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Abstract: In 2023, the ESA’s Swarm constellation mission celebrates 10 years in orbit, offering one
of the best ever surveys of the topside ionosphere. Among its achievements, it has been recently
demonstrated that Swarm data can be used to derive space-based geomagnetic activity indices, similar
to the standard ground-based geomagnetic indices monitoring magnetic storm and magnetospheric
substorm activity. Recently, many novel concepts originating in time series analysis based on
information theory have been developed, partly motivated by specific research questions linked
to various domains of geosciences, including space physics. Here, we apply information theory
approaches (i.e., Hurst exponent and a variety of entropy measures) to analyze the Swarm-derived
magnetic indices from 2015, a year that included three out of the four most intense magnetic storm
events of the previous solar cycle, including the strongest storm of solar cycle 24. We show the
applicability of information theory to study the dynamical complexity of the upper atmosphere,
through highlighting the temporal transition from the quiet-time to the storm-time magnetosphere,
which may prove significant for space weather studies. Our results suggest that the spaceborne indices
have the capacity to capture the same dynamics and behaviors, with regards to their informational
content, as traditionally used ground-based ones.

Keywords: geospace magnetic storms; magnetospheric substorms; Swarm satellites; information
theory; wavelets; Hurst exponent; entropies; geomagnetic indices; space weather

1. Introduction

The ESA’s ongoing Swarm satellite mission provides a unique opportunity for gain-
ing better knowledge of the near-Earth electromagnetic environment by identifying and
measuring magnetic signals from the Earth’s core, mantle, lithosphere, oceans, ionosphere,
and magnetosphere [1]. Additionally, Swarm data are used to study solar influence on
the Earth system by analyzing electric currents in the magnetosphere and ionosphere and
understanding the impact of solar wind on the dynamics of the upper atmosphere. Swarm
currently offers one of the best ever surveys of the Earth’s core and crustal magnetic field
as well as the near-Earth electromagnetic environment (https://earth.esa.int/eogateway/
missions/swarm/publications, accessed on 11 April 2023).

Ground-based geomagnetic activity indices have been used for decades to monitor
the dynamics of the Earth’s magnetosphere and provide information on two major types
of space weather phenomena, that is, magnetic storm and magnetospheric substorm
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occurrence and intensity. Papadimitriou et al. [2] and Balasis et al. [3] demonstrated how
magnetic field data from the Swarm constellation can be used to derive corresponding
space-based geomagnetic activity indices. The comparison of Swarm-based with ground-
based indices shows a very good agreement, indicating that Swarm magnetic field data can
be used to provide new satellite-based global indices to monitor the level of geomagnetic
activity. Given the fact that the official ground-based index for the substorm activity is
constructed by data from 12 ground stations, all in the northern hemisphere, it can be said
that this index is predominantly northern, while the Swarm-derived substorm activity
index may be more representative of a global state because it is based on measurements
from both hemispheres.

The solar wind–magnetosphere–ionosphere coupled system has been shown to be
nonlinear (e.g., [4,5] and references therein). This highly dynamical system corresponds to
an open spatially extended nonequilibrium (input–output) complex system [6–11]. In this
context, information theory has been shown to be quite useful for studies of this coupled
system [12–21]. In particular, a few recent studies exploit Swarm data using informa-
tion theory techniques to study the complex dynamics of the near-Earth electromagnetic
environment [22–26].

Including a recently published eBook [27] on the applications of statistical methods
in the space sciences, there has been a series of publications dedicated to space science
research [28–30]. For instance, Delzanno and Borovsky [28] point out the importance
of a combined system science approach to global magnetospheric models and to space-
craft magnetospheric data. Telloni [29] highlights works based on statistical analyses
of interplanetary and geomagnetic data in the context of space weather prediction, and
Verkhoglyadova et al. [30] discuss the implementation of a mixture method approach and
a computer vision approach in quantitatively addressing the anomalies and high density
regions (HDRs) that are present in a global ionospheric map, and how the number of HDRs
and their intensities depend on solar and geomagnetic activities.

Here, we exploit the Swarm-derived geomagnetic activity indices using wavelet
transforms, Hurst exponent, Shannon entropy, nonextensive Tsallis entropy and Fisher
information around the most intense magnetic storms of the previous solar cycle, aiming to
infer crucial signatures of the transition from the quiet-time (normal state) to the storm-time
(pathological state) of the magnetosphere. The latter may help to improve space weather
diagnosis and forecasting schemes. Section 2 describes the data used in this study, while
Section 3 discusses the information theory approaches applied to analyze these data. The
rest of the paper deals with the obtained results (Section 4) and their discussion (Section 5).

2. Data Description

In this study, we analyze Swarm-derived SYM-H and AE activity indices along with
standard SYM-H and AE geomagnetic indices from 2015. The SYM-H index represents the
Longitudinally SYM-(metric) H-(orizontal) component disturbances of the Earth’s magnetic
field [31], and is similar to the hourly Disturbance storm-time (Dst) index, although it is
computed from more ground-based stations and with a finer time resolution of 1-min.
Dst (and SYM-H) variation is derived to provide a quantitative measure of geomagnetic
disturbances that can be correlated with other solar and geophysical parameters. The
AE index is one of the four Auroral Electrojet indices (AU, AL, AE, and AO) and is used
as a measure of global electrojet activity in the auroral zone. They are calculated at 1-
min cadence from the geomagnetic field data obtained from 10 to 13 stations located
in magnetic latitudes varying from +61.7◦ to +70◦ (for both indices, please visit: https:
//wdc.kugi.kyoto-u.ac.jp/, accessed on 11 April 2023).

Swarm is the fourth Earth Explorer mission of the ESA, launched on 23 November
2013 and consisting of three spacecraft. Swarm A and C are on a nearly circular orbit, with
an inclination of 87.35º, at an altitude of 462 km. Swarm B is on an orbit with an inclination
of 87.75º at an altitude of 510 km. The final constellation of the mission was achieved on
17 April 2014. Papadimitriou et al. [2] showed how the magnetic field data from the Swarm
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mission can be utilized, by means of a simple and intuitive method, to reproduce with
high accuracy the three major indices of geomagnetic activity, namely the Dst, ap (or Kp),
and AE indices. The global coverage provided by a constellation of low-Earth orbiting
satellites makes them ideal for encapsulating the entirety of the magnetic field, discerning
changes at larger spatial scales, while their altitude positions them directly in the place of
the ionospheric currents which are responsible for many of the effects that comprise our
notion of space weather.

Additionally, because the satellites remain at fairly constant local times (LTs) for several
weeks, their data can further promote recent research on regional indices of electrojet or ring
current activity, such as the regional versions of SuperMAG SME (electrojet) and SMR (ring
current) indices [32] (https://supermag.jhuapl.edu/indices/, accessed on 11 April 2023).
As such, satellite magnetic observatories can complement their ground-based counterparts,
providing new insights into the state of the magnetosphere and new promise for a more
accurate diagnosis of space weather conditions.

The most intense period of solar cycle 24, in terms of geomagnetic storms activity, was
the year 2015, during which the strongest storm of this solar cycle, i.e., the St. Patrick’s
Day storm, occurred. A discussion of space weather effects on the ground related to the
St. Patrick’s Day storm is given in Balasis et al. [33], Tozzi et al. [34] and Boutsi et al. [35].
Several authors have examined the same storm event using Swarm time series and apply-
ing information theory approaches (e.g. [22,23,25,26]). Table 1 shows the three strongest
geospace magnetic storms of 2015, based on minimum Dst index values.

Table 1. Intense geospace magnetic storms of 2015, including the St. Patrick’s Day storm, which was
the strongest storm of solar cycle 24 (2008–2019). Storm date, time and minimum Dst index value
reached are given in the second, third and fourth columns, respectively.

Case Storm Date Storm Time (UT) Dst (nT)

#1 17 March 2015 22:00:00 −223

#2 23 June 2015 04:00:00 −204

#3 20 December 2015 22:00:00 −155

2.1. Swarm-derived SYM-H Index

The Swarm SYM-H and Swarm AE indices are derived based on a specific methodol-
ogy, which is described in detail in Papadimitriou et al. [2]. For the reader’s convenience, in
this section, we briefly describe the steps followed in order for the indices to be produced.
Beginning with the coordinate system used for the magnetic field, the pre-processing we
apply is as follows. The magnetic field measurements from the vector field magnetometer
(VFM) instrument on board Swarm are provided as a three-dimensional vector in the North-
East-Center coordinate system. The static, background field is removed by subtracting
the internal mode of the CHAOS-7 model [36], which is comprised of the Earth’s core and
crustal magnetic field contributions. The resulting measurements are then mapped to the
Quasi-Dipole coordinate system [37]. From this point on, it is simple to map the vector
to a mean-field-aligned coordinate system. This is achieved by projecting the total vector
field onto a direction that is parallel to the model field, resulting in the creation of the
Bpar component, as well as two perpendicular components, Bper1 and Bper2. Bper1 is
primarily aligned with the meridional plane, pointing outwards, while Bper2 is mainly
aligned along the East-West direction, pointing eastwards. For the derivation of the Swarm
SYMH index, we use the Bpar component, because for the latitude region that we examine
it is the component that most closely resembles that horizontal component of the terrestrial
magnetic field used for constructing the ground-based SYM-H index, while for the Swarm
AE index we use the total magnitude of the vector field.

The derivation of the Swarm SYM-H index is based on the following steps:

• Extract Bpar Field Series from MAG_LR (1 Hz) product

https://supermag.jhuapl.edu/indices/
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• Subtract CHAOS-7 [36] Internal Field Model
• Remove obvious outliers
• Remove values that lie above +30◦ or below −30◦ in Magnetic Latitude
• Apply a non-overlapping, moving average scheme on the time series, with a window

of 60 s, so that the series are set to a 1-min time resolution, effectively filling up some
of the smaller gaps

• Merge Swarm A and Swarm B time series, in a joint 1-min resolution data set
• Interpolate the remaining data gaps, using a simple linear scheme, to produce a

complete time series
• Apply a low-pass Chebyshev Type I filter with a cutoff period of 4 h, to filter out some

of the small perturbations in the signal that arise from the fast motion of the satellites
• Apply a linear transform to get the Swarm Index: SSYM−H = 1.53B f + 12.85

2.2. Swarm-Derived AE Index

Similarly, the Swarm AE index is derived, based on the following logic, but using
simply the magnitude of the Swarm magnetic field:

• Extract Total Magnetic Field Series from MAG_LR (1 Hz) product
• Subtract CHAOS-7 [36] Internal Field Model
• Remove obvious outliers
• Keep only measurements between +65◦ and +75◦ (and correspondingly −75◦ to

−65◦) in Magnetic Latitude
• Apply a non-overlapping, moving average scheme on the time series, with a window

of 60 s, so that the series are set to a 1-min time resolution, effectively filling up some
of the smaller gaps

• Merge Swarm A and Swarm B time series in a joint 1-min resolution data set
• Interpolate the remaining data gaps, using a simple linear scheme, to produce a

complete time series
• Apply a low-pass Chebyshev Type I filter with a cutoff period of 2.6 hours, to filter

out some of the small perturbations in the signal that arise from the fast motion of
the satellites

• Apply a linear transform to get the Swarm Index: SAE = 2.2B f − 8.9

Various filtering thresholds and methodologies were performed to discover the opti-
mal parameters that would yield the highest correlation scores against the corresponding
ground-based SYM-H and AE indices. Applying this to the time series of the entire year
2015 produced the values of 4 h for SYM-H and 2.6 h for AE. In the final step, a linear
transform was applied, with parameters that were chosen to minimize the root mean square
of the difference between each Swarm index and its ground-based counterpart.

3. Overview of Methods
3.1. Hurst Exponent

If a time series is a temporal fractal, then a power law of the form S( f ) ∼ f−β is obeyed
with S( f ) the power spectral density, f the frequency and β the spectral scaling exponent, a
measure of the strength of time correlations (see for instance [38,39] and references therein).

In general, −1 < β < 3, but it describes two classes of signal [40]:

• −1 < β < 1: fractional Gaussian noise (fGn)
• +1 < β < 3: fractional Brownian motion (fBm)

For the fBm case, β = 2H + 1, where H is the Hurst exponent [38,41]. The exponent H
characterizes the persistent/anti-persistent properties of the signal. The range 0 < H < 0.5
(1 < β < 2) indicates anti-persistency, reflecting that if the fluctuations increase in a period,
they are likely to decrease in the interval immediately following, and vice versa. The range
0.5 < H < 1 (2 < β < 3) indicates persistency, which means that if the amplitude of
fluctuations increases in a time interval, it is likely to continue increasing in the interval
immediately following. H = 0.5 (β = 2) suggests no correlation between the repeated
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increments. Consequently, this particular value takes on a special physical meaning: it
marks the transition between persistent and anti-persistent behavior in the time series.

The Hurst exponent provides crucial information on the kind of noise (either white
or red, coming from the multifractal nature of the signal in some cases; see, for instance,
Kantelhardt et al. [42], or a slightly different application in Agarwal et al. [43]).

Balasis et al. [38] analyzed the Dst index around magnetic storms in terms of the
exponent H, calculated from wavelet spectra. The wavelet spectral analysis followed a
power law of the form f−β and showed the existence of two different patterns: (i) a pattern
associated with intense magnetic storms, which can be interpreted as a fractional Brownian
persistent behavior (H > 0.5); (ii) a pattern associated with lower activity periods, which
is interpreted as a fractional Brownian anti-persistent behavior (H < 0.5). Furthermore,
a series of articles [12,13,44] showed the complexity dissimilarity among “physiological”
(normal) and “pathological” states (intense magnetic storms) of the magnetosphere. En-
tropy analysis implied the existence of two distinct patterns: (i) a pattern associated with
intense magnetic storms, which is characterized by a higher degree of organization/lower
complexity, and (ii) a pattern associated with lower-activity periods, which is characterized
by a lower degree of organization/higher complexity.

Pitsis et al. [39] extended and verified the results of Balasis et al. [38] by applying
the same wavelet analysis to the SYM-H index, the solar wind convection electric field
component (V × Bsouth) and several time series of the horizontal component of the Earth’s
magnetic field at various locations, covering a wide range of magnetic latitudes.

3.2. Entropy Measures

In 1948, Shannon introduced a statistical concept to investigate the information size of
a transmitted message [45], called information or Shannon entropy. For a discrete random
variable X with a set of values Ξ, the Shannon entropy H(X) is defined as

H(X) = − ∑
x∈Ξ

p(x)logp(x)

where p(x) = Pr{X = x}, x ∈ Ξ is the probability distribution function of X.
Tsallis entropy can be considered a generalization of the Boltzmann–Gibbs entropy in

statistical physics, and is defined as follows:

Sq(X) =
k

q− 1

(
1− ∑

x∈Ξ
p(x)q

)

where k is Boltzmann’s constant and q is a real parameter that characterizes the degree
of non-extensivity. For q→1, one can recover the Boltzmann–Gibbs entropy, which is a
thermodynamic analogy of the Shannon entropy. Tsallis entropy has been widely applied
in various fields of research [46]. For example, Balasis et al. have applied Tsallis entropy to
quantify the dynamical complexity of magnetic storms and solar flares [47], and of time
series of the disturbance storm time index [12,44].

In 1925, Fisher introduced a measure of the amount of information that can be obtained
from a set of measurements [48], called Fisher information. One can write the Fisher
information in its discrete form as

F =
N−1

∑
n=1

[p(xn+1)− p(xn)]2

p(xn)

where xn is the random variable X at time n, p(xn) is its probability and N is the total
number of time steps. Fisher information has proved itself as a powerful method to study
various nonstationary and nonlinear time series [49]. For example, it has been used to
detect dynamical complexity changes associated with geomagnetic jerks [50].
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4. Results

Wavelet spectral analysis is a very popular and efficient method in the study of
geomagnetic field variations, as it allows for the local decomposition of nonstationary time
series in either frequency or time scale and time simultaneously [51].

Herein, we apply the previously followed methodology [38,39] to compare between
the Swarm SYM-H index and SYM-H index, and between the Swarm AE index and AE
index. Specifically, as in Balasis et al. [38], the wavelet analysis technique using the Morlet
wavelet as a basis function [52] was applied to each index’s time variations, in order to
derive the coefficients of its power spectrum. Then, the power spectral densities were
estimated in the frequency range from 0.5 to 60 h, using a moving window of 256 h at
hourly steps of the time series, and the linear correlation coefficient r was calculated for each
window to ensure that a power-law of the form S( f ) ∼ f−β is, indeed, obeyed. Finally, the
spectral scaling exponent β, and thus the Hurst exponent H, is calculated for each window
by performing a linear fit to the power spectral densities vs. frequency diagram (c.f. [38,39]).

Figure 1 shows the wavelet power spectra and the temporal variation of the Hurst
exponent for both the Swarm SYM-H index and the SYM-H index during the year 2015,
and Figure 2 shows the wavelet power spectra and the temporal variation of the Hurst
exponent for both the Swarm AE index and the AE index during the year 2015.

Figure 1. Swarm SYM-H index (left column) and SYM-H index (right column): time series (top row),
wavelet spectra analysis (middle row) and Hurst exponent (bottom row) for the year 2015. The red
line at 0.5 marks the transition from the anti-persistent behavior (blue) into the persistent fractional
Brownian motion (red).

In the wavelet power spectra (middle panels) of Figure 1, the reader is able to identify
the three intense magnetic storms of 27 March, 23 June, and 20 December 2015. Intense
power signal is observed around each magnetic storm’s peak, covering a wide frequency
range (starting at ∼18 h and distributing all the way to the lowest periods of the spectra),
thus indicating a large-scale extreme event that keeps the magnetosphere preconditioned
for a long time interval (c.f. for almost a month around each of these three events). This is
even more profound for the case of the Swarm SYM-H index. Regarding Figure 2, similar
underlying features in the spectra can be identified for the three storms, despite the fact that
we are dealing with substorm indices: the big picture of the preconditioned magnetosphere
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is still present. In the power spectra of all four indices (Swarm SYM-H, SYM-H, Swarm AE
and AE), we also observe the existence of another area characterized by a strong spectral
imprint, approximately between days 220 and 280 (mid-August to mid-October); this is the
imprint of several subsequent storms (see Table 2) of smaller intensities (around −100 nT)
and is better captured by the Swarm AE index. Substorm activity also seems to be well
depicted by the auroral indices, with Swarm AE having a more intense power spectrum
than AE throughout the whole year.

Figure 2. Swarm AE index (left column) and AE index (right column): time series (top row), wavelet
spectra analysis (middle row) and Hurst exponent (bottom row) for the year 2015. The red line at 0.5
marks the transition from the anti-persistent behavior (blue) into the persistent fractional Brownian
motion (red).

The plots of the Hurst exponent are also able to identify the disturbed periods, not
only by the increase in the value of the exponent, but especially by its transition into the
region of values higher than 0.5, which also marks the departure from anti-persistent
behavior into the regime of persistent fractional Brownian motion. This indicates that the
temporal correlations of the various increments of the signal become long-scale during
these pathological states of the magnetosphere, which could also imply an increased degree
of interconnectivity between the various subsystems of the terrestrial electromagnetic
environment. For the SYM-H and Swarm SYM-H indices, these periods correspond with
the geomagnetic storms of March, June and December, and to a slightly lesser extent, with
the August–October period. For the AE indices, the image is not so clear, as the Hurst
values stay almost consistently within the 0 to 0.5 range, which is characterized by anti-
persistent behavior; a finding which is in agreement with the more transient and dynamic
nature of substorms (in contrast to global magnetic storms).
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Table 2. Geospace magnetic storms between mid-August and mid-October 2015. Storm date, time
and minimum Dst index value reached are given in the first, second and third columns, respectively.

Storm Date Storm Time (UT) Dst (nT)

16 August 2015 08:00:00 −98

26 August 2015 22:00:00 −79

27 August 2015 21:00:00 −103

28 August 2015 10:00:00 −102

09 September 2015 13:00:00 −105

11 September 2015 15:00:00 −87

20 September 2015 16:00:00 −81

07 October 2015 23:00:00 −130

On the one hand, from the indices themselves we cannot extract information regarding
the anti-persistent vs. persistent regime accompanying either the occurrence of an intense
storm (e.g., March, June, December) or the occurrence of a group of less severe storms
(e.g., days 220–280). On the other hand, through the wavelet spectral and Hurst analyses
of indices, for the intense events we find evidence of magnetosphere preconditioning for
a time interval clearly longer than the duration of the storm (see both wavelet spectra at
lower frequencies and Hurst values in Figure 1), while for the grouped weaker events
the results of the same analyses imply that these storms are interrelated (again, see both
wavelet spectra at lower frequencies and Hurst values in Figure 1). Furthermore, when
comparing the results between satellite and ground indices in Figure 1, the same picture
holds for both kinds of indices.

Figure 3 shows the Shannon and Tsallis entropy measures, as well as Fisher informa-
tion, for both the Swarm SYM-H index and SYM-H index during the year 2015. Figure 4
shows the Shannon and Tsallis entropy measures, as well as Fisher information, for both
the Swarm AE index and AE index during the year 2015.

There is remarkable similarity between the plots of ground-based and Swarm-derived
indices, for all cases and all information measures, which indicates that the spaceborne
indices have the capacity to capture the same dynamics and behaviors, with regards to
their informational content, as the traditionally used ground-based ones. Especially in
the case of the ring current indices (Figure 3), which are mostly associated with the three
major magnetic storms of 2015, one can easily discern the shift to a state of lower entropy
(i.e., high degree of organization) during these three events, indicated by the lower values
of both Shannon and Tsallis entropies and the increase in Fisher information. Thus, the
state of the geomagnetic system changes from a more or less random one, i.e., the random
noise fluctuations of the quiet magnetosphere, to a highly organized one, as the various
subsystems interact and synchronize to produce a particular phenomenon. The reader may
also note in Figure 3 that, around the three intense storms, the absolute values of the three
information theory measures are lower for the Swarm SYM-H index in comparison to the
SYM-H index, but the general picture of the lower complexity around the time of the intense
storms in comparison to the rest of the year holds for both satellite and ground indices.

This behavior, i.e., the lower complexity around the time of the three intense storms in
comparison to the rest of the year, is not generally seen in the AE-related plots (Figure 4) as
the auroral indices are related to substorms and not storms, so their values change in accor-
dance with the development of the ionosphere currents in the auroral regions, phenomena
which are characterized by very different time scales and occurrence frequencies. There
is, however, the notable exception of the June storm, where all the information measures
(Hurst exponent, entropy values and Fisher information) for the Swarm AE index attain
maximum values (c.f. Figures 2 and 4).
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Figure 3. SYM-H index (left column) and SYM-H index (right column): time series (top row),
Shannon entropy, Tsallis entropy and Fisher information (bottom row) for the year 2015. Red color is
used to highlight the entropy values around the three magnetic storms of 2015 (17/3, 23/6 and 20/12).

Figure 4. Swarm AE index (left column) and AE index (right column): time series (top row), Shannon
entropy, Tsallis entropy and Fisher information (bottom row) for the year 2015. Red color is used to
highlight the entropy values around the three magnetic storms of 2015 (17/3, 23/6 and 20/12).
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5. Discussion and Conclusions

In this study, we have analyzed 1-year-long time series from 2015 of spaceborne and
ground-based geomagnetic activity indices using information theory measures, namely
Hurst exponent, Shannon entropy, nonextensive Tsallis entropy and Fisher information. The
LEO satellite magnetic indices were derived with data from the Swarm mission, covering
the most intense magnetic storms of the previous solar cycle, including its strongest storm
event, the St. Patrick’s Day storm. The analyzed indices are targeted at both storm and
substorm activity.

Regarding the Swarm-derived SYM-H index and standard SYM-H index, the Hurst
exponent and various entropy measures show the complexity dissimilarity among differ-
ent “physiological” (normal) and “pathological” states (intense magnetic storms) of the
magnetosphere. They imply the emergence of two distinct patterns: (i) a pattern associated
with normal periods, which is characterized by a lower degree of organization/higher
complexity, and (ii) a pattern associated with the intense magnetic storms, which is char-
acterized by a higher degree of organization/lower complexity. These results agree well
with earlier works that highlighted this transition between anti-persistent and persistent
behavior around the onset of an intense storm (e.g. [12,13,25,38,41,44]).

Regarding the Swarm-derived AE index and standard AE index, the same analyses
did not provide a similar picture around the storm onset in terms of the information
theory measures, because these indices are concerned with substorms, which have notably
different characteristic time scales and generation mechanisms than storms. In addition,
substorm events occur far more often than storm events, which may contaminate the picture
of the anti-persistent/persistent regime we have obtained for storm-monitoring indices. It
is worth mentioning that the wavelet transform is able to capture similar spectral signatures
for both the spaceborne and ground-based SYM-H and AE indices around the time of the
three intense storms, which means that the global character of an extreme storm event is
not depicted only in the storm-monitoring time series but also in the substorm-monitoring
time variations.

The findings obtained by the application of information-theoretic approaches to the
geomagnetic activity indices could be possibly exploited in subsequent work by space
weather experts and space physics modellers. These findings may be utilized in order to im-
prove forecast schemes and models of the coupled solar wind–magnetosphere–ionosphere
system in terms of including information on the preconditioning of the system by the
existing state of the magnetosphere [53,54].

We note that the application of the various information theory measures yields very
similar results between the new Swarm-derived and standard ground-based geomagnetic
activity indices. Thus, we provide evidence for the capacity of the satellite indices to
capture the same dynamics and behaviors, with regards to their informational content, as
the well-established ground-based indices.
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