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Abstract: Substantial reductions in human and economic activities such as road traffic for several
months in 2020 were one of the consequences of the Coronavirus pandemic. This unprecedented
change in urban metabolism also affected temperature and air pollutants. This study investigates
the effects of the first COVID-19 lockdown across 43 cities in Europe. It determines the influence
of anthropogenic activities on nitrogen dioxide (NO;), ozone (O3), and particulate matter (PM,5),
as well as on land surface temperature (LST) and the surface urban heat island intensity (SUHII)
using satellite, modeled, and mobility data. Our findings show that there are great temporal and
spatial differences and distinct patterns between the cities regarding the magnitude of change in the
variables under study. In general, the results indicate a substantial decrease in NO, concentrations in
most of the studied cities compared with the reference period of 2015-2019. However, reductions
could not be attributed to mobility changes such as less traffic at transit stations, contrary to the
results of previous studies. O3 levels increased during the first lockdown in accordance with the
decreasing NO, concentrations. The PM pattern was inconsistent over time and space. Similar to
the NO, results, no relation to the altered mobility behavior was found. No clear signal could be
detected for LST and the SUHII, likely due to dominating meteorological influences.

Keywords: air pollutants; COVID-19; lockdown; land surface temperature; road traffic

1. Introduction

One of the deadliest and largest global pandemics in history, the Coronavirus disease
2019 (COVID-19), first appeared in November 2019 in Wuhan, China [1,2]. The first case of
COVID-19 in Europe was confirmed on 21 February 2020, in France (Spiteri et al., 2020).
Until the end of May 2023, around 766,500,000 cases have been confirmed globally, with
6,933,000 deaths [3]. Europe declared 276,300,000 confirmed cases. To combat the virus and
to reduce infections and mortality, governments put in place numerous measures such as
travel restrictions, school- and workplace closures, and even complete lockdowns [4,5]. In
consequence, unprecedented in history, the virus reduced various human and economic
activities for several months [6]. This exceptional situation changed the environment in
many ways. For example, changes in the anthropogenic heat release related to road traffic
emissions and energy consumption for heating and cooling buildings modified the air-
and land surface temperatures (LST) of cities [7-9]. Numerous studies investigated the
LST changes during the first lockdown [9-12] and observed a general decline in mean
LST compared with the previous years. For instance, Liu et al. [9] found that during the
lockdown, the surface urban heat island intensity (SUHII) in China decreased by 0.25 K
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during the day and 0.23 K at night, and the canopy-layer UHII by 0.42 K during the
day and 0.39 K at night, respectively. In addition, regarding air pollutants, many studies
have already shown that the lockdown restrictions affected anthropogenic-related air
pollution [4,6,13-16]. This is especially important because indoor and outdoor air pollution
is one of the greatest health risks for people nowadays, claiming about seven million lives
annually [17]. During the lockdown, spatial differences in the intensity of changes were
recorded. They are mainly explained due to different strict measures imposed by each
government, the prevailing sources of emissions, and the weather [18]. The strongest air
pollution drops were seen in Asia and then in Europe. Less strong drops were registered in
North America and the smallest changes in Africa due to less strict measures [19].

In detail, looking at nitrogen dioxide (NO,), the European Space Agency (ESA) [20]
noted a 40-50% reduction across Asia and Europe, derived from the Sentinel-5P satellite
between the end of January and the beginning of February 2020 compared with the same
period in 2019. The study by Tobias et al. [21] based on ground measurements showed
similar signals. Here, Barcelona had reductions of —45% to —51%. Both ground mea-
surements and satellite-based studies concluded that the main contributors to the NO,
reduction are the decline of road transport and industrial emissions. However, after easing
the restrictions, concentrations were approximately as high as before the lockdown [18].

Observations of fine inhalable particles with diameters of 2.5 pm and smaller (PMj; 5)
were inconsistent. For example, in Chinese cities, the drop in PM; 5 was generally greatest
in the more industrialized cities [22]. In comparison with 2017-2019, reductions of —42%
were noted for Wuhan [16]. In rural areas, where agriculture is the main activity, or places
where PM is more prevalent due to natural sources, PM remained at higher levels. In
addition, the strictness of the lockdown affected the PM; 5 reduction. Compared with 2019,
reductions of —7.1 pg/m?3 without strict measures and —21.1 j1g/m3 with strict measures
were reported [22]. In South European cities, there were only slight PM reductions (—8%)
compared with those of 2017-2019 [16]. The drops were recorded especially at traffic
stations and hence attributed to transport and fuel combustion reductions. However,
increased domestic heating and garden activities such as biomass burning compensated for
those declines.

A widespread increase was seen regardingozone (O3). For example, in Barcelona and
Andalusia, higher O3 concentrations were reported, with +33% to +57% and +5.9%, respec-
tively, obtained from meteorological ground stations, compare with pre-covid levels [13,21].
Another study recorded an Oj increase of +17% compared with 2017-2019 for Europe [16].
The increase is explained due to reductions in NOy emissions resulting in lower O titration,
leading to higher concentrations of O3. Further, it must be considered that O3 formation is
weather dependent, i.e., photochemical sensitive. The sunny weather in this period led to
a higher O3 formation.

Thus, the emergence of COVID-19 offers a unique opportunity to understand and quantify
human impact on the environment. However, most studies focus only on individual cities and
single variables which may not be sufficiently representative, e.g., [10,13,22-24]. Considerably
fewer studies analyzed patterns within a continent or at a global level, e.g., [16,18,25]. In
fact, there is a lot of annual variation and thus differences between cities. Hence, cities may
show significant changes in different directions. Thus, the main objectives of this article are
first to perform a multiparameter analysis and to comprehensively document the spatial
and temporal LST and air pollutant variations, namely NO,, O3z, and PM; 5, during the
first lockdown period for 43 cities across Europe, compared with the reference period in
2015-2019; and secondly, to determine the influence of altered anthropogenic activity on
those variables.

2. Materials and Methods
2.1. Investigation Period and Study Area

The investigation period covers the years 2015-2020. Special attention was paid to the
period from 15 March 2020 to 30 April 2020, when the strict policies of the first lockdown
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in Europe stopped various anthropogenic activities nearly completely. The same period,
i.e., 15 March to 30 April from 2015 to 2019, serves as reference data. A five-year baseline
was chosen to minimize the impacts of inter-annual climatic variability. The study was
carried out across Europe. Based on the data availability, it is possible to analyze a sample
of 43 cities in Europe. The cities can be seen in Figure 1.

Mediterranean Sea
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Figure 1. Cities under study.

2.2. Air Pollutants under Study

For this study, the air pollutants NO;, O3, and PM; 5 were selected. Primary pollutants,
i.e., directly emitted, such as NO;, are closely linked to human activity [15]. Thus, changes
in air pollutant concentrations due to changes in anthropogenic behavior are expected. The
main contributors to NO, emissions in Europe are transport (39%) and energy production
(16%), commercial, residential, and households (14%), and energy use in the industry
(12%) [20]. Its lifetime in the atmosphere is between two to six hours in the summer
daytime and 12 to 24 h during the winter and mainly depends on meteorology [26]. Due
to its short lifetime, NO, concentrations quickly alter when emissions change. In general,
higher concentrations are found over densely populated cities, where emissions are higher
than in the surrounding areas [15].

O3 is a secondary pollutant and is thus, unlike NO;, not directly emitted. It photo-
chemically forms under solar radiation through chemical reactions of NOy and volatile
organic compounds (VOCs) [18]. O3 emerges under solar radiation, thus unhealthy concen-
trations are predominantly yielded on sunny days [17]. In the winter, O3 concentrations
are lower when NOy levels are usually high, and thus titration is intense [18]. The lifetime
of O3 depends on meteorology and solar radiation—mainly on the chemistry of Oj itself,
its oxidant level, and the NOx and VOCs—but on average, its lifetime in the troposphere is
about 20-24 days [27].

PM; 5 can form through chemical reactions in the atmosphere, forming secondary PM.
Sources can be from gaseous pollutants such as SO,, ammonia, or NO,, especially due to
power plants and combustion. On the other hand, it can be directly emitted in the form
of dust, sea salt, smoke, trace elements, and crustal matter [14,17]. In Europe, the main
anthropogenic contributors of PM, 5 are commercial, residential, and households (56%),
industrial processes and product use (11%), agriculture (3%), road transport (11%), and
energy use in industry (6%) [28].

2.3. Data

This study uses the LST data product from Terra and Aqua MODIS (MxD11A1 v6.1).
The products are available from LP DAAC as gridded files. Its spatial resolution is 1 km.
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The sun-synchronous satellites traverse the equator at 10:30 and 13:30, respectively, local
solar time, in the descending orbit and at 22:30 and 01:30 in the ascending orbit. The
MxD11A1 data product provides the daily LST during the day- and night-time. The daily
LST data are processed as explained in Sismanidis et al. [29], and the LST mean is calculated
for each city (separately for the urban and the surrounding rural area).

From the LST, the SUHII is calculated by subtracting the rural arithmetic mean from
the urban. The aim of calculating the SUHII is to reduce the noise and the existing variation
in the data and make the signal from the changed human activities more pronounced.
Because the diurnal and seasonal temperature cycle is higher than the expected magnitude
of temperature differences between the lockdown period and the non-lockdown period, we
normalized these differences to enhance the signal corresponding to the changed human
activities. It must be noted that the SUHII also depends on the weather. However, by
calculating the SUHII temperature variabilities throughout different years, the inter-annual
variabilities and the magnitude of variations are reduced [30].

The air pollutant concentrations are from the Copernicus Atmosphere Monitoring
Service (CAMS). The data assimilation embeds satellite and ground-based/in-situ observa-
tions and numerical models. The used product is the CAMS daily regional analysis. Here,
one daily average value for each air pollutant is given per major European city [31].

Mobility data from Google’s COVID-19 Community Mobility Reports are used to
examine how the number of visits to specific types of places changed during the COVID-19
lockdown in each city. We also use these data as a proxy for anthropogenic activity. There
are six types of places, namely residences, transit stations, retail and recreation, grocery
and pharmacy, workplaces, and parks. For residences, the percent change of average time
spent at home is provided. The percentual change of one day for a specific place is related
to a reference value for the respective weekday. The baseline data are the median value
for each category and each weekday during the five-week period between January 3 and
February 6 in 2020 before the lockdowns started. Thus, there are seven different reference
values within a week [32].

2.4. Statistical Analysis

To quantify the changes between the lockdown and pre-COVID period, the data
are split into two groups. The first group corresponds to the reference period (15 March
to 30 April 2015-2019) and the second to the lockdown period of the first COVID-19
pandemic wave (15 March to 30 April 2020). For each variable, the percentage and the
absolute difference between the two groups are computed.

To assess if the differences between the two groups are statistically significant, and
to check whether the pre-COVID and lockdown values come from the same distribution
a two-sample one-sided, a non-parametric Kolmogorov—Smirnov hypothesis test (KS-test)
was carried out [33]. The significance level is o« = 0.05 and the test hypotheses for all
variables under study but ozone are the following:

e  Hj: the two distributions are identical, F(x) > G(x) for all x, where F(x) is the lockdown
and G(x) is the reference period.
e  Ha: they do not have the same distribution; the lockdown distributions are shifted

toward lower values: F(x) < G(x) for at least one x.

Hypotheses for ozone:

o Hj ozone: the two distributions are identical, F(x) < G(x) for all x, where F(x) is the
lockdown and G(x) is the reference period.
e Ha, ozone: they do not have the same distribution; the lockdown distributions are

shifted toward higher values: F(x) > G(x) for at least one x.

3. Results
3.1. Multiparameter Overview

Figure 2 shows the results of the individual variables of the KS test combined with
the relative change in 2020 compared with the reference period. For the KS test, in most
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cases, the null hypothesis can be rejected, i.e., the LST, NO, and O3 differences between the
lockdown and reference periods are statistically significant (shown with a circle). If there is
no statistically significant change in the variable, this is indicated by a rhombus as a symbol.
This is the case in Eastern Europe for the O3 values and the LST night-time values. For PM,
the results are variable with no clear signal regarding the spatial distribution.

NOZ change (%) 03 change (%)

-20

-30

‘ no significant difference
. significant difference

Figure 2. Relative changes in 2020 compared with the reference period of 2015-2019 for NO,,
O3, PM; 5, and LST combined with the KS test results. The circle means that there is a statistical
significance (reject Hy), i.e., the variable significantly altered during the lockdown period compared
with the reference period. The rhomb indicates there is no significant change (accept Hy) according to
the KS test.

In general, a predominant decline in ground-level NO, was recorded. Although most
of the cities showed the same signals, the magnitude of change differed city-wise. The
three cities with the largest percentual NO, reductions are Luxembourg (—54.0% relative
change, —12.3 pg/m? absolute change), Riga (—50.7%, —5.1 pg/m?), and Belgrade (—50.4%,
—6.8 ug/m3). Hamburg (+10.5%, +1.1 ug/m3), Tirana (+18.4%, +0.7 ug/m3), and Naples
(+11.9%, +1.7 pg/m?) show the largest positive anomalies. For O3 a widespread increase is
evident. The largest positive anomalies are found in Luxembourg (+41.1%, +20.5 pg/m?),
Cologne (+35%, +15.7 ug/ m3), and Paris (+27.1%, +13.1 ng/ m?). In contrast to the other
cities, cities in the Iberian Peninsula, Italy, and southern France show lower O3 concentra-
tions in 2020. The greatest changes correspond to Naples (—12.1%, —8.9 pg/m?3), Valencia
(—10.3%, =7.5 ug/ m3), and Madrid (7.2%, —5.0 ug/ m3). PM; 5 anomalies are inconsistent
over space. They predominantly decreased in Northern Europe. Strongest reductions can
be observed in Tallin (—38.4%, —2.9 ug/ m3), Vilnius (—37.4%, —4.6 ug/ m?), and Oslo
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(—28.8%, —2.8 ug/ m?). The highest increases were observed for PM, 5 in Dublin (+43.9%,
+1.5 ug/ms), Turin (+31.4%, +5.5 pg/m3), and Milan (+19.7%, +4.1 pg/m3).

3.2. Nitrogen Dioxide

Figure 3 shows the change in the distribution of the daily NO, levels averaged for all
cities. Here, it is apparent that the mean of the NO, concentration during the lockdown
in 2020 (dark red line) and the binned observations for the individual concentrations are
left-shifted, which means that they have decreased. Furthermore, the density is reduced
as well, which underlines the flatter continuous density curve for 2020. The density is
calculated by dividing the frequency by the class width. Thus, it represents the frequency
per unit for the data in each class. At this point, it must be emphasized that the individual
cities differ a lot. For some cities (such as Barcelona), the change is high, and in others (such
as Valetta), the change is low (Figure 4).

2020
035 2015-2019

010 \
0.05 \

0 5 10 15 20 25
NO, [ug/m3]

Figure 3. Distribution of the NO, levels [ug/m?] during lockdown and reference period averaged
over all cities. The vertical line corresponds to the mean of the period, and the columns to the binned

observations.
Barcelona
a0 Valletta 030 -
NO: Levels 2020 1. lockdown NO; Levels 2020 1. lockdown
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2015 2015
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000 ? \ y T 0.00 v - - - —
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Figure 4. Distribution of the daily NO; levels [ug/ m?] during lockdown and reference period for

(a) Valetta and for (b) Barcelona.

The anomalies over the curfew period are shown in more detail in Figure 5. Here,
the differences for each day and city are shown compared with the values for each city in
the reference period. In general, the changes in the Eastern European and Scandinavian
cities are rather small. It is noticeable that there is almost no NO, concentration difference
in Sarajevo. In contrast, much lower NO, concentrations in 2020 (i.e., a strong negative
anomaly) can be seen in Athens and Luxembourg. Some cities show inconsistent behavior,
such as Brussels, London, Milan, or Paris. On the other hand, Hamburg, Tirana, and Naples
predominantly show a positive change in NO, concentrations compared with the reference
period. Considering all cities, strong concentration declines in 2020 from day 81 of the year
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(22 March) approximately until day 91 (1 April) are noticeable. Thereon, several cities show
concentration increases compared with the reference period, interrupted again by negative
anomalies during days 104-106 of the year (14-16 April).
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Figure 5. NO, anomalies [ug/ m?] (15 March-30 April 2020 vs. 15 March-30 April 2015-2019).

Looking at the average weekly pattern of all cities (Figure 6), the absolute NO;
concentrations are not only lower but the pattern itself changed. In general, measured
NO; concentrations increased, peaking on Fridays, and decreased towards the weekend.
A comparatively stronger increase in concentrations from Monday to Friday can be seen
in 2020 (~3.5 pg/m? in 2020 vs. ~2 pg/m? in the reference period). On Sundays and
Mondays, the concentrations are the same in 2020. In contrast, in the reference period,
higher concentrations on Mondays compared with Sundays are observed.

S
o N

)
N W B

NO, surface concentration [pg/m?3]
=
wn

[
=

—— 2015-2019
— 2020

Monday

Tuesday Wednesday Thursday Friday Saturday Sunday

Figure 6. Weekly mean NO, [ug/m3] for all cities during 15 March-30 April in 2020 and the
reference period.

3.3. Ozone

Examining the O3 anomalies over the whole period, lower concentrations seem to pre-
vail at the beginning of the lockdown. Around days 80 to 90 of the year (22 March-31 March),
however, almost all cities show an increase in O3 concentration (Figure 7). Very striking is
the strong increase in Athens, Budapest, Cologne, and Luxembourg. This is followed by
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a phase that tends to have less O3 in 2020 that lasts until day 95 (5 April). Until day 108
(18 April), most cities show higher O3 concentrations than in the reference period. The cities
Lyon, Marseille, Naples, Rome, Madrid, and Valencia show strong negative anomalies,

especially towards the end of the study period from day 109 (19 April).
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Figure 7. Ozone anomalies [ug/ m3] (15 March-30 April 2020 vs. 15 March-30 April 2015-2019).

In addition to the fact that surface O3 concentrations are mostly higher in 2020, con-
centrations tend to be higher on weekends (Figure 8). The pattern itself in 2020 compared
with the reference period is similar. However, there is a smaller concentration increase in
2020 (~1.9 pg/m3) towards the weekend than in 2015-2019 (~4.2 pg/m?3). In addition, O3
concentrations decrease in the reference period from Monday to Friday, whereas for 2020,
they do so only until Wednesday. Further, the pattern is inverse in comparison to NO5.

[=2] D [=)] ~
& [+)] [ee] o

[=2]
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0Ozone surface concentration [ug/m?]

—— 2015-2019

S . — e

e I

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Figure 8. Weekly mean ozone levels [pg/m3] for all cities 15 March-30 April in 2020 and 2015-2019.

3.4. Particulate Matter

PMj; 5 shows only a small shift in the mean concentration (Figure 9). Looking at the
histograms, the bins are distributed in a greater range in 2020. Thus, both observations
with higher and also with lower daily values are recorded in 2020, even though it has
a comparatively lower density curve. The anomalies are not only inconsistent over space
but also over time (Figure 10). However, it is noticeable that between days 77 and 80
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(18 March-21 March), in some cities, there was a simultaneous increase in PM levels in
2020, followed by a drop until approximately day 86 (27 March). From day 87, with a few
exceptions (e.g., Valetta, Naples), there was a positive anomaly that lasted about three days.

2020
Re00 2015-2019

15 20 % 3 35
PM, 5 [p.g/m3]

Figure 9. Distribution of the daily PM, 5 levels [ug/m?] averaged over all cities during lockdown
and reference period.
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Figure 10. PM; 5 anomalies [ug/ m3] (15 March-30 April 2020 vs. 15 March-30 April 2015-2019).

3.5. Land Surface Temperature

For both LST and SUHII, there is no clear signal of change (Figure 11). In total, there
was only a very slight LST and SUHII reduction. Uncorrected weather data show both
higher and lower LST in 2020 compared with the reference period and strongly diverge
temporally and spatially (Figure 12).
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Figure 11. Distribution of the (a) LST [°C] and (b) SUHII [K] averaged over all cities during lockdown
and reference period.
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Figure 12. (a) LST [°C] and (b) SUHII [K] anomalies (15 March-30 April 2020 vs. 15 March-30 April
2015-2019).

3.6. Mobility Data

Figure 13 shows the percentual change of anthropogenic mobility during the study
period (red box: 15 March to 30 April 2020) and the time after the first lockdown in Madrid
and Stockholm. The cities of Madrid and Stockholm were selected as examples of a strict
lockdown and a lockdown with very few ordinances, respectively. Spain and Italy, in
general, had the most stringent measures, while the government of Sweden imposed
almost no restrictions [34]. Scandinavian and Baltic cities had less strict measures, which
was also the case in Germany, where schools have been closed, but the industrial sector
largely remained open [35].

After the restrictions were imposed in mid-March, mobility was clearly reduced. All
categories were visited less, except for “residential” because more time was spent at home.
In general, the greatest changes can be observed in the categories of retail, recreation, and
transit stations, and the least in parks, grocery, and pharmacy. After easing the restrictions,
mobility gradually increased again, with parks being visited more than usual. It must be
stated that the baseline is in February and that fewer parks are visited in winter than in
summer anyway. However, mobility behavior has still not returned to the levels seen in
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the summer of 2020. Furthermore, the data show a weekly pattern. People were outside
more and less at home on weekends but in total less than usual. Regarding the workplaces
and transit stations, more people worked from home and did not use public transport. In
contrast, on weekends, most of the employees do not work and changes are rather marginal.
A detailed insight into how each mobility category changed in the individual cities can be
seen in Appendix A.

Percentual change from baseline, 15.03-01.08.2020 - Madrid
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Figure 13. Percentual mobility change from the baseline, Madrid, and Stockholm during 15 March-1
August 2020.

Comparing the two cities, in Madrid, mobility was much more restricted, public life
almost came to a halt, and thus mobility data show a greater decline. Transit stations, park
visits, and retail and recreation had a change of almost —90%. Furthermore, significantly
more time was spent at home. Buying groceries was the only allowed opportunity to
leave the house [34]. In contrast, in Stockholm, the surplus of time spent at home was
significantly lower (~+20%) than in Madrid (~+35%). In addition, changes at transit stations
and workplaces were only about 50%. From the end of March and ongoing, parks were
visited more than during the baseline period, reaching a maximum of +75%. At the
beginning of June, the visits to parks considerably increased compared with the baseline
in Stockholm (the large daily variations are because park visits are influenced by the
weather conditions). Thus, the two exemplary selected cities clearly illustrate how different
strictness levels are reflected in changes in mobility behavior.

In Figure 14, we examine how daily mobility is related to the variables under study,
where each point corresponds to the value of one city on one day. As an example, the
change in the number of visitors at transit stations is selected. The other categories follow
the same pattern, except for “residential”, which shows an inversed pattern (not shown).
The data distribution of the change in visitors at transit stations and the absolute NO,
values is clearly not linearly correlated (Figure 14a). Furthermore, it is useful to look not
only at the absolute NO, values, but also at the change in NO, concentrations compared
with the change at transit stations. The representation of the two allows inferences about
how the NO, values change related to the change in the number of visitors at transit stations.
In Figure 14b, it can be seen that there were fewer people at transit stations and that the
NO; concentration has predominantly decreased during COVID-19. More importantly, it
becomes evident that the change in visitors at transit stations has no visible influence on
the NO, change. Overall, we could not establish a clear relationship between mobility and
the variables under study.
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Figure 14. (a) Absolute NO; concentrations vs. percentual change at the transit station during the
lockdown in 2020; (b) percentual change of NO, vs. percentual change at the transit station for the
lockdown period.

4. Discussion
4.1. Nitrogen Dioxide

In agreement with many other studies [15,19,21,36,37], strong reductions in NO, levels
in most European urban areas are observed. Regarding the weekly pattern of air pollutants,
several studies depicted the same results as stated here. Masiol et al. [38] explain the
pattern by arguing that less NO; is emitted on weekends due to the fact that fewer people
drive to work, and that heavy-duty vehicles are not allowed to drive on Sundays in most
European cities. The pollutants accumulate within the week and reach their maximum
on Friday because commuter traffic is reduced on weekends. For a distinct attribution
to lockdown effects, improvements in air quality due to implemented measures should
be taken into account. Some trend analysis of the five-year reference period of each city
resulted in inconclusive results due to the high inter-annual variability and the comparably
short period, and thus was not suitable to provide a consistent and robust estimate of
the expected 2020 NO; baseline concentrations for each city. The aggregated trend-based
results paint a much clearer picture and agree with the mean-based analysis employed
by this work. Overall, they too suggest that the NO, concentration decreased but by
a smaller magnitude (2.0 pg/m3 instead of 3.6 pg/m?3). Thus, follow up studies should
include post-2020 data to provide a better trend estimation and attribution. Moreover,
weather effects should be eliminated, e.g., by using neural networks as suggested by [39].
Additional evidence for a lockdown-related signal is provided by the weekly cycle. The
fact that NO; concentrations are very similar on Mondays and Sundays in 2020 suggests
that fewer people drove to work during the lockdown. On the contrary, under normal
conditions, more emissions are emitted on Mondays than on weekends.

4.2. Ozone

The increase in Os is related to the strong decline in NO;, a precursor of Os3. Besides
meteorological conditions, the ratio of NO, and VOCs determines ozone production. If
NO; levels decrease, the VOC/NOx ratio is high, chemical titration with NO is reduced,
and O3 levels increase. However, the response of O3 formation to changes in the VOC/NOx
ratio is nonlinear [14,23,36,40]. The study of Shi et al. [40] states that reductions in traffic-
related NO emissions lead to increases in O3 concentrations during the daytime. Further,
they emphasize that sunny weather during the lockdown enhances the oxidizing process
and leads to higher photochemical production of Os. However, possible divergences can be
explained by the fact that O3 is regionally well-mixed and can be transported downwind,
which can dominate local signals [36]. Thus, there is a high probability that the observed
reductions of O3 in some cities such as Madrid, Valencia, or Naples can be attributed to
meteorological processes.
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The weekly O3 pattern can be indirectly attributed to human metabolism because of
its chemical relationship to NO;. O3 shows the inverse pattern of NO; i.e., an increase
on weekends. This increase is observed in large parts of the world [16,41,42] and can be
associated with a reduction in traffic, i.e., NO, emissions, followed by a reduced titration
of O3 [13,21]. However, in 2020 the changed human metabolism influenced the “business
as usual” pattern and caused changes in the weekly variation of O3.

4.3. Particulate Matter

PM surface concentration changes are weak and inconsistent with no clear increase
or decrease signals even within one city over the study period. Several studies partly
corroborate these results and the lack of a geographical homogenous signal [36,40]. Strong
variations can be expected because PM has various emission sources [43]; hence, no clear
relationship between PM and traffic is found. On the one hand, reductions in primary
emissions of PM and its precursors such as NO, and VOCs emitted—for example from
cars—led to declines. At the same time, the emissions from sectors such as agriculture, e.g.,
fertilizing, biomass combustion, waste burning, construction works, and industry, were
not strongly affected by those measures. Especially in Western Europe, PM levels were
high in early spring due to fertilizer spreading [36,44]. Furthermore, it must be considered
that the lockdown took place in early spring, when air temperatures were still cool, and
residential heating was necessary. With the surplus of time spent at home, heating in houses
increased. In particular, wood burner stoves contribute to high PM levels [43,44]. Another
reason for inconsistent signals in PM levels are local and regional meteorological conditions.
PM levels can be influenced by temperature, humidity, precipitation, vertical mixing, and
advection [25]. Moreover, regional and long-range air mass transport can significantly affect
local PM concentrations positively or negatively [44]. For example, reductions in PM levels
from road traffic can be overwhelmed by PM air mass transportation from more polluted
regions [40]. All these factors counteracted the reductions in traffic and contributed to
inconsistent signals. Finally, traffic-related measures to reduce harmful PM in cities had
already been implemented within the EU before the lockdown started [43]. The fact that
no strong changes in the PM levels were recorded can therefore also be due to previously
taken measures that aimed to improve the air quality over the years.

4.4. Relationship of the Air Quality Variables and LST with Mobility Data

In contrast with other studies [45], we were not able to observe a clear relation-
ship between the air pollutants, the LST, and the mobility variables, even though other
works clearly attribute the NO, declines to traffic depletion due to the stay-at-home
order [14,15,46]. The transport sector is the largest contributor to NO, emissions in
Europe [28]. Thus, changes in surface NO, levels serve as an indicator of altered hu-
man activities and local mobility. However, the results of this study indicate that the change
in visitors at transit stations has no or only a low influence on NO; emissions. Even though
the results show that the number of visitors to transit stations has fallen significantly, this
does not necessarily imply that fewer buses or trains operated, because timetables were
likely maintained. This is also supported by Ropkins and Tate [47], which suggests that
public transport in the UK, especially buses, did not stop during the lockdown. Therefore,
air pollutants from this source remained close to pre COVID-19 levels. Nevertheless, the
fact that a general decline in NO; values was recorded may be due to great reductions
in traffic with privately-owned cars and is not related to public transport. However, the
mobility data only consider transit stations and public transport, not individual car driving.

The PM also shows a weak relationship with the mobility data. This is in line with the
findings of Efe [48]. Even though some studies showed positive correlations between mo-
bility and PM, attributing the drop in PM to traffic restrictions, e.g., [49], several studies ob-
tained similar patterns to the ones observed here. For example, the study of Munir et al. [44]
shows the same negative, weak correlation with PM; 5, although they only considered
Northern England. They assumed that PM concentrations are primarily regulated by the
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weather and regional PM transportation than by traffic. Furthermore, in a dispersion
modeling experiment in Sheffield, it becomes clear that PM emissions are mainly controlled
by point sources and not by traffic [50]. The lockdown took place in spring when most
households still used heating. Household heating is a substantial contributor to PM levels.
This is especially relevant considering that people were ordered to stay at home as much
as possible to combat the virus [36]. Shi et al. [40] illustrate in their study that PM; 5
shows a complex response to the lockdown measures. Road traffic makes a rather small
contribution to PM. In contrast, secondary sources such as residential solid fuel use and
industrial activity have a larger impact on PM levels. In addition, non-lockdown-affected
sectors such as agriculture and livestock contribute to PM emissions [21,36]. Thus, changes
in people’s mobility behavior do not always lead to reduced PM levels, because traffic is
not the sole origin of PM.

Finally, it must be emphasized that there is no simple monocausality between air
pollutants, temperature, and human mobility. There are several factors that have not
been highlighted in this work such as meteorological conditions and chemical-physical
reactions that influence the air pollutant levels. In fact, it would be too trivial to get a linear
relationship between temperatures and air pollutants and the change in human activities,
which depend very much on atmospheric conditions. Because the cities under study have
very different microclimates, a simple derivation and inference to a single component are
not possible.

Thus, it is crucial to include meteorological data in future analyses. Especially for tem-
perature changes but also for air pollutant changes—in particular, O3—there remain open
questions due to a dominating weather effect and the complexity of other meteorological
and chemical factors, which must be revised in future work.

5. Conclusions

We investigated the changes and the relationships of air pollutants and LST with
data describing the human activity in 43 European cities in the lockdown year of 2020
in comparison with the reference period 2015-2019. Our findings show that there are
considerable spatial and temporal differences between cities and spatial patterns regarding
the magnitude and even the direction of change. Coinciding with previous studies, the
results depict reductions in anthropogenic activities such as visiting parks, transit stations,
workplaces, or retail and recreation during the lockdown. Simultaneously, NO, concen-
trations declined as much as —54% (in Luxemburg) compared with the reference period.
In contrast, ozone levels increased, with the greatest relative changes also in Luxembourg
(+41.1%). The O3 increase is attributed to a lower titration of Oz by NO due to the substan-
tial decline in local NOy emissions. LST and PM spatially and temporally varied. Within
our analysis, we depicted that some variables are more closely linked to human activity
than others; the most pronounced is NO,. Here, especially human activity can be seen in
the weekly cycle. The significant decreases in most cities are likely related to the lockdown,
but for more specific attribution, additional analysis on trends and weather influences
is envisaged. However, we were not able to attribute the changes to specific changes in
mobility behavior. Many previous studies suggested that restrictions have a significant
impact on anthropogenic activities and, correspondingly, on urban temperatures and air
pollutants. Owing to the complexity of meteorological factors, open questions remain,
especially regarding the change in SUHII and LST. Future work should aim to accurately
capture the influence of prevailing weather patterns on temperature changes.
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Appendix A

Figures A1-A5 allow more detailed insight into the development of the alterations to
Google’s COVID-19 Community Mobility Reports categories. Regarding workplace change,
Figure A1 underlines that much fewer people drove to their workplaces. Further, it clearly
emphasizes a weekend pattern, when fewer people work, leading to lesser changes. Equally,
Figure A2 shows that more time was spent at home during the week. The two patterns are
very similar but inverse to each other. The cities that had the largest negative changes in
the workplace have the largest increase (positive change) in time spent at home. German
cities, especially Cologne and Munich, had a comparatively lower change. This suggests
that fewer citizens were in a home office but have continued to drive to work. In Germany,
schools have been closed, but the industrial sector has remained largely open [35]. In
addition, the Scandinavian and Baltic cities also show smaller changes. The change in
French, Italian, and Spanish cities is particularly striking. They had the greatest negative
alteration on workplace changes and the greatest positive on time spent at home. This
underlines the severity of the enacted lockdown measures, where citizens were not allowed
to drive to work and had to work from home. The two other mobility classes also fit in the
spatial pattern of alterations. However, the intensities of change slightly differ. Temporally,
the weekend-weekday pattern is not as pronounced as in Figures Al and A2. For the
change of visitors to groceries and pharmacy (Figure A5), a weekly pattern is evident,
caused by shops being closed on Sundays. In agreement with the above, German and
North European cities showed minor declines. The strong decrease around days-of-year
102 and 103 coincides with the Eastern holidays when stores are closed.
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Figure A1l. Percentual workplace change compared from the reference period in 20152019 to the
first lockdown in 2020.
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Figure A2. Percentual change of time spent at home compared from the reference period in 2015-2019
to the first lockdown in 2020.
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2015-2019 to the first lockdown in 2020.
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Figure A4. Percentual change of visitors to retail and recreation compared from the reference period
in 20152019 to the first lockdown in 2020.
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