibetan Plateau are taken as an
example, and there were 216 stations in this area. Firstly, the average value Pobs

t of the
surface pressure in this area at each time is calculated. Then, the correlation coefficient r(j)
is calculated using Equation (A1).

r(j) =
1

n− j∑
n
i=1 (

Pt
obs −

−
P

obs

sPobs
t

)(
Pobs

i+j −
−
P

obs

sPobs
t

), j = 0, 1, 2, . . . , m (A1)
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where n (368) denotes the sample size of the time series Pobs
t ;

−
P

obs
is the average value

of Pobs
t ; and sPobs

t
is the standard deviation of Pobs

t . The maximum lag time length m is
taken as 40 in this section, and its range is between n

10 and n
3 . r(j) represents the correlation

coefficient at the j th time interval. The rough spectrum estimates of different wavenumbers
k are calculated using Equations (A1) and (A2).

∧
sk =

1
m

[
r(0) + 2

m−1

∑
j=1

r(j) cos
kπ j
m

+ r(m) cos kπ

]
, (k = 0, 1, . . . , m) (A2)

Finally, the power spectrum estimates Ŝk obtained by Equations (A1)–(A3) are pro-
cessed with the Hanning smoothing coefficient, as given by Equation (A4).

∧
s0 = 1

2m [r(0) + r(m)] + 1
m ∑m−1

j=1 r(j)
∧
sk =

1
m

[
r(0) + 2 ∑m−1

j=1 r(j) cos kπ j
m + r(m) cos kπ

]
∧
sm = 1

2m
[
r(0) + (−1)m r(m)

]
− 1

m ∑m−1
j=1 (−1)j r(j)

(A3)

s0 = 0.5ŝ0 + 0.5ŝ1
sk = 0.25ŝk−1 + 0.5ŝk + 0.25ŝk+1
sm = 0.5ŝm−1 + 0.5ŝm

(A4)

Determination of the cycle: when m is large, there is a sharp spectral peak of the
spectral estimates near a certain frequency, while the power spectral values are relatively
small at other frequencies. In this case, the reciprocal of the frequency corresponding to this
spectral peak is the implied cycle [36]. The relationship of the cycle Tk with wavenumber k
is Tk =

2m
k .

Appendix A.2. Wavelet Analysis

The wavelet analysis method has good local properties in the time and frequency
domains. In addition, it can analyze the local characteristics of periodic variations of a
time series, thereby more clearly characterizing the variation of each cycle over time. The
algorithm refers to Wei [35] and Wu [37]. Morlet wavelets are generated because of the
amplitudes of the sine and cosine waves being modulated by Gaussian functions. In this
section, the standard Morlet wavelets are selected as the mother wavelet, as given by
Equation (A5).

ψt = ei2πte−
t2
2 (A5)

The continuous form of the mother wavelet is as follows (Equation (A6)).

w(a, b) = (x, Ψa,b) = a−
1
2

∫ ∞

−∞
x(t)Ψ∗

(
t− b

a

)
dt (A6)

where the symbol (, ) represents the inner product, * is the conjugate, a is the expansion
scale, b is the translation parameter, and x(t) is the analyzed object.

f (t) =
x(t)− x(t)

s(t)
(A7)

where x(t) denotes the average value of x(t), s(t) the standard deviation of x(t), and w(a, b)
the wavelet coefficient. The discrete expression is as follows (Equation (A8)).

w(a, b) = ( f , Ψa,b) = a−
1
2 ∆t ∑n

i=t f (i∆t)Ψ∗
(

i∆t− b
a

)
(A8)
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where ∆t represents the sampling interval, and n indicates the sample size. The discrete
wavelet transform forms the normal orthogonal system, which expands the field of practical
applications. In this study, the modulus of wavelet coefficient w(a, b) is collectively referred
to as amplitude [37], and its unit is dimensionless.

Wavelet analysis can show the variations of amplitude and power contribution over
time for a given frequency or cycle.
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