
Citation: Lin, C.; He, Y.; Wang, Z.

Sensitivity of Vegetation Productivity

to Extreme Droughts across the

Yunnan Plateau, China. Atmosphere

2023, 14, 1026. https://doi.org/

10.3390/atmos14061026

Academic Editors: Huaiyong Shao,

Jinping Liu and Huaan Jin

Received: 29 May 2023

Revised: 9 June 2023

Accepted: 12 June 2023

Published: 15 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Sensitivity of Vegetation Productivity to Extreme Droughts
across the Yunnan Plateau, China
Chen Lin, Yunling He * and Zhenyan Wang

School of Earth Sciences, Yunnan University, Kunming 650091, China; lc18959472907@mail.ynu.edu.cn (C.L.);
wangzhenyan1@stu.ynu.edu.cn (Z.W.)
* Correspondence: yunling@ynu.edu.cn; Tel.: +86-13708881061

Abstract: Extreme drought has negative impacts on the health of vegetation and the stability of
ecosystems. In this study, the CASA model was employed to estimate the net primary productivity
of vegetation over the Yunnan Plateau. The time-lag effects on vegetation were observed within
a 0–6 month period of extreme droughts using the Pearson correlation coefficient. The resistance
of vegetation during extreme droughts was quantified, and the recovery capability of vegetation
following these events was analyzed using the ARIMA model. Moreover, the study investigated
the response of vegetation to extreme droughts across diverse altitudinal gradients. The results
showed that: (1) This round of extreme drought led to a decrease in the NPP of vegetation in the
Yunnan Plateau. (2) Vegetation exhibits a 1–3-month lag period in response to extreme drought, with
forests showing slower responses than grasslands and shrubs and higher resistance to the drought.
Except for agricultural vegetation, most other vegetation types are able to recover their productivity
within a year. (3) Vegetation above 3000 m is less susceptible to the impacts of extreme drought.
With increasing elevation, forests exhibit an earlier lag period in response to extreme drought and
an increase in resistance, but lower elevation vegetation demonstrates better recovery from extreme
drought events. Shrub vegetation shows the highest resistance at elevations between 3000–4000 m,
and shrubs at middle to high elevations have better recovery capacity than those at low elevations.
Grassland vegetation exhibits increased resistance to extreme drought with higher elevation and
shows better recovery. Agricultural vegetation demonstrates higher resistance at middle to high
elevations, with no significant elevation differences in recovery capacity. Extreme drought events not
only have a lag effect on the vegetation ecosystem, but also affect its stability and resilience to future
drought events. To adapt to climate change, future research should emphasize the role of small-scale
climate in vegetation’s response to drought.

Keywords: net primary productivity (NPP); extreme drought; elevation gradient; time-lag effect;
resilience; resistance

1. Introduction

Global climate change has intensified in recent years, causing more frequent extreme
droughts [1]. These droughts limit plant growth, weaken carbon storage, and destabilize
ecosystems [2–4]. They pose significant risks to plant communities and socioeconomic
aspects [5,6]. Net primary productivity (NPP) reflects the natural production capacity of
vegetation, indicating ecosystem quality [7]. It is a crucial indicator for assessing ecosystem
health. Understanding NPP’s spatial and temporal distribution and its response to extreme
droughts is vital for protecting the environment and achieving sustainable development
amidst rapid global climate change.

Currently, research on the effects of extreme drought on vegetation primarily focuses
on ecosystem functionality, vegetation growth, and physiological responses. Studies have
shown that drought can lead to land degradation, exacerbate the loss of plant habitats,
and result in biodiversity loss [8–10]. These impacts have significant consequences for
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human society, the economy, and ecosystems. In terms of identifying extreme drought
disasters, a commonly used method is to establish various meteorological drought indices
based on threshold identification using meteorological data, such as SPI, SPEI, SCDHI,
etc. [11,12]. Regarding vegetation responses to extreme drought, current research suggests
that the global vegetation response to climate change is complex. The mechanisms by which
extreme drought affects vegetation productivity are still subject to considerable debate.
Some studies suggest that large-scale drought is a major driver of global decline in NPP [13].
However, changes in vegetation greenness are not affected by short-term water shortages,
and the response of vegetation to drought is slow [14]. Moreover, vegetation gradually
exhibits adaptability to climate warming [15], and there are regional differences in the
response to climate change [16], with varying and sometimes opposing trends observed
under different water and thermal conditions. For instance, in humid environments,
elevated temperatures can promote net carbon absorption by ecosystems, while in arid
environments, it can inhibit net carbon absorption [17]. In wet regions such as the Amazon
rainforest, photosynthesis and productivity of vegetation often increase with increasing
drought severity [18,19]. Furthermore, it has been found that drought primarily affects
the NPP of sparse vegetation, making dry and semi-arid regions more vulnerable to its
impacts [20,21]. Meanwhile, elevation is considered an important factor influencing the
sensitivity of vegetation productivity to extreme drought conditions. The lingering effects
of extreme drought on vegetation greenness exhibit a clear dependence on elevation. The
impact of drought on vegetation greenness decreases with decreasing elevation [22,23].
Extreme dry weather has little effect on vegetation productivity in high-elevation areas but
exerts a strong negative influence on warm-season vegetation productivity in low-elevation
regions [24].

The response of vegetation to climate change varies regionally due to factors such as
geographical location, topography, soil type, and vegetation type. The Yunnan Plateau,
with its complex topography and significant elevation differences, exhibits rich climatic
diversity. Current research on vegetation in the Yunnan Plateau is mostly based on NDVI
and LAI [25–27], which primarily focus on the growth status and coverage of vegetation.
However, studies on NPP, which reflects plant productivity and ecological functionality,
are still lacking. Existing studies only indicate that drought can lead to a decline in NPP in
the Yunnan Plateau and that different vegetation types exhibit varying sensitivities [28,29].
There is still a lack of comprehensive research on the impact of extreme droughts on
vegetation productivity, particularly considering the role of altitudinal gradients. Therefore,
in this study, we utilized the CASA model to estimate the NPP of vegetation in the Yunnan
Plateau. We investigated the vegetation productivity response to extreme droughts in three
stages: lagged effects, resistance, and recovery capability. Lagged effects were analyzed
using the Pearson correlation coefficient to examine the delayed response of vegetation
to extreme droughts within a 0–6 month period. Vegetation resistance during extreme
droughts was calculated, and the recovery capability of vegetation after the occurrence
of extreme droughts was analyzed using the ARIMA model. Furthermore, we explored
the influence of altitude on these effects. This study delves into the response patterns of
vegetation in the Yunnan Plateau to drought. It offers new research perspectives to assess
vegetation response patterns and aims to enhance our overall comprehension of the impact
of global climate change on vegetation ecosystems.

2. Materials and Methods
2.1. Study Area

The Yunnan Plateau is located in southwest China, neighboring Guizhou and Guangxi
Provinces on the east and connected to Sichuan Province on the north (Figure 1a). Its total
area is 394,100 square kilometers, and the permanent population is 46.9 million. Most of the
areas are between 1000 and 3500 m above sea level. It belongs to the mountainous plateau
terrain, which is high in the northwest and low in the southeast and has rich vegetation
types (Figure 1b). Its climate basically belongs to the subtropical plateau monsoon type. The
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hottest month in the Yunnan Plateau is July, with an average temperature of 19~22 ◦C. The
coldest month is January, with an average temperature of 6~8 ◦C or less. The temperature
changes vertically with the height of the terrain. The distribution of precipitation in the
province is uneven in terms of seasons and regions. At the same time, the Yunnan Plateau
spans across 10 latitude zones and 7 climatic zones, with an elevation difference of over
6000 m. The complex topography and significant elevation differences create different
climatic zones in the Yunnan Plateau, resulting in rich climatic diversity. This topography
also influences the direction and speed of airflows, further affecting the distribution of
precipitation [30]. Influenced by the Southwest Monsoon and the Tibetan Plateau’s im-
pact on the atmospheric circulation system, the precipitation distribution in the Yunnan
Plateau is uneven, with distinct dry and wet seasons and significant seasonal variations in
drought [31]. Despite relatively moderate temperatures, the Yunnan Plateau experiences
strong solar radiation and low wind speeds, and is situated in a karst landform area with
high permeability and low soil water-holding capacity, making it highly vulnerable to
drought events [32,33].

Figure 1. Topographic map and vegetation types on Yunnan Plateau. (a) Topographic map.
(b) Vegetation types.

2.2. Data

The meteorological data included monthly records of the minimum temperature (Tmin),
maximum temperature (Tmax), average temperature (Tave), precipitation (Pre), sunshine
duration (SSD), atmospheric pressure (P), and wind speed at a height of 2 m (U2) at the
Yunnan provincial meteorological stations from 1982 to 2019. These data were obtained
from the Resource and Environment Science and Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn/ (accessed on 1 January 2023)). After excluding stations
with migration records and conducting quality checks, we finally selected meteorological
data from 125 stations in Yunnan Plateau for calculations. In order to meet the data require-
ments of the Carnegie–Ames–Stanford approach (CASA) model in the simulation of NPP,
we employed Tong’s formula [34] to convert sunshine duration into solar radiation. Due to
the large altitudinal differences and complex terrain in Yunnan, we introduced elevation
as a covariate and utilized the ANUSPLIN software for interpolation to achieve better
results. ANUSPLIN is a specialized software for fitting climate data surfaces (developed
by Australian scientist Hutchinson) based on thin plate spline theory [35]. It allows for
the incorporation of multivariate covariate linear submodels and is particularly suitable
for time series meteorological data. It has demonstrated superior interpolation accuracy
compared to other methods in regions with complex terrains [36] and has been widely
studied and applied [37–39]. After interpolation, we obtained a grid dataset of monthly
average temperature, monthly average precipitation, and monthly total solar radiation
from 1982 to 2019, with a spatial resolution of 500 m.

https://www.resdc.cn/
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The normalized difference vegetation index (NDVI) required for calculating NPP in the
CASA model was selected from the MOD13Q1 provided by the US National Aeronautics
and Space Administration (NASA) data center. This dataset provides NDVI products with
a spatial resolution of 250 m and a temporal resolution of 16 days from 2001 to 2019. We
resampled and clipped the original products and used the maximum value composite
(MVC) method to composite the biweekly NDVI data into monthly sequences. The NDVI
data from 1982 to 2000 was selected from AVHRR NDVI. In addition to the previously
mentioned processing steps, to ensure that the input resolution of the CASA model remains
consistent, we used the code from Ma et al.’s paper to resample the NDVI to 500 m spatial
resolution [40].

The land use types required for calculating NPP in the CASA model were selected
from the Chinese land cover dataset (CLCD) based on Landsat from 1985 to 2019 [41]. The
data were classified using a random forest classifier and further improved in accuracy
through temporal and spatial filtering and logical inference operations. The dataset has a
spatial resolution of 30 m and a temporal resolution of one year. We resampled and clipped
the data to obtain annual land cover type data for the Yunnan Plateau at a spatial resolution
of 500 m, which is suitable for our analysis.

2.3. Methods
2.3.1. Identification of Extreme Drought Disasters

The three-month scale SPEI (SPEI-3) is calculated by standardizing the precipitation
and evapotranspiration data over the past three months. It is based on the Thornthwaite
equation and the calculation method of the standardized precipitation index (SPI), aiming
to reflect the balance between precipitation and evapotranspiration. Considering the
influence of the Southwest Monsoon and the Tibetan Plateau on the atmospheric circulation
system, the distribution of precipitation in the Yunnan Plateau is uneven, with distinct
dry and wet seasons. Drought exhibits significant seasonal variations. Therefore, we
chose SPEI-3 to identify drought events. The calculation steps can be referred to in the
literature [42]. Among them, potential evapotranspiration (ET0) was calculated using
the Penman–Monteith model revised by the Food and Agriculture Organization (FAO)
according to the following formula:

ET0 =
0.408∆(Rn − G) + γ 900

T+273 U2(es − ea)

∆ + γ(1 + 0.34U2)
(1)

where ET0 is the potential evapotranspiration, mm/d; Rn is net radiation, MJ/(m·d); G is
the soil heat flux density, MJ/(m2 d); γ is the dry–wet constant, kPa/◦C; ∆ is the slope of
the saturated water vapor pressure curve, kPa/◦C; U2 is the wind speed at a height of 2 m,
m/s; es is the average saturated water vapor pressure, kPa; ea is the actual water vapor
pressure, kPa; and T is the average temperature, ◦C.

To evaluate the overall drought situation in Yunnan, we computed the mean value of
SPEI-3 (SPEIave-3) using data from 125 meteorological stations in the province. SPEIave-3 < 0
indicated the occurrence of drought events in Yunnan for the corresponding month. The
spatial distribution of Yunnan’s SPEI-3 was obtained by interpolating the data from
125 meteorological stations. According to the national standard, “Meteorological Drought
Grades (GB/T 20481-2017)” established by the China National Climate Center, we define
SPEI < −1.5 as regions experiencing extreme drought events. We calculated the proportion
of the area of pixels with extreme drought events in relation to the total area of pixels
as the proportion of the area affected by extreme drought in the Yunnan Plateau. The
frequency of extreme drought events was calculated by counting the number of months
when SPEI-3 < −1.5. In addition, the relative intensity of drought (I) was obtained by



Atmosphere 2023, 14, 1026 5 of 18

performing a min-max standardization and normalization process on SPEI-3 with the
following calculation formula:

I′ = 1/
(

SPEI − SPEImin
SPEImax − SPEImin

)
(2)

I =
I − Imin

Imax − Imin
(3)

where I′ is the SPEI index after standardization; SPEImax is the maximum pixel value of
the SPEI grid; SPEImin is the minimum pixel value of the SPEI grid; and I is the relative
intensity of drought (the range of I is from 0 to 1, with values closer to 1 indicating greater
drought intensity).

2.3.2. CASA Model for Estimating NPP in Yunnan Plateau

Net primary productivity (NPP) of vegetation refers to the amount of organic matter
accumulated by green plants per unit area and per unit of time. It can reflect the productivity
of vegetation communities under natural environmental conditions and characterize the
quality status of terrestrial ecosystems. We used the CASA model to calculate NPP. The
specific calculation procedure can be consulted in this paper: [16]. The estimation formula
is as follows:

NPP(x, t) = APAR(x, t)× ε(x, t) (4)

In the formula, APAR(x, t) represents the photosynthetically active radiation absorbed
by pixel x in t month (gC·m−2·month−1), and ε(x, t) represents the actual light energy
utilization rate of pixel x in t month (gC·MJ−1).

2.3.3. The Lagged Response of Vegetation to Extreme Drought

Plants exhibit a lagged response in NPP when encountering extreme drought events,
rather than an immediate one. Pearson correlation measures linear correlation between
two variables. We used it to calculate the correlation between the NPP and SPEI index with
a 0–6 month lag.

Rxy =
∑n

i=1(xi−x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(5)

Ri = corr(SPEIn, NPPn−i); 0 ≤ i≤ 6 (6)

Here, Ri is the Pearson correlation coefficient with a lag of i months during extreme
drought periods; NPP is the monthly NDVI time series during extreme drought periods;
and SPEI is the corresponding SPEI-3 time series. The lag time, i, corresponding to the
maximum Pearson correlation coefficient is the time lag of NPP in response to drought.

2.3.4. The Resistance of Vegetation to Extreme Drought

Vegetation’s ability to maintain its original NPP during extreme drought is called
resistance, which can be calculated using the following formula:

Rresist =
NPPi − NPPNon−drought

NPPNon−drought
(7)

where, Rresist is resistance of NPP to extreme drought; NPPi is the NPP value during ex-
treme drought; and NPPNon−drought is the average NPP value during non-drought periods.
A higher Rresist indicates stronger resistance.

2.3.5. The Recovery Ability of Vegetation after Extreme Drought

Vegetation resilience refers to recovering normal productivity levels after extreme
drought. An extreme drought changes NPP and creates a relative error (Eerror) between the
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true NPP (NPPtrue) and theoretical NPP (NPPpred) without drought, which represents the
drought’s impact on NPP. When the impact of extreme drought decreases and the relative
error falls within the “acceptable range” for the first time, it represents the vegetation recov-
ering to its normal level. We used the autoregressive integrated moving average (ARIMA)
model to predict the theoretical NPP (NPPpred) without extreme drought. The “acceptable
range” referred to the range of theoretical NPP after error correction. The ARIMA model is
a time series analysis method proposed by Box and Jenkins that combines autoregressive
(AR) and moving average (MA) models that consider differencing (integrated) and can
predict different types of time series [43].

The formula for calculating vegetation’s resilience to extreme drought is as follows:

Eerror =
NPPtrue − NPPpred

NPPtrue
(8)

When the error between the actual value and the theoretical normal value of NPP
falls within the “acceptable range,” it indicates that the vegetation has started to recover,
represented by:

NPPpred + σ− NPPtrue

NPPtrue
< 0 (9)

Among which:

σ =
∑n

i=1

(
NPPtrue − NPPpred

)
NPPtrue

(10)

where Eerror is the relative error between the true value and the theoretical normal value,
NPPtrue is the true value calculated by the CASA model, NPPpred is the theoretical value
calculated by the ARIMA model, and NPPtrue is the average of true values during the
prediction period. σ is the correction coefficient.

The formula simplified is as follows:

ECorr_error = Eerror − σ > 0 (11)

We define the time when the corrected relative error (ECorr_error) first exceeds 0 as the
time when vegetation has recovered to normal productivity.

The flowchart of this study is shown in Figure 2.

Figure 2. Research flowchart.
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3. Results
3.1. Spatial-Temporal Distribution of Drought Disasters and NPP in Yunnan Plateau

Figure 3a shows the SPEIave-3 in the Yunnan Plateau from 1982 to 2019, indicating
that the Yunnan Plateau is susceptible to drought, with periodic drought events occurring
every few years. The area affected by extreme droughts typically ranges from 0–40%, but
in some severe drought months, such as the beginning of 1984, around 2010, and mid-2019,
it can exceed 60% (Figure 3b). Drought intensity is higher in the central and northwest
regions than in the southern part of the Yunnan Plateau, with a higher frequency of extreme
drought events (Figure 3c,d). According to the historical disaster records in publications
such as the Yunnan Disaster Reduction Yearbook (1991–2018), China Meteorological Disaster
Yearbook (2004–2019), and Analysis of Major Drought Events in China (1961–2020), strong
drought events occurred in the Yunnan Plateau in years such as 1987, 1992, 2008, and 2019.
These historical disaster records are consistent with the results of this study. By analyzing
the drought intensity and affected area comprehensively, the period from September 2009
to April 2010 had the strongest drought intensity, largest affected area, and longest duration
(Figure 3e), and was selected for this study’s analysis of the impact of extreme drought
events on NPP.

Figure 3. The spatiotemporal distribution of drought intensity, area, and frequency in the Yun-
nan Plateau.
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Figure 4a–f show the spatial and temporal distribution of the SPEI-3 index and monthly
mean NPP from September 2008 to August 2009 (one year before the extreme drought),
from September 2009 to April 2010 (during the extreme drought), and from May 2010 to
May 2011 (one year after the extreme drought). One year before the extreme drought, most
areas in the Yunnan Plateau had a SPEI-3 greater than −0.5, indicating almost no drought
events occurred in the entire province. From September 2009 to April 2010, an extremely
severe drought event occurred in central and eastern Yunnan, with SPEI values lower than
1.5 in most areas. One year after the extreme drought, there were still some localized mild
drought events in the central and eastern regions of Yunnan (Figure 4a–c). NPP distribution
in the Yunnan Plateau decreased from south to north and from west to east, with the highest
NPP values in Xishuangbanna Dai Autonomous Prefecture and Pu’er City reaching over
90 gC·m−2·month−1. The northwestern Hengduan Mountains, water bodies, and canyon
areas had lower NPP values with an average below 60 gC·m−2·month−1 (Figure 4d–f).
NPP decreased during the extreme drought, particularly in central and eastern Yunnan,
and then recovered one year after the extreme drought.

Figure 4. Spatial distribution of SPEI-3 and NPP during the extreme drought, one year before, and
one year after the extreme drought.

We further conducted statistical analysis of the changes in NPP of forests, shrubs,
grasslands, and farmland at different elevations during the extreme drought and the
year before and after the extreme drought (Figure 5). Ranking different vegetation types,
forest NPP > farmland NPP > grassland NPP > shrub NPP. The NPP of forests, shrubs,
and grasslands increased with the elevation, and NPP was highest at an elevation of
2000–3000 m, followed by a decrease with the decrease in elevation. The NPP of farmland
showed the highest value at low elevations and decreased with the increase in elevation.
During the extreme drought period, the difference in NPP between low-elevation vegetation
and pre-extreme drought NPP was greater than that of high-elevation vegetation, indicating
that low-elevation vegetation was more susceptible to drought, resulting in a decrease
in NPP. The difference in NPP of low-elevation vegetation before and after the extreme
drought was smaller than that of high-elevation vegetation, indicating that the recovery
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of NPP of low-elevation vegetation affected by drought was better than that of high-
elevation vegetation.

Figure 5. Changes in NPP of different vegetation types before and after drought.

3.2. Lag Effects of Vegetation on Extreme Drought

The lag effect of vegetation response to extreme drought was investigated. Pearson
correlation analysis was used to calculate the correlation coefficients between the 0–6 month
lagged SPEI-3 and NPP in each grid cell. As shown in Figure 6, a strong positive correlation
between SPEI-3 and NPP was observed at a lag time of 1–3 months, with the positive
correlation mainly concentrated in the central part of the Yunnan Plateau, indicating a
high correlation between NPP changes and drought in this area. However, at a lag time of
6 months, the correlation between SPEI-3 and NPP was mostly negative or not significant.
Further analysis of the correlation between SPEI-3 and NPP for different vegetation types
at different elevation gradients (Figure 7) indicated that vegetation types below 3000 m
exhibited a higher positive correlation at a lag time of 1–3 months, while those above 3000 m
showed a lower correlation. For forest vegetation, the lag time of vegetation response to
drought was about 2–3 months at elevations below 1000 m, which advanced with increasing
elevation, and showed a lower correlation between drought and vegetation response above
3000 m. For shrubs, grasslands, and farmland below 3000 m, the lag time was between
1–3 months, while above 3000 m, a lower correlation was observed.

3.3. Resistance of Vegetation to Extreme Drought

The ability of vegetation to maintain its original level when affected by drought is
called resistance. The resistance of different vegetation at different elevation gradients was
calculated, and the results are shown in Figure 8. The results indicate that as elevation
increases, the resistance of vegetation to drought increases. When subdividing different
vegetation types, the order of resistance from high to low is forest > grassland > farmland
> shrubland. For forest and grassland vegetation, the resistance to drought increases
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with elevation. Although the average resistance value of vegetation at 4000–5000 m is the
highest, the range of resistance variability is large, indicating that the resistance of forest
and grassland vegetation to drought in high-elevation areas shows greater differences. For
shrub vegetation, the resistance increases with elevation below 3000 m, with the highest
resistance at 3000–4000 m, and a decrease in resistance at elevations of 4000–5000 m. For
farmland vegetation, the resistance to drought is the lowest at 1000–2000 m, and relatively
high at 2000–4000 m.

Figure 6. Correlation between SPEI and NPP with different lag months for vegetation at
different elevations.
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Figure 7. Correlation analysis of SPEI-3 and NPP for different vegetation types at different elevations.

Figure 8. Resistance of different vegetation types to extreme drought at different elevations.

3.4. Vegetation’s Recovery Ability from Extreme Drought

According to the research results from previous sections, there were no drought events
in the Yunnan Plateau from 2007–2008 (Figure 3). To verify the reliability of the ARIMA
model, we selected NPP inputs from 1982–2006 as the input data for the model to predict
the NPP in 2007–2008 and compared it with the true NPP calculated by the CASA model.
We selected R2 and the root mean square error (RMSE) as indicators to evaluate the model
accuracy, where a higher R2 and a lower RMSE represent better model fitting. Figure 9
shows scatter plots of the NPP predicted by the ARIMA model and the NPP calculated by
the CASA model for different vegetation types, as well as the changes in R2 and RMSE
for different monthly prediction lengths. The results show that the prediction accuracy of
the ARIMA model, as measured by R2, could reach above 0.8. When the prediction length
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was more than five months, the R2 and RMSE gradually stabilized, with R2 maintained
around 0.8. Except for shrubs, the RMSE of other vegetation types remained between 10–15,
indicating that using the ARIMA model to predict the NPP during non-drought periods
is feasible.

Figure 10 shows the recovery of vegetation for 1–24 months following extreme drought
in the form of a waterfall chart. The vertical axis represents the corrected relative error
(ECorr_error), while the horizontal axis represents the months following the extreme drought.
Through the vertical axis, we can clearly observe the changes in the growth and reduction
in the corrected relative error. The first time ECorr_error exceeds 0 (represented by the green
bar in the histogram) signifies the time when vegetation productivity begins to recover. The
results indicate that two years after the extreme drought, the recovery level ranks as follows:
shrub > forest > grass > farmland. The residual effect of drought on all vegetation averages
between 2–6 months. The residual effect of drought on forest vegetation occurs between
2–8 months, and low-elevation vegetation recovers more easily from extreme drought
events. Recovery time for forest vegetation was two months at an elevation of 4000–5000 m,
which may be due to the fact that high-elevation forest vegetation was less affected by this
round of extreme drought and had a higher resistance. The residual effect of drought on
shrub vegetation occurs between 2–8 months, and the recovery ability of medium–high
elevation shrubs is better than that of low-elevation shrubs. Shrub vegetation above 3000 m
can recover well from extreme drought events. The residual effect of drought on grassland
vegetation occurs between 2–8 months, and the recovery of vegetation improves with
increasing elevation. There is no significant difference between elevations for farmland
vegetation, and its productivity begins to recover 8–14 months after extreme drought occurs.

Figure 9. Reliability verification of ARIMA model.
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Figure 10. The resilience of vegetation to extreme drought.

4. Discussion
4.1. The Manifestations of Vegetation in Response to Extreme Drought

Yunnan is located in a low-latitude plateau region. Compared to other places at
the same latitude, it has relatively less precipitation but higher evaporation, making it a
relatively dry zone [44]. Anomalies in the circulation of the westerlies prevent the moisture
from the Bay of Bengal from reaching the Yungui Plateau, resulting in less precipitation in
Yunnan and causing an extreme drought event spanning autumn, winter, and spring [32,45].
During droughts, soil moisture decreases, which reduces the water available for plant
photosynthesis. Additionally, plants close their stomata to reduce water loss, leading
to a decrease in the intake of carbon dioxide by plant leaves, thereby reducing the rate
of photosynthesis and ultimately resulting in a decline in the NPP of vegetation [46–48].
Simultaneously, the increased temperatures in winter and early spring cause an earlier onset
of spring, leading to changes in vegetation structure and species composition. Therefore,
extreme droughts cause a decline in NPP for that year, but the productivity can recover in a
relatively short period of time [49].

Our research has found that different types of vegetation exhibit varying lag responses,
resistance, and recovery abilities to extreme drought. Forest vegetation shows a slower
response time to extreme drought compared to other types of vegetation but exhibits the
highest resistance and relatively high recovery capabilities, second only to shrubs. This
indicates that forests possess greater ecological stability in the face of extreme drought,



Atmosphere 2023, 14, 1026 14 of 18

which is consistent with other research findings [26,50,51]. Current studies suggest that
forests have deeper root systems, strong water retention capacities, and thicker leaves,
reducing water evaporation. This allows them to regulate vegetation morphology and
maintain photosynthetic efficiency during drought periods, giving them greater resistance
and recovery abilities compared to other vegetation types [52,53]. Shrubs exhibit poorer
resistance to extreme drought but have good recovery capabilities. This may be due
to their relatively shallow and dispersed root systems, making it difficult for them to
access deeper soil moisture sources. Additionally, their smaller leaf surface area cannot
sustain water supply under drought conditions, leading to their lower resistance to extreme
drought [54–56]. However, shrubs have shorter life cycles and good regenerative abilities
in their roots and stems, allowing them to grow and reproduce quickly, thereby adapting to
environmental changes and recovering faster from extreme drought events [57]. Grasslands
exhibit good resistance to extreme drought, with a recovery period ranging from 2 to
8 months, which aligns with other research findings [58,59]. Farmland, being a human-
controlled open system, has low biodiversity, a simple nutrient structure, and limited
self-regulation abilities. As a result, it is highly vulnerable to damage during disturbances,
leading to poor resistance and recovery capabilities to extreme drought [60,61].

4.2. The Impact of Elevation on Vegetation during Extreme Drought Events

Influenced by topographic patterns and monsoon systems, the Yunnan Plateau ex-
hibits distinct climatic mountainous characteristics. Different altitudinal vegetation shows
variations in response to extreme drought. This study found that for forest vegetation
at elevations below 1000 m, the lag phase of response to extreme drought occurs around
February to March. With increasing elevation, the lag phase advances, and the resistance
increases. When the elevation exceeds 3000 m, the impact of extreme drought on vegeta-
tion weakens, and lower elevation vegetation demonstrates better recovery from extreme
drought events compared to higher elevation vegetation. Shrub vegetation at elevations
below 3000 m experiences a lag phase between 0 and 3 months, and resistance increases
with elevation. Shrub vegetation at elevations between 3000 and 4000 m exhibits the highest
resistance, and the recovery capability of shrubs at middle and high elevations is better
than that of shrubs at lower elevation. Grassland vegetation at elevations below 3000 m
is more susceptible to extreme drought, and resistance increases with elevation, along
with better recovery. In general, vegetation in high-elevation regions is less susceptible to
extreme drought, and resistance increases with elevation, which is consistent with other
research findings [23,62]. Current studies indicate that NPP is influenced by temperature,
precipitation, solar radiation, and the vegetation growth environment. Climate warming
accelerates the thawing of permafrost in the northwestern part of Yunnan Plateau. The
melting of snow at high elevation alleviates water loss and reduces the impact of drought
on vegetation, leading to higher resistance to drought [63,64]. Precipitation and water
use efficiency also affect plant recovery [22]. Low-elevation forests, mainly located in the
southern part of the Yunnan Plateau, benefit from abundant rainfall, suitable temperatures,
and higher water use efficiency, providing a favorable environment for forest growth [65].
As a result, the recovery capability of low-elevation forests exceeds that of high-elevation
forests. The recovery level of agricultural vegetation is highly related to human cultivation
and irrigation practices [59]. The provision of supplemental water through irrigation miti-
gates the impact of drought, resulting in no significant elevation differences in the recovery
capability of agricultural vegetation.

4.3. Limitations and Prospects

The identification methods for extreme drought disasters are diverse, manifested
in the diversity of drought indices and the uncertainty of drought thresholds. Common
drought indices include precipitation, evaporation, SPI, and the SPEI used in this study.
Drought is a complex phenomenon, and different drought indices identify and assess
drought from different perspectives. A single index often cannot comprehensively evaluate
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the impact of drought. Therefore, future research can employ a multi-index comprehensive
approach to identify drought events, aiming to improve the accuracy and reliability of
drought identification. At the same time, thresholds are critical in determining the severity
of drought. However, drought thresholds are subjective and uncertain. In this study, we
used the threshold of−1.5 as stipulated in the Chinese national standard. However, studies
by other researchers have found that drought thresholds may vary in different regions. For
example, Danandeh used a threshold of −1.83 for drought identification in Turkey [66].
Therefore, in future research, it is advisable to consider local climate, hydrological, and
ecological characteristics for adjustment and optimization, as well as to conduct reasonable
sensitivity analysis and validation of thresholds. Finally, this study did not consider other
factors that may influence extreme drought events, such as soil properties, precipitation
patterns, and human activities. In future research, these factors can be further taken into
account to comprehensively evaluate the response of NPP to extreme drought.

5. Conclusions

Extreme drought periods resulted in a decrease in the NPP of Yunnan’s vegetation.
Vegetation exhibits a lag period of 1–3 months in response to extreme drought, with forests
reacting slower than grasslands and shrubs, while also demonstrating higher resistance
to extreme drought. Except for agricultural vegetation, other types of vegetation can start
recovering their productivity within a year. Different altitudinal vegetation shows varied
responses to extreme drought. Vegetation above 3000 m is less susceptible to the effects of
extreme drought. As elevation increases, the lag period for forest vegetation in response to
extreme drought advances, and resistance increases. Beyond 3000 m, the impact of extreme
drought on vegetation weakens, and the residual effects on forest vegetation last between 2
and 8 months. Additionally, low-elevation vegetation is more capable of recovering from
extreme drought events. For shrub vegetation below 3000 m, the lag period ranges from 0
to 3 months, and resistance increases with elevation, with the highest resistance occurring
between 3000 and 4000 m. The residual effects of extreme drought on shrub vegetation
persist between 2 and 8 months, with better recovery observed for mid–high elevation
shrubs compared to low-elevation ones. Grassland vegetation below 3000 m exhibits a
lag period of 1–3 months, while above 3000 m it shows a lower correlation with extreme
drought. Vegetation resistance to drought increases with elevation, and the residual effects
of extreme drought last between 2 and 8 months. As elevation increases, vegetation’s
recovery from extreme drought improves. For agricultural vegetation, the lag period
ranges from 1 to 3 months, and mid–high elevation vegetation displays higher resistance.
Recovery capacity does not show significant elevation differences, and the residual effects
last between 8 and 14 months. Extreme drought events not only have a lag effect on the
vegetation ecosystem, but also affect its stability and resilience to future drought events.
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