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Abstract: Given the increasing impact of extreme rainfall and flooding on human life, studying
and predicting changes in atmospheric water vapor (AWV) becomes particularly important. This
paper analyzes the moderate-resolution imaging spectroradiometer (MODIS) data of the East Asian
region from January 2003 to February 2023. The AWV data are examined in the time and frequency
domain using methods such as empirical orthogonal function (EOF), Mann–Kendall (MK) analysis,
and others. Additionally, four prediction models are applied to forecast the monthly average AWV
data for the next year. The accuracy of these models is evaluated using metrics such as mean
square error (MSE), mean absolute error (MAE), root mean square error (RMSE), and coefficient of
determination (R2). The findings reveal several key insights: (1) The East Asian region exhibits highly
variable seasonal variability in AWV, with identified mutation points after the MK test. (2) Spatial
analysis shows high AWV data in the southern coastal areas of China, Thailand, Myanmar, Nansha
Islands, and other regions during winter, while the Qinghai-Tibet Plateau region experiences low
AWV during summer. (3) The first mode obtained through EOF decomposition contributes over
60% of the variance. Analysis of this mode reveals an increasing trend in AWV data for regions
such as the Indian peninsula, Mongolia, and central and northeastern China over the past nine
years. Conversely, the Bay of Bengal, Spratly Islands, eastern coast, and certain areas display a
decreasing trend. (4) Employing the ensemble empirical mode decomposition (EEMD), the study
identifies AWV data as a non-stationary series with an overall decreasing trend from 2003 to 2022.
The filtered AWV series undergoes fast Fourier transform (FFT), uncovering periodicities of 2.6 years,
5 years, and 19 years. (5) Among the four forecasting models compared, the seasonal autoregressive
integrated moving average model (SARIMA) demonstrates superior performance with the smallest
MSE of 0.00782, MAE of 0.06977, RMSE of 0.08843, and the largest R2 value of 0.98454. These results
clearly indicate that the SARIMA model provides the best fit. Therefore, the SARIMA forecasting
model can be effectively utilized for forecasting AWV data, offering valuable insights for studying
weather variability.

Keywords: MODIS; AIRS; atmospheric water vapor; Mann–Kendall test; time–frequency domain;
time series forecasting algorithm

1. Introduction

Atmospheric water vapor (AWV) is an important factor that affects winter precipitation
in East Asia [1]. Its impact is particularly pronounced in arid and flood-prone regions [2].
This paper analyzes the data on AWV obtained by the MODIS instrument. These data refer
to water molecules existing in the gaseous state [3] and are an important component of the
Earth’s atmosphere, with units expressed in centimeters. The transport of water vapor has
a significant impact on various aspects of the water cycle and solar radiation [4,5]. AWV
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also plays a critical role in absorbing long-wave radiation from the Earth’s surface, thereby
maintaining a temperature range that is suitable for human survival [5]. However, during
tropical cyclones and heavy rainfall events, water vapor can promote convection and
precipitation patterns in the atmosphere, which can exacerbate the occurrence of extreme
climate events [6]. Given its influence on important factors such as climate change, the
study of AWV is crucial.

Over the past few decades, various techniques have been developed to measure
precipitable water vapor, and a range of methods have been utilized to investigate its
spatial and temporal characteristics. As far back as 1996, Ross and Elliott conducted a
study on AWV in North America, using radiosonde measurements to analyze its trends [7].
Subsequently, radiosonde measurements were further refined, and in 2004, Bengtsson et al.
used data from the ECMWF Re-Analysis forty-year project (ERA40) dataset to obtain
temperature and AWV measurements. Their findings indicated a global increasing trend in
AWV [8]. In 2008, Nilsson et al. conducted a study on AWV trends in Sweden and Finland,
based on global positioning system (GPS) data collected over a 10-year period [9]. This
paper investigates data measured from 2002 to the present using the MODIS instrument.
The MODIS has 36 channels that cover the spectrum region between 0.4 and 15 µm, with
five near-infrared channels (0.8 to 1.3 µm) available for remote sensing of water vapor [10].
This dataset provides highly accurate infrared multispectral hyperspectral data, which can
be used to reflect the atmospheric state and changes in land and ocean characteristics.

In the field of water vapor research, Wei et al. [11] investigated the Zhengzhou region in
China. They employed a hybrid model combining wavelet and complementary combined
empirical mode decomposition, recurrent neural network, and ARIMA model to predict
annual precipitation. Their findings reveal a relative prediction error of 14.1% for the period
2013–2017. Similarly, Hellen W. Kibunja et al. [12] utilized the SARIMA model to analyze
precipitation prediction in a mountainous region of Kenya. The forecasting assessment
statistics yielded ME = −0.0053687, MSE = 0.96794, RMSE = 0.98384, and MAE = 0.75197.
Furthermore, Valipour et al. [13] conducted a comparative study on runoff in the United
States, exploring the effectiveness of SARIMA and ARIMA models.

The variation trends of AWV data detected by MODIS and atmospheric infrared
sounder (AIRS) can reflect a wealth of meteorological information [14]. Moreover, East
Asia occupies a unique geographical location, encompassing several climatic zones simul-
taneously [1]. Therefore, it is of great significance to analyze the spatial characteristics and
interannual variation trends of AWV in East Asia, using MODIS and AIRS detected data as
reference values. Such analysis can help to shed light on the causes of droughts and floods
in the region. Predicting the trend of AWV is of utmost importance in various fields such
as agricultural production, climate change, and human life [15]. For instance, it can play a
crucial role in mitigating the hazards caused by heavy rainfall [16] and facilitating early
intervention in agricultural production during drought years. Therefore, understanding
the trends and changes in AWV is critical for taking proactive measures to address the
impact of these changes on human life and society as a whole.

This paper explores the characteristics and forecasting of the variation of AWV in the
time and frequency domains in the East Asia region. This study employs several methods,
including the MK mutation test, EOF, EEMD, FFT, SARIMA, and others. The innovations
of this paper can be summarized as follows:

(1) Comprehensive analysis: The paper investigates AWV time series not only in the
time domain but also in the frequency domain, providing a more comprehensive
understanding of its behavior.

(2) Spatio-temporal analysis: Various aspects such as period and mode are studied based
on the use of spatio-temporal analysis techniques. This allows for a deeper exploration
of the AWV characteristics.

(3) EEMD decomposition and filtering: The EEMD decomposition method is utilized to
observe the smoothness of AWV data. Non-smooth AWV time series data are filtered,
and FFT is applied to study the filtered data.
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(4) Multiple forecasting models: The paper employs multiple forecasting models to
forecast the AWV time series and determine the optimal model for prediction.

The structure of the paper is outlined as follows: in Section 2, this study explores the
sources of MODIS and AIRS data, compares and analyzes these datasets, and introduces
the principles of the time–frequency domain analysis methods and evaluation indexes used
in the study. In Section 3, this study investigates the interannual and seasonal trends of
AWV and performs MK trend tests on the collected data. In Section 4, this study utilizes
the EOF model to examine the spatial characteristic scores of AWV in the four seasons. In
Section 5, this study explores the frequency domain variation characteristics of AWV using
the EEMD decomposition method and applies FFT after filtering. In Section 6, this study
constructs multiple forecasting models, including regression models, SARIMA models,
Holt–Winters models, and GRNN neural network forecasting models, to forecast the AWV
time series.

2. Sources and Analysis Methods of Detection Data
2.1. Data Sources and Processing

This study analyzes the temporal and spatial characteristics of AWV in East Asia using
product information from both MODIS and AIRS instrument retrievals. The time frame
of the analysis spans from January 2003 to February 2023. In this study, the seasonal year
data range spans from March 2003 to February 2023, while the natural year data range
covers January 2003 to December 2022. The MODIS spectral detector consists of 36 spectral
bands with a spectral range spanning from 0.4 µm to 15 µm. Among these bands, five
near-infrared channels located in the spectral region of 0.8 µm to 1.3 µm can be used for
remote sensing of water vapor [10]. The MODIS instrument features 490 detectors with a
swath width of 2330 km. This study mainly utilizes data from MYD08_M3_ product, which
has a spatial resolution of 1◦ × 1◦ and a temporal resolution of 1 month.

AIRS is an atmospheric infrared instrument installed on the Aqua satellite [17]. The
instrument has a total of 2378 thermal infrared channels and high spectral resolution,
which enables remote sensing observations of various atmospheric parameters, such as
atmospheric temperature, pressure, water vapor, methane, and ozone [18]. The AIRS data
used in this study are Level-3 data from the V6 version [19], obtained from the East Asian
region for nearly 20 years from January 2003 to February 2023. The data have a spatial
resolution of 1◦ × 1◦ and a temporal resolution of 1 month.

2.2. MODIS and AIRS Data Products Comparison Discussion and Analysis

This section aims to verify the reliability of the AWV data obtained by the MODIS
instrument in East Asia. To achieve this, both the AIRS’s Total Column Water Vapor
(TotH2OVap) daytime data and MODIS’s AWV data were selected for the time period from
January 2003 to February 2023. The comparison between the two datasets was conducted to
evaluate the consistency and reliability of the MODIS data. Figure 1a displays the time series
analysis of the monthly average values of MODIS and AIRS data. Despite having different
units, both datasets show the same trend of change. Figure 1b presents the regression
analysis of MODIS and AIRS data, showing a high goodness of fit of the regression equation
(0.98) and an almost linear scatter. The equation of the fitted line is Y = 0.11X − 0.14. The
data collected by the two satellites were compared and their correlation was found to be
high, which indicates that the data collected by the MODIS probe can be used for research
and analysis. In the next section, we use MODIS data to analyze the variation characteristics
of AWV in the time–frequency domain and predict its behavior.
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Figure 1. Comparison and correlation analysis between MODIS and AIRS satellite data. (a) Time
series diagram; (b) regression analysis chart.

2.3. Time–Frequency Domain Analysis Methods

This section describes the analysis method of AWV data in time and frequency domain
as well as forecasting, the specific relationship is shown in Figure 2.

Figure 2. Research methodology.

2.3.1. Regression Analysis

Regression analysis is a statistical method used to determine the linear dependence
between two or more variables. In the case where there is only one independent and one
dependent variable, and the relationship between them can be represented by a straight
line, it is referred to as univariate linear regression analysis. On the other hand, if there are
two or more independent variables that exhibit a linear relationship with the dependent
variable, then it is called multiple regression analysis [20].

When conducting regression analysis, the first step is to determine the dependent
and independent variables. Then, the data for these variables are used to build a linear
regression model. The model is evaluated using R2 to assess the degree of fit of the linear
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regression analysis. If the model meets the required level of fit, then the regression equation
can be derived from the model. The equation can be expressed as:

Y = λ0 + λ1X1 + λ2X2 + . . . + λnXn + ε (1)

In above Equation (1), λ0 represents the intercept of the fitted line, while λ1 to λn
represent the slope of the fitted line. If n equals 1, then the equation is a linear regression
equation. However, if n ≥ 2, then the equation is a multiple regression equation. The
variable ε represents the random error. By using the regression equation and the available
data of the independent variables, it becomes possible to predict the outcomes of the
dependent variables. However, regression analysis is limited to studying data with linear
correlations, making it challenging to create regression models for data with nonlinear
correlations. As a result, alternative forecasting models will be considered and compared
in this study’s forecasting models to overcome this limitation.

2.3.2. Mann–Kendall Mutation Test

The MK test is a nonparametric statistical method used to detect changes in the trend
of time series data. It operates by comparing the relationship between the values of data
arranged in successive order and calculating their slopes.

Under the assumption that the time series data {x1, x2, . . . , xn} are independent, we
define the following statistical quantity:

UFK =
Sk − E(Sk)√

Var(Sk)
, k = 1, 2, · · · , n (2)

where Sk =
n−1
∑

j=1

n
∑

i=j+1
sgn(xj − xi).

Under the given significance level, if the absolute value of UFK is greater than the
significance level, the null hypothesis is rejected and the time series is considered to have a
significant trend change. Furthermore, if UFK > 0, it indicates that the time series shows an
upward trend, and if UFK < 0, it indicates that the time series shows a downward trend.

The method is then used to test for significant changes in the slopes. This test can be
utilized to determine the occurrence of sudden changes in long time series data of water
vapor content. Moreover, it is helpful in evaluating the significance of trends in water vapor
across different seasons and years [21]. The MK test is suitable for studying different types
of data, such as linear, nonlinear, and periodic trends. However, it is more effective for
longer time series as opposed to shorter ones.

2.3.3. Pearson Correlation Coefficient

The Pearson correlation coefficient is a statistical method used to analyze possible
correlation links between two or more variables. The degree of correlation is calculated
through the analysis. For instance, when examining the correlation coefficient between
variables a and b, the correlation coefficient formula (rab) is utilized. The formula is
expressed below:

rab =

1
n

n
∑

i=1
(ai − a)(bi − b)√

1
n

n
∑

i=1
(ai − a)2 · 1

n

n
∑

i=1
(bi − b)

2
(3)

where ai and bi represent the data of the ith pair of samples, a and b are the means of the
samples of the two variables, and n is the total number of samples studied. The coefficient
rab takes values in the range of [−1, 1]. If 1 > rab > 0, it indicates a positive correlation
between a and b. However, if 0 > rab > −1, it indicates a negative correlation between a
and b. The larger the absolute value of rab, the stronger the correlation between a and b.
The primary objective of this paper is to use the Pearson correlation coefficient to verify the
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reliability between MODIS data and AIRS data. Additionally, the study aims to analyze
the main factors that influence water vapor variability [22]. The results of this analysis will
then be applied to subsequent research.

2.3.4. Empirical Orthogonal Function

The EOF is a decomposition method used to separate the field of a physical quantity
that varies with time [23,24]. It is utilized to obtain the main spatial distribution type
that does not vary with time and the temporal part that changes only with time. It also
provides the weight of each spatial type, where the spatial type with high weight can derive
the primary spatial variation characteristics. Therefore, when analyzing the spatial and
temporal variability characteristics of water vapor in the East Asian region [25] using EOF,
it is essential to combine the primary spatial distribution part and the temporal coefficient
part of water vapor to provide a comprehensive narrative.

2.3.5. Ensemble Empirical Mode Decomposition

EEMD is a signal processing technique that aims to increase the uniformity of the
polar point distribution of a signal in order to suppress the aliasing between modes [26].
Since the original time series often has an uneven distribution of polar points, Gaussian
white noise with uniform spectral distribution is added to the signal. This allows for the
white noise to be adaptively distributed to different scales, thereby avoiding the issue of
uneven distribution of extremum points. The white noise is added to the original signal as
a background reference scale and automatically projected onto the associated scale of the
white noise, which helps to prevent over-envelope or under-envelope.

However, the additional white noise can complicate the results of independent tests.
To address this, zero-mean noise can be used instead. The solution is to add the white noise
several times and average the results to eliminate the additional noise. The final output is
the original signal itself. This processing improves the analysis of the signal’s characteristics
and properties, leading to increased accuracy and reliability in signal processing.

2.3.6. Fast Fourier Transform

The FFT algorithm can break down complex signals into simpler components, en-
abling the conversion of a signal in the time domain to its equivalent in the frequency
domain [27,28]. This technique allows for versatile observation of signals, as it facilitates
the calculation of the signal’s amplitude and phase at various frequencies, which can then
be processed in the frequency domain. In particular, the frequency domain processing
method is often simpler and more efficient than its time domain counterpart, making it
especially useful for processing challenging signals. By leveraging FFT, this paper is able to
significantly reduce the computational burden of signal processing.

2.3.7. Seasonal Autoregressive Integrated Moving Average

The SARIMA method is used in this paper to analyze and forecast time series data with
seasonality [29], using the AWV data captured by MODIS as an example. The modeling
process consists of the following steps:

(1) Obtain a long-term water vapor time series dataset;
(2) Plot the water vapor data and conduct autocorrelation and partial correlation tests,

as well as a unit root test to determine whether the data is stationary. If it is non-
stationary, the data need to be differenced to obtain a stationary series;

(3) Conduct autocorrelation and partial correlation tests on the stationary water vapor
data to determine the approximate range of parameters, and then obtain optimal
parameters through model training [30];

(4) Use the optimal parameters to build a SARIMA model, then examine the model to
ensure its stability, and finally use it to forecast the long-term water vapor time series.

The SARIMA model is well-suited for capturing seasonal patterns that occur at fixed
time intervals. However, it may struggle to handle irregular or multiple seasonal patterns
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effectively. Additionally, SARIMA models are more complex and demanding in terms of
computing resources compared to other forecasting models.

2.3.8. Holt–Winters Forecasting Model

The Holt–Winters model, also known as the Three-Exponential Smoothing Model,
assumes that points closer in time to the forecasting point are assigned greater weighting
factors than those further away [31]. The model takes a weighted average of data from
different time points, where historical values closer to the most recently trained data have a
greater impact than those further away. One-time exponential smoothing is suitable for
time series with no significant trend change, secondary exponential smoothing is suitable
for time series with trend change characteristics but no seasonal change, while three-
exponential smoothing is suitable for time series with both trend and seasonal change
characteristics. Therefore, it is particularly well-suited for predicting the seasonal water
vapor trend changes in this paper [32]. However, the Holt–Winters model is suitable only
for predicting models with a single trend of change; nonetheless, it remains relatively easy
to implement.

2.3.9. Generalized Regression Neural Network Forecasting Model

The Generalized Regression Neural Network (GRNN) is a radial basis neural network
renowned for its exceptional approximation and nonlinear mapping capabilities [15]. With
a faster learning speed, fault tolerance, and robustness, GRNN is well-suited to address
nonlinear problems. Moreover, it demonstrates effectiveness in predicting unstable data
and remains reliable even with limited sample data [33]. Consequently, GRNN is employed
to construct the AWV data forecasting model. However, due to the manual selection of
GRNN parameters, choosing larger parameter values enhances the network’s ability to
approximate the sample data but also increases the risk of overfitting. Conversely, opting
for smaller parameter values facilitates a smoother approximation process, albeit with a
trade-off of increased error. Thus, in this study, an iterative approach will be employed to
determine the optimal spread value.

2.4. Evaluating Indicator

In order to evaluate the forecasting effectiveness of the model, several evaluation
metrics are chosen in this section. The following indicators are used, where n represents
the number of samples, yi represents the actual value of AWV, y represents the mean value
of AWV, and f (xi) represents the model forecasting:

(1) MAE measures the average absolute value of the prediction error of a model. It
provides a measure of the accuracy of the predictions compared to the true values. It
is calculated as follows:

MAE(X, h) =
1
n

n

∑
i=1
| f (xi)− yi| (4)

(2) MSE measures the mean squared difference between the predicted values and the
true values. It is calculated as follows:

MSE =
1
n

n

∑
i=1

(yi − f (xi))
2 (5)

(3) RMSE represents the standard deviation of MSE. It is calculated as follows:

RMSE =

√
1
n

n

∑
i=1

(yi − f (xi))
2 (6)
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(4) R2 indicates the model’s ability to explain the observed data. It takes a value between
0 and 1, with a higher value indicating a better forecasting effect. When R2 is equal to
1, it represents a perfect fit of the model to the data, indicating optimal performance.
The formula for calculating R2 is as follows:

R2 = 1−

n
∑

i=1
( f (xi)− yi)

2

n
∑

i=1
(yi − y)2

(7)

3. Inter-Annual Variability Analysis of AWV
3.1. Inter-Annual Variability Trend of Latitude and Longitude AWV

This section analyzes the interannual trends of water vapor data in East Asia from
January 2003 to February 2023, as provided by MODIS. Figure 3a illustrates the variation
of water vapor content with longitude. In the region spanning from 100◦ E to 150◦ E,
the water vapor content generally increases with increasing longitude, with two sudden
decreases occurring near 75◦ E and 100◦ E. This could be attributed to the impact of the
Qinghai-Tibet Plateau on atmospheric circulation and water vapor transport, resulting in a
failure to transport water vapor eastward along the wind direction in its southeastern and
southern regions. As a consequence, water vapor content decreases. Figure 3b illustrates
the variation of water vapor content with latitude, which shows a gradual decrease with
increasing latitude. This could be due to the decrease in temperature and relative air
humidity as latitude increases, leading to a corresponding reduction in water vapor content
in the air.

Figure 3. Inter-annual variation trend of latitude and longitude of AWV, (a) longitudinal distribution;
(b) latitudinal distribution.

3.2. Annual Average AWV Change and MK Analysis in East Asia

The water vapor data of East Asia from 2003 to 2022, detected by MODIS, were
subjected to annual average and MK analyses. Figure 4a illustrates the annual average of
water vapor content in East Asia from 2003 to 2022, revealing that water vapor content
peaked in 2010 and reached a trough in 2022. Figure 4b presents the results of the MK test
for the annual average of water vapor content. The UFK represents the forward sequence
curve, while UBK represents the reverse sequence curve. The mutation point falls within
the range of U0.05 = ±1.96, indicating that the mutation point is statistically significant
with 95% confidence. From 2012 to 2022, UFK is less than 0, suggesting a general decrease
in water vapor content during this period. The water vapor content exceeds the critical
value U0.05 = ±1.96 from 2018 to 2022, indicating a significant decreasing trend of water
vapor during this period. This trend is consistent with the year-by-year change line graph
on the left. The intersection of UFK and UBK in 2015 and the intersection point lies within
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the confidence interval, indicating that the intersection point corresponds to the moment
when the mutation starts in 2015, and because UFK is less than 0 in 2015, indicating that
AWV decreases more significantly in 2015. This reduction could be attributed to major
natural disasters or anthropogenic factors in those years.

Figure 4. AWV annual mean change and MK analysis, (a) annual mean change; (b) annual mean
MK analysis.

3.3. Inter-Annual Variability Trend of AWV in Different Seasons in East Asia

In this section, data provided by MODIS for East Asia from March 2003 to February
2023 were analyzed to determine the interannual trends of AWV by season, as illustrated in
Figure 5. The x-axis represents the year, while the y-axis represents the AWV, which ranges
from 1.5 cm to 4 cm across all seasons. The highest water vapor content was observed
in summer, while the lowest content was in winter, with the spring and autumn values
falling between these two extremes. In 2010, the water vapor content peaked in summer
and autumn, likely due to typhoons and rainy seasons. However, since 2010, the water
vapor content for all seasons has generally been decreasing, which may be attributed to
global warming and other factors.

Figure 5. Inter-annual variation trend of AWV in different seasons in East Asia, (a) spring; (b) summer;
(c) autumn; (d) winter.
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3.4. MK Seasonal Analysis of AWV in East Asia

The MK analysis of AWV data detected by MODIS from March 2003 to February
2023 is shown in Figure 6. It is observed that the mutation points of all four seasons are
within the range of U0.05 = ±1.96, which indicates that these mutation points meet the
95% confidence interval and are of reference significance. In the summer and autumn MK
examinations, the UFK changes from “−” to “+” from 2009 to 2010, indicating that the
water vapor content changes from a decreasing trend to an increasing trend in summer
and autumn in these two years. In late 2013, the curves of UFK and UBK intersect in the
spring MK test, which means a sudden change point, and UFK < 0, indicating that the
spring water vapor content changed abruptly after 2013, and the overall trend is decreasing.
From around 2009, UFK started to be less than 0 in spring and winter, and from around
2012, UFK also started to be less than 0 in summer and autumn, and kept decreasing until
it exceeded the critical value. This indicates that the water vapor content in East Asia
gradually decreased from 2012 and has no increasing trend, which is more consistent with
the trend of the annual average value of the four seasons.

Figure 6. Four seasons MK test analysis, (a) spring; (b) summer; (c) autumn; (d) winter.

4. Spatial Characteristic Analysis of AWV

After analyzing the temporal variation of AWV in East Asia, it becomes apparent that
the region has experienced substantial economic development and human activities in
the last two decades. The process of urbanization has led to the emission of considerable
amounts of waste gas and water, thereby influencing the formation and distribution of water
vapor. Additionally, human activities such as agricultural development and deforestation
have had a notable impact on the water cycle. Consequently, these factors have contributed
to heightened fluctuations of AWV in the area. Therefore, this section aims to investigate
the spatial distribution characteristics of AWV in East Asia.

4.1. Spatial Characteristic Distribution of Four-Season and Multi-Year Average AWV in East Asia

Figure 7 illustrates the spatial distribution of AWV in East Asia during four seasons
from 2003 to 2022. The x-axis represents longitude, ranging from 0◦ N to 60◦ N, while the
y-axis represents latitude, ranging from 70◦ E to 150◦ E. The color scale ranges from 0 to 5
to represent the variation of water vapor content, with an average range of 1.5 cm to 4 cm
across different seasons. The spatial distribution of water vapor content in East Asia shown
in Figure 7 reveals some interesting patterns. Firstly, there is a gradual decrease in water
vapor content with increasing latitude, which may be due to the fact that precipitation tends
to be lower in higher latitude regions. During winter, the higher latitude regions of East
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Asia have low water vapor content, with only the southern coastal areas of China, Thailand,
Myanmar, Spratly Islands, Indian Peninsula, and the Philippines exhibiting higher water
vapor content. In contrast, the water vapor content is significantly higher during summer,
except for the Tibetan Plateau region which has a low water vapor content. This is likely
due to the high altitude of the Tibetan Plateau region resulting in low air pressure, making
it difficult for water vapor to accumulate. In spring and autumn, the spatial variation of
water vapor content in northern China and coastal areas is relatively similar, with a slight
increase in water vapor content observed in the Philippines, Taiwan, and eastern coastal
regions of China.

Figure 7. Spatial distribution of AWV seasonal variations over East Asia from 2003 to 2022, (a) spring;
(b) summer; (c) autumn; (d) winter.

4.2. The Annual Average Spatiotemporal Characteristic EOF of AWV in East Asia

In this section, we utilize the monthly average data of water vapor content in East
Asia from January 2003 to December 2022 to conduct an EOF analysis. Table 1 presents the
variance contribution of the first three modes of water vapor content, which are 63.81%,
9.72%, and 6.72% respectively. The cumulative variance of these modes is 80.25%, indicating
that they effectively capture the main variation characteristics of water vapor in the East
Asia region. Notably, the first mode accounts for the largest variance contribution and thus
best reflects the changes in water vapor content. Therefore, we primarily utilize the first
mode’s spatial distribution and time coefficient maps to analyze the water vapor situation
in East Asia.

Table 1. Contribution rate of variance of the first 3 modes in EOF analysis of AWV in East Asia.

Mode EOF1 EOF2 EOF3

Rate of contribution 63.81% 9.72% 6.72%
Cumulative variance 63.81% 73.53% 80.25%

From the spatial distribution map of the first mode in Figure 8, it is evident that there
are negative values in the Bay of Bengal, Spratly Islands, eastern coast, southern coastal
areas of China, Qinghai-Tibet Plateau, Xinjiang, and some regions of Inner Mongolia. On
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the other hand, the regions of the Indian peninsula, Mongolia, central China, and northeast
China show positive values, with larger values in the three northeastern provinces of China.
These positive values indicate more drastic changes in water vapor content in these regions.
When considering the time coefficient diagram of the first mode, as depicted in Figure 9, it
is evident that the time coefficients were predominantly negative from 2003 to 2013, while
they were mostly positive from 2014 to 2022. This indicates that the water vapor content
in regions such as peninsular India, Mongolia, central China, and northeast China has
generally exhibited an upward trend over the past nine years, with the northeast region
showing the most pronounced increase. On the other hand, the water vapor content in
the Bay of Bengal, Spratly Islands, eastern coast, southern coastal areas of China, Qinghai-
Tibet Plateau, Xinjiang, and parts of Inner Mongolia shows an overall decreasing trend.
This trend can be attributed to various factors such as South Asian monsoon circulation,
overgrazing, deforestation, and rapid urbanization.

Figure 8. Spatial distribution of AWV EOF over East Asia from 2003 to 2022, (a) EOF Model1; (b) EOF
Model2; (c) EOF Model3.

Figure 9. Time coefficient diagram of AWV EOF in East Asia from 2003 to 2022, (a) EOF PC1; (b) EOF
PC2; (c) EOF PC3.

5. Analysis of the Frequency Domain Variation of AWV in East Asia

The analysis of AWV variation was conducted in the time domain as described above.
However, due to the complex nature of water vapor variation, it can be challenging to
discern its periodic characteristics solely in the time domain. Therefore, a frequency domain
analysis was employed to investigate its periodic variations more comprehensively.

5.1. EEMD Decomposition of AWV Time Series

This section employs the EEMD technique to decompose the time series of AWV in
East Asia from 2003 to 2022, as illustrated in Figure 10.
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Figure 10. EEMD decomposition of AWV time series in East Asia.

A total of four intrinsic mode functions (IMF) components are obtained in Figure 10,
with the first three IMF components representing the periodic terms of the water vapor
content time series at different time scales, while the last IMF component represents the
long-term trend variation. The IMF1 component signifies high-frequency variations or
fluctuations in the AWV data. With its substantial amplitude, the IMF1 component emerges
as the predominant feature of these high-frequency variations. Moreover, the absence of
notable periodic patterns suggests that these variations are minimally affected by seasonal
or long-term trends. The rule for determining the long-term trend change term states that
if the trend term of IMF4 exhibits a monotonic change, it means that the original signal is
non-stationary. From IMF4 in Figure 10, it can be seen that the water vapor content time
series variation process in East Asia follows a monotonic function, indicating that the water
vapor content time series is non-stationary. Moreover, the IMF2–4 components all exhibit
clear periodicity, with change patterns resembling sinusoidal functions. The long-term
trend change term further suggests that the water vapor content in East Asia has been
decreasing from 2003 to 2022.

5.2. Fast Fourier Transform with Filtering

The EEMD method has some limitations in signal processing, which is why the FFT
was employed next to analyze the AWV data from 2003 to 2022. Since there may be
unwanted noise signals in the AWV time series, a filtering step was applied prior to FFT
analysis to mitigate their effects. The FFT was then used to analyze the characteristics of
the AWV data.

In this study, the AWV sequence was filtered using a Butterworth filter. Figure 11a–c
display the results of high-pass, low-pass, and band-pass filters, respectively. The high-pass
filter is designed to allow high-frequency signals to pass through, while attenuating signals
below the critical cut-off frequency. This is achieved by setting the cut-off frequency to
effectively filter out low-frequency signals. In this study, high-pass filters are applied to
select the AWV time series with a period of less than three years. The results in Figure 11d
show the outcome after performing the FFT on the high-pass filtered series. It reveals
the existence of a period of 2.6 years in the filtered AWV time series. The low-pass filter
operates in the opposite manner to the high-pass filter, allowing signals with frequencies
lower than the cut-off frequency to pass through. In this study, the cut-off frequency for
the low-pass filter is set at 1/10, which means that AWV time series with a period of
10 years or longer are retained. The results of the FFT on the low-pass filtered sequence
are shown in Figure 11e, which indicates the presence of a 19-year period in the low-pass
filtered AWV time series. In the band-pass filtering process, the low and high frequency
cutoff frequencies are set at 1/3 and 1/10, respectively, resulting in a selection of AWV
time series with periods ranging from 3 to 10 years. The results, as shown in Figure 11f,
were obtained after applying the FFT on the band-pass filtered series. It revealed that the
band-pass filtered AWV time series exhibits periods of 5 and 3.3 years. The magnitude
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of the amplitude indicates that the 5-year period in the band-pass filtered signal is the
most prominent.

Figure 11. FFT of AWV time series after filtering: (a,d) High-pass; (b,e) Low-pass; (c,f) Band-pass.

6. Construction of Predictive Model and Result Analysis

Previous studies illustrated that AWV can be influenced by various factors, including
the natural environment and human activities. For example, Zhai et al. [34] demon-
strated that AWV is closely related to interannual trends in surface skin temperature.
Samuels-Crow et al. [35] found that changes in water circulation due to convection can
affect water vapor, making factors associated with the troposphere important in under-
standing AWV variability. Rangwala et al. [36] also showed that humidity and long-wave
radiation can impact changes in water vapor, and the rate of surface warming can affect sur-
face humidity. Furthermore, Liu et al. [37] found that the surface warming rate is influenced
by the altitude of the station, which in turn is influenced by air pressure. Lee et al. [38]
illustrated that the water vapor mass mixing ratio at the surface is closely related to AWV.

In this part, we consider several factors when predicting water vapor, including surface
skin temperature (SurfSkinTemp), temperature of the atmosphere (AirTemp), tempera-
ture of the tropopause (TropTemp), height of the tropopause (TropHeigh), pressure of the
tropopause (TropPres), relative humidity at the surface over equilibrium phase (RelHum-
Surf), relative humidity at the surface over liquid phase (RelHumSurf_liquid), outgoing
long-wave radiation flux (OLR), clear-sky outgoing long-wave radiation flux (ClrOLR),
combined cloud top pressure (CloudTopPres), combined cloud top temperature (Cloud-
TopTemp), and water vapor mass mixing ratio (H2O_MMR_Surf). Pearson correlation
coefficients between these factors and water vapor is used to identify the main variables
affecting water vapor. Regression analysis, Holt–Winter model, GRNN neural network,
and SARIMA models is applied for water vapor forecasting.

For model construction, we selected the time period from January 2003 to January 2017
as the training data, and the time period from February 2017 to February 2023 as the test
data. This division of data allowed us to train our models on historical data and evaluate
their performance on recent data to ensure their predictive accuracy.
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6.1. Construction of Multiple Regression Model and Result Analysis
6.1.1. Variable Selection

After calculating the Pearson correlation coefficients between various variables and
water vapor, the results are presented in Table 2 as follows:

Table 2. Correlation coefficient of AWV impact factors.

Impact
Factors

Correlation
Coefficient

Impact
Factors

Correlation
Coefficient

Impact
Factors

Correlation
Coefficient

TropTemp 0.49092 SurfSkinTemp 0.91381 OLR 0.65000
TropHeigh 0.97560 AirTemp 0.93476 ClrOLR 0.88406
TropPres −0.96574 CloudTopPres −0.87108

H2O_MMR_Surf 0.97690 CloudTopTemp 0.38782
RelHumSurf_liquid −0.15818 RelHumSurf −0.41251

This study identifies the main influencing factors of water vapor by considering
variables with absolute Pearson correlation coefficients greater than 0.8. The results reveal
that the height of the tropopause, the pressure of the tropopause, water vapor mass mixing
ratio, land surface temperature, temperature of the atmosphere, combined cloud top
pressure, and clear-sky outgoing long-wave radiation flux are the key variables affecting
water vapor, as shown in Table 2.

6.1.2. Forecasting Result of AWV Based on Multiple Regression

The trend of water vapor is plotted by fitting a regression equation, as illustrated in
Figure 12. The blue curve represents the training data, while the orange curve represents
the test data. Additionally, the purple curve depicts the predicted result on the test data,
based on the regression analysis.

Figure 12. Forecasting result of multiple regression.

6.2. Construction of SARIMA Model
6.2.1. Stationarity Test

Before constructing a time series model for forecasting, we first plotted the time
domain graph of the original data and conducted an autocorrelation test (ACF), a partial
autocorrelation test (PACF), and a unit root test (DF) to obtain Figure 13. It can be observed
from the time domain graph that the water vapor exhibits strong periodicity, and in
combination with the results of the autocorrelation test, its period was determined to be 12.
Additionally, Figure 13 illustrates that the p-value was 0.33195, which is greater than 0.05,
indicating that the null hypothesis is accepted, and suggesting that the water vapor data
are non-stationary. This finding is consistent with the conclusion drawn after the EEMD
decomposition analysis above.
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Figure 13. Time series, autocorrelation, and partial autocorrelation of AWV.

As the water vapor data are non-stationary, it is necessary to perform seasonal differ-
encing before constructing the time series model. Additionally, since the water vapor data
exhibit seasonality, seasonal factors should be incorporated into the model. Therefore, in
this study, a SARIMA model was constructed for forecasting.

6.2.2. Seasonal Difference

After applying seasonal differencing to the water vapor data to remove seasonality,
a unit root test was conducted on the differenced data, as well as autocorrelation and
partial correlation tests. The results are shown in Figure 14. The unit root test shows
that p = 0.00103, which is less than the significance level of 0.05, indicating that the differ-
enced data are a stationary series. This suggests that the seasonal differencing effectively
addressed the issue of non-stationarity in the water vapor data.

Figure 14. Time series, autocorrelation, and partial autocorrelation of AWV after seasonal difference.

For the seasonal parameters (P, D, Q) in the SARIMA model, it is assumed that D = 1
since only one seasonal differencing is performed on the water vapor data. Additionally,
the PACF (partial autocorrelation function) diagram shows a significant lag at order 36,
suggesting that P = 3. On the other hand, the ACF (autocorrelation function) diagram
shows that the seasonally differenced data are truncated at order 12, indicating that Q
should be chosen around 1.
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6.2.3. Residual Test

Using the grid search method based on the minimum AIC (Akaike Information Cri-
terion) criterion, the optimal parameters for the water vapor time series model were
determined as SARIMA (1,0,0) × (2,1,1,12). Subsequently, an error test was performed, and
the results are shown in Figure 15.

Figure 15. Residual test.

Figure 15 depicts the residual test results. In the top left plot, it can be observed that
the residuals fluctuate around the line x = 0, indicating that the residual mean is close to
zero. The top right plot shows the histogram of the residuals, with the green line closely
fitting the orange ones, suggesting that the residuals follow a standard normal distribution.
The bottom left plot displays a scatter plot of the residuals, which is evenly distributed
along the red diagonal, further supporting the assumption of residuals obeying a standard
normal distribution. The lower right plot presents the autocorrelation plot of the residuals,
showing that the autocorrelation coefficient is close to 1 at the 0th order lag and insignificant
at other order lags, indicating that there is no significant autocorrelation in the residuals at
different lags.

6.2.4. Forecasting Result of AWV Based on SARIMA

Figure 16 displays the results of AWV time series forecasting using the SARIMA model.
The blue line represents the training set, the orange line represents the test set, the green
line represents the forecasting results, and the gray interval represents the 95% confidence
interval. It can be observed from the figure that the orange line closely aligns with the
green line, and the gray confidence interval is narrow, indicating that the model predicts
well. The model also provides predictions for the water vapor content in the later period,
based on the green line.

6.3. Construction of Holt–Winters Model and Forecasting Result

In this study, the Holt–Winters model with additive error, additive seasonal term, and
additive trend is utilized for predicting the water vapor content. Errors are also calculated
to assess the accuracy of the predictions.

The forecasting of water vapor content in the East Asian region is based on the
constructed Holt–Winters summation model. Figure 17 illustrates that the orange curve
represents the training data of water vapor content, the green curve represents the test
set of data, and the purple curve represents the predicted set of AWV from February
2017 to February 2024. The range enclosed by the gray dashed line represents the 95%
confidence interval.
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Figure 16. Forecasting result of SARIMA model.

Figure 17. Forecasting result of Holt–Winters model.

6.4. Construction of GRNN Neural Network and Analysis
6.4.1. Model Construction

In the construction of the GRNN model, the main influencing variables of water vapor
were chosen as the input for the network. This means that the independent variables in
the multiple regression model were used as the inputs for the network, while water vapor
was considered as the output. The neural network was trained using the cross-validation
method, which helps in evaluating the performance of the model.

Furthermore, the grid search method is employed to determine the optimal speed of
expansion of radial basis function (SPREAD) in order to build an effective GRNN neural
network model for water vapor forecasting. This involves systematically searching through
a range of SPREAD values to find the one that yields the best performance for the specific
dataset and problem at hand.

During the cross-validation process, the training samples are randomly divided into
four equal parts. At each iteration, one part is used as the test set, while the remaining
three parts are used as the training set. The model is then trained on the training set, and
the Mean Squared Error (MSE) is calculated on the test set as a measure of its performance.
This process is repeated four times, with each part being used as the test set once. The
SPREAD value that corresponds to the smallest MSE across all four iterations is selected as
the best parameter for the GRNN model.

After determining the optimal SPREAD value using cross-validation, the model is
retrained using all the training data, and the remaining data are used as the test set to obtain
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the final forecasting results. This allows for a comprehensive evaluation of the model’s
performance on unseen data, providing a reliable assessment of its predictive capabilities.

6.4.2. Forecasting of AWV Based on GRNN

Using the cross-validation method, the optimal SPREAD value was determined to
be 0.1, and a GRNN neural network model with a SPREAD of 0.1 was established. The
forecasting analysis results are shown in Figure 18, with the training sample plotted in blue,
the forecasting sample in purple, and the test sample in red.

Figure 18. Forecasting result of GRNN neural network model.

6.5. Comparison of Four Models
6.5.1. Comparison of the Forecasting Results

In this section, the test set data of the four forecasting models are compared and plotted
in Figure 19. The blue scatter points represent the original data of water vapor content,
while the red curve represents the results obtained by GRNN neural network forecasting,
the purple curve represents the results obtained by multiple regression analysis forecasting,
the green curve represents the results obtained by Holt–Winters model forecasting, and the
black curve represents the results obtained by SARIMA model forecasting. From Figure 19,
it can be observed that the results of multiple regression analysis have the worst coincidence
with the blue scatter, while the remaining three forecasting models show better coincidence.
Therefore, the advantages and disadvantages of the remaining three forecasting models
will be further analyzed through evaluation indices.

Figure 19. Comparison of the results of the four forecasting models.
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6.5.2. Error Comparison

In this subsection, four evaluation indicators, namely MSE, MAE, RMSE, and R2, are
used to evaluate the performance of the four forecasting models, as shown in Table 3.
Smaller values of MSE, MAE, and RMSE indicate smaller errors, while a result of R2 closer
to 1 indicates better fitting. It can be observed that the multiple regression model has
much larger errors compared to the remaining three forecasting models, which is consistent
with the results shown in Figure 19. The SARIMA forecasting model has much smaller
errors compared to the other three models, while the difference between the errors of
the remaining two models is not very large, with the Holt–Winters forecasting model
slightly larger than the forecasting results of the GRNN neural network model. These
results suggest that the SARIMA forecasting model is the most suitable for water vapor
content forecasting.

Table 3. Evaluation indicators of the four models.

Model MSE MAE RMSE R2

Multiple
regression 0.04591 0.19470 0.21428 0.90929

SARIMA 0.00782 0.06977 0.08843 0.98454
Holt–Winter 0.03184 0.15846 0.17844 0.93709

GRNN 0.02204 0.12333 0.14845 0.95646

7. Discussion and Conclusions
7.1. Discussion

In this study, we present a comprehensive analysis of AWV data in the East Asia region
using MODIS data. Our analysis covers a 20-year period from January 2003 to February
2023, and examines the spatial and temporal characteristics, seasonal patterns, modality,
and periodicity of AWV data. The primary objective of our study is to gain insights that
can contribute to the prediction of extreme weather events and floods.

While previous studies have typically focused on spatial and temporal analyses of
AWV data, our research goes beyond that by incorporating periodic and modal analyses.
Exploring periodicity in filtered AWV data is a relatively unexplored area in the literature,
considering the non-stationary nature of such time series data.

Additionally, this study conducts an extensive review of recent literature on AWV re-
search. Some studies have investigated the dynamic processes of AWV in global circulation
and climate change [39]. Others have examined the accuracy of datasets by reanalyzing
multiple data sources to improve precision [40]. There are also studies that compare and
evaluate water vapor datasets from different sources and propose suggestions for improve-
ment [41]. Furthermore, researchers have explored water vapor transport and its impact on
climate, such as the influence of water vapor transport on climate [42], and the effects of
deforestation and drought conditions in the Amazon basin on water vapor transport [43,44].

In contrast to previous studies, our research not only analyzes the spatial and temporal
variability of AWV but also explores the frequency domain using EEMD. This method
allows us to examine the smoothness of the AWV time series data. Additionally, this study
employs FFT on the filtered AWV signal to investigate its periodicity. These approaches are
unique and novel compared to earlier research efforts.

In addition, this study conducted a forecasting study based on the time–frequency
domain analysis of AWV. Unlike previous studies that utilized only one or two forecasting
algorithms for meteorological data [45–48], this study employs four different forecasting
algorithms and compares their results to identify the best forecasting model. This approach
has significant implications for short-term rainfall forecasting. Given the complex nature of
AWV changes, our future research will focus on narrowing down the study area and taking
into consideration local geographic conditions, population density, and other influencing
factors to further improve forecasting accuracy.
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7.2. Conclusions

This study employs several methods, including the MK mutation test, EOF analysis,
EEMD analysis, FFT analysis, and SARIMA modeling, to investigate the temporal and
frequency domain characteristics of AWV in the East Asian region. Based on our analyses,
the following conclusions are drawn in this study:

(1) The analysis of the time series change trend of AWV reveals that the overall trend
of water vapor content increases with the increase of longitude, but abrupt changes
occur near 100◦ E, resulting in a tick-type trend in longitude. Additionally, the water
vapor content gradually decreases with the increase of latitude. The annual average
variation trend of AWV in the East Asia region shows a rising and then decreasing
trend, with the maximum average value observed in 2010 and the minimum in 2022.
The interannual variation trend graph of each season indicates that the variation is
significant, with the highest water vapor content observed in summer and the lowest
in winter. Specifically, the AWV content in summer and autumn peaked in 2010. The
MK test mutation points of all four seasons fall within the confidence interval, and the
UFK of all four seasons has been consistently below 0 since 2012, indicating a gradual
decrease in water vapor content.

(2) The analysis of spatial characteristics reveals that the AWV content gradually de-
creases with increasing latitude. In winter, the values of AWV content are low in the
higher latitude regions of East Asia, with only the regions of southern coastal areas of
China, Thailand, Myanmar, Spratly Islands, Indian Peninsula, and Philippines show-
ing higher AWV content. However, in summer, when the AWV content is generally
high in all regions, only the Qinghai-Tibet Plateau region exhibits lower AWV content.

(3) Three spatial features and three temporal coefficients are obtained through EOF
decomposition, with the cumulative variance contribution of the first three modes
exceeding 80% and the variance contribution of the first mode exceeding 60%. From
the first modal and temporal coefficients of the EOF decomposition, it can be observed
that the water vapor content in the peninsula of India, Mongolia, and central and
northeastern China has shown an increasing trend over the past 9 years. However,
the Bay of Bengal, Spratly Islands, eastern coast, southern coastal areas of China,
Qinghai-Tibet Plateau, Xinjiang, and some regions of Inner Mongolia have shown a
decreasing trend in AWV content.

(4) Through EEMD decomposition, we discover that AWV is a non-stationary time series,
with IMF2–4 components exhibiting clear periodicity resembling sinusoidal functions.
Furthermore, the trend of AWV shows a decreasing pattern from 2003 to 2022. The
FFT transform of the filtered AWV series revealed periodicities of 2.6, 5, and 19 years.

(5) This study employs multiple regression, SARIMA, Holt–Winters, and GRNN neural
network models for predicting AWV time series. The forecasting results are compared
and evaluated using graphs and evaluation metrics against test sets. Among these
models, the SARIMA model exhibits the best fitting effect, while multiple regression
analysis shows the weakest fitting effect. Therefore, the SARIMA forecasting model
can be employed for AWV forecasting in East Asia, providing valuable references for
future research on regional extreme rainfall and other weather phenomena.

Although we have analyzed the spatial and temporal distribution as well as the
periodicity of AWV using various time–frequency domain methods, and predicted it using
four different algorithms, it is important to note that the variability of AWV is influenced by
multiple factors such as atmospheric temperature, top tropospheric pressure, wind speed,
and more. Therefore, in order to conduct a more comprehensive analysis of AWV, we plan
to narrow down the study area and investigate the impact of extreme weather events on
AWV, taking these additional factors into consideration for a more robust analysis.
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