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1.Supplementary methods 

1.1. Model overview 

OpenCOVID is a stochastic, individual-based transmission model of SARS-CoV2 

transmission and COVID-19 disease. The model tracks individual characteristics such as 

age, comorbidity risk, SARS-CoV-2 infection status, COVID-19 disease state, level of im-

munity, and vaccination and treatment status. OpenCOVID captures the individuals’ 

probability of viral transmission based on person-to-person contact, viral variant profile, 

and effect of seasonality, as well as the age-dependent probability of progressing from 

severe to critical disease, or eventually to death, which is heavily influenced by viral var-

iant profile. 

Open access source code for the OpenCOVID model is publicly available at 

https://github.com/SwissTPH/OpenCOVID. Model code is freely available for use or 

modification, including further or independent development. 

OpenCOVID is written primarily in the R programming language (1) and is stable 

with R version 4.1.0. The model is being run on sciCORE (http://scicore.unibas.ch/) the 

scientific computing core facility at the University of Basel. 

1.2. SARS-CoV-2 infection 

As susceptible and infectious people come into contact, if the susceptible person be-

comes infected with SARS-CoV-2, the model captures the individual viral transmission as 

a function of time since infection (Figure S1). Any contact between infectious and suscep-

tible individuals, represented through a one-year age bin structured network (Figure S2), 

is assumed to carry the same probability of transmission, all else being equal. As shown 

in Figure S2, younger people have more contacts with the 10 to 20 year age group having 

the highest number of contacts. The probability of transmission is dependent on the viral 

load of the infectious individual, the profile of the viral variant being transmitted, and any 

partial immunity acquired by the susceptible individual (through previous infection 

and/or vaccination). Furthermore, seasonality affects the probability of transmission (see 

Section 1.7 Seasonality) with lower probabilities in warmer periods reflecting a larger pro-

portion of people coming into contact outdoors where the probability of transmission is 

lower. 
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Figure S1. Viral load profile in OpenCOVID. The curve is standardised to between zero and one to 

yield an infectiousness multiplier used to calculate the probability of transmission. Peak infectivity 

is reached between days 6 and 14 following infection. 
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Figure S2. Age-related contact properties in OpenCOVID. Numbers of people by age group versus 

number of contacts per person (top left) show both groups’ population sizes and distribution of 

contacts. Plots illustrate the number of contacts per person normalised by age group (top right), 

total number of people versus number of contacts per person (bottom left), and number of people 

versus age group show distribution by age group (bottom right). 

1.3. Viral transmission 

We define a pairwise transmissible contact to be a person-to-person interaction that 

has a transmission probability of β when the infectious individual is fully infectious, and 

the susceptible individual is fully susceptible. An individual is fully infectious when their 

viral load is at a maximum (see Section 1.2 SARS-CoV-2 infection). An individual is consid-

ered to be fully susceptible when they have zero immunity (see Section 1.6 Immunity to 

infection). Two additional factors can alter the probability of transmission between an in-

fectious individual and a susceptible individual. First, a seasonality effect reduces the 

probability of transmission in warmer periods, reflecting a larger proportion of contacts 

being outdoors with warmer temperatures (see Section 1.7 Seasonality). Second, novel viral 

variants can enter the population, being more (or less) infectious than the current domi-

nant variant, and therefore increase (or decrease) the probability of transmission (see Sec-

tion 1.4 Viral variants). 

In equation form, the probability of transmission between an infection individual, I, 

and a susceptible individual, S, is given by: 

 P(transmission) = β · νI(τ) · ϕI · σ(τ) · (1 − µS(τ))   (1) 

Where: 

• νI(τ) denotes the viral load of the infectious individual at time τ (see Section 

1.2 SARS-CoV-2 infection), 

• ϕI denotes the infectivity factor of the viral variant with which the infectious 

individual is infected (see Section 1.4 Viral variants), 

• σ(τ) denotes the seasonality scaler at time τ (see Section 1.7 Seasonality), and 

• µS(τ) denotes the immunity of the susceptible individual at time τ (see Sec-

tion 1.6 Immunity to infection). 

1.4. Viral variants 

OpenCOVID tracks transmission chains of viral variants. The model can consider any 

number of variants, providing there is sufficient data to inform the relative prevalence of 

each variant in the population. The model is calibrated to variant prevalence over time. 

Each variant is assessed by assigning them a percentage increase in the probability of 

transmission per contact, then further calculations are conducted to capture the likely 

transmission advantage in a heterogeneous population with pre-existing immunity (see 

Section 1.6 Immunity to infection) during an ongoing pandemic considering the impact of 

any transmission control measures. We estimated the effective reproductive number, Re, 

of a given variant over a given period using the mean number of contacts an individual 

has determined by the model calibration (see Section 5.2 Model fitting), for the specified 

increase in the transmission probability. The transmission advantage is therefore the pro-

portional increase in the expected number of cases from one infected individual in the 

epidemic setting in a given setting over a given period of time (including the effects of 

pre-existing natural immunity and the impact of control measures). 

1.5. Viral load 

During the latent period that follows infection, we assume viral load is zero (and 

therefore that the infected person is not yet infectious). We then use a gamma probability 

density function with shape parameter α = 3 and rate parameter β = 0.5 to represent indi-

vidual-level viral load over the course of the infectious period. We assume infectiousness 

is proportional to this viral load (2), and therefore standardise viral load values to between 



Atmosphere 2021, 14, 887 5 of 24 
 

 

zero and one to convert viral load into an infectiousness scaler that scales the probability 

that the individual can infect other contacts. The parameters of the gamma function were 

selected to best represent the current understanding of viral load profiles from time since 

infection (3, 4). Figure S1 illustrates this infectiousness scaler (multiplier) profile from the 

time since infection. 

In equation form, the infectiousness scaler for an individual k infected τ days after 

infection is given by: 

 

Where l is the sampled latent period for individual k (see Section 2.2 Disease state 

duration) for duration distributions and 

 

1.6. Immunity to infection 

SARS-CoV-2 infection/transmission and COVID-19 symptom blocking immunity can 

occur through naturally acquired immunity following SARS-CoV-2 infection or induced 

through COVID-19 vaccination (Figure S3). All forms of immunity are assumed to wane 

over time with the risk of new infection depending on the probability of exposure and 

properties of existing and potential novel SARS-COV-2 variants (i.e., infectiousness, se-

verity, and immune evading profile). Following administration of each booster dose, vac-

cine-induced immunity is assumed to immediately peak at 85% (5) before exponentially 

waning to 15% with a half-life of 105 days (based on longer-term waning for dose 2 from 

(6)). For vaccine induced immunity, the infection-blocking component of the vaccine was 

assumed to represent 80% of the overall 85% vaccine efficacy, with the remaining 5% at-

tributed to preventing infections from progressing to severe disease. Vaccine protection is 

modelled in the context of naturally acquired immunity following SARS-CoV-2 infection, 

whereby natural immunity is assumed to reach peak immunity of 95% aligned with find-

ings from Chivese and colleagues (7). Before waning exponentially to 20% in 600 days (8). 
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Figure S3. COVID-19 vaccine immunity profiles. Modelled profiles for COVID-19 vaccine induced 

immunity (panel A), naturally acquired immunity following infection with SARS-CoV-2 (panel B), 

and immunity following pre-exposure prophylaxis (panel C) are illustrated. Points shown in panel 

B indicate initial vaccine efficacy following primary vaccination (dose one and two) with exponen-

tial decay, with a rebound in efficacy from subsequent booster doses followed by identical expo-

nential decay based on (6). 

1.7. Seasonality 

Seasonality affects the probability of transmission as illustrated in Figure S4, with the 

grey curve representing the population-weighted best estimate for transmission probabil-

ity. Daily maximum temperatures for a given setting are used and seasonality is assumed 

to follow a cosine function. The seasonality effect is derived from the normalised inverse 

of the temperature curve. This represents a reduced probability of transmission during 

warmer periods, reflecting a larger proportion of people coming into contact outdoors 

where the probability of transmission is lower, and an increased transmission probability 

during cooler periods, reflecting a larger proportion of contacts being in closer contact 

indoors where the probability of transmission is higher. A seasonality scaler, σ, is applied 

as a multiplicative factor in the transmission equation to reflect the effect of temperature 

on transmission probability per contact. 
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Figure S4. Impact of seasonal forcing scalers on SARS-CoV-2 infectiousness per contact over a two 

year period. The best estimate (grey curve), lower bound (yellow curve), and upper bound (green 

curve) from the OpenCOVID model are illustrated. Seasonality is illustrated in the bottom row 

where red shading indicates the warmer spring and summer seasons, blue the cooler fall and winter 

seasons, and white the seasonal transition periods. 

1.8. Importation 

100 cases were imported from outside the study geographic area (i.e., cases with a 

travel history). The number of daily cases imported and timing of imported cases is cap-

tured in the model. There was a 5-day delay between the time of first case importation 

and the first confirmed case. 

2. COVID-19 disease 

2.1. Disease state progression 

A newly infected individual will, following a latent period, be assigned through sto-

chastic distributions an age-dependent prognosis of either asymptomatic, mild, severe, 

critical disease, or eventual death (Figure S5). 
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Figure S5. Simplified schematic of the OpenCOVID model structure. The model captures potential 

states of individuals. The ‘immune status’ ranges from fully susceptible to fully immune, where any 

level of immunity is a consequence of previously acquired natural immunity and/or vaccination. 

Development of immunity is one of the two vaccination effects modelled (indicated by dotted pur-

ple lines). Other states include latent infection, pre-symptomatic, and the asymptomatic state from 

which vaccination may also lead to development of immunity. After infection, some remain asymp-

tomatic, while for others either mild or severe disease progression may occur. The second vaccine 

effect reduces symptom development (indicated by the purple diamond) as well as potential down-

stream events (isolation, hospital care, intensive care, and death). Isolation or care (hospital care, 

intensive care) may be required for those with symptomatic infection, resting in recovery or death. 

Increasingly darker shading (grey, pink, red, dark grey) indicates increasing severity. 

2.2. Disease state duration 

Upon infection, the duration for which an individual will remain in each disease or 

care state is sampled from a distribution, as illustrated in Figure S6, and described in Table 

S1 of (9) including sources for the best estimated values for each duration. 
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Figure S6. Default durations for infection latency, disease state, and hospitalisation used the in 

OpenCOVID model. 

2.3. Prognosis probabilities 

Once infected with SARS-CoV-2 and following a latent period, an infected individual 

is either asymptomatic or will develop mild or severe disease. Individuals that develop 

severe disease may, after some time, either seek hospital care or remain outside the hos-

pital setting (e.g., within care homes). Three distinct prognosis tracks are modelled for 

those that will seek hospital care: 1) the patient will eventually recover without intensive 

care, 2) the patient will require intensive care but will eventually recover, and 3) the pa-

tient will require intensive care and will ultimately die from COVID-19-related complica-

tions. See Figure S6 for an illustration of the modelled natural history and prognosis path-

ways. 

The prognosis probabilities provided in Table S1 assume an equal probability of in-

fection across all age groups. Whilst the probability of infection in any given contact is not 

assumed to be age-dependent, the number of contacts for any given person is age-depend-

ent (Figure S2). Therefore, each age-dependent prognosis probability needs to be scaled 

by an age-correction factor to convert to per-infection probabilities as illustrated in Figure 

S7. Three additional factors can affect these age-related prognosis probabilities: 

1. Improved care procedures 

2. Increased mortality of viral variant with which an individual is infected 

3. Symptom reducing effect of vaccination 

We quantified age-group stratified probabilities for each prognosis (Table S1) using 

age-disaggregated morbidity and mortality data from international sources (10, 11). Once 

infected, a prognosis is derived for all individuals by stochastically sampling from a uni-

form distribution. 

Table S1. Prognosis probabilities by age, following infection with the SARS-CoV-2 Omicron 

varia.nt 
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Age group 

(years) 

Asymptomati

c 

Mild 

disease 

Severe 

disease 

Critical 

disease 

Death 

0−>10 33.00% 67.00% <0.01% <0.01% <0.01% 

10−>20 33.00% 66.98% 0.02% <0.01% <0.01% 

20−>30 32.97% 66.81% 0.21% 0.01% <0.01% 

30−>40 32.94% 66.52% 0.51% 0.03% <0.01% 

40−>50 32.65% 64.35% 2.77% 0.24% <0.01% 

50−>60 31.73% 58.00% 8.91% 1.36% 0.01% 

60−>70 29.54% 45.44% 18.89% 5.99% 0.14% 

70−>80 26.74% 33.23% 22.64% 15.21% 2.17% 

80−90+ 24.22% 24.94% 15.66% 21.55% 13.63% 

 
The viral variant an individual is infected with can alter age-related prognosis prob-

abilities, capturing the ability of certain variants (known as variant severity) to cause in-

creased morbidity and/or mortality (12). 

 

Figure S7. Default distributions of disease prognosis probability by age in OpenCOVID. 
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SARS-CoV-2 infections will result in a certain proportion of COVID-19 hospitalisa-

tions based on assumed prognosis probabilities (Table S1), and the protective effect of 

immunity from previous infection or vaccination are modelled to only prevent 5% of hos-

pitalisations, but will be protective against ICU admissions and COVID-19 deaths as 

shown in Supplementary Information Figure S8 showing the impact of vaccine doses by 

variant per infections experienced by disease state (severe, critical) or death. 

 

Figure S8. SARS-CoV-2 infections experiences per vaccine doses received. Number of COVID-19 

vaccine doses received (0 to 10) per number of infections experienced (0 to 10) by disease state (se-

vere, critical) or death for the Omicron (top row) or newly emerged (novel) SARS-CoV-2 variant 

(rows 2 to 4) by prognosis multiplicative factor. 

2.4. Hospital admissions 

Cases with prognosis of severe or critical disease may be admitted to hospital follow-

ing some delay from symptom onset or may alternatively receive care outside of hospital 

(e.g., in a long-term care home). Critical cases who are in hospital will be admitted to an 

intensive care unit (ICU), with sufficient capacity assumed in the model. The duration an 

individual remains in any given disease and/or care state is sampled from a distribution 

(see Section 2.2 Disease state durations). 

2.5. Immunity 

For individuals that recover from SARS-CoV-2, we assume a partial acquired im-

munity of 83% to future infection upon recovery regardless of disease severity, risk group, 

or age (13-15). 

3. Population 

3.1. Age and gender 
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Individual ages are tracked for 0 to 90 years of age in one-year age bins, with one 

additional group for those aged 90 and over. The population ages each year on predefined 

birth dates. Gender is not considered in the model (16). 

3.2. Contact network 

The contact network in OpenCOVID is based on the POLYMOD contact survey (17) 

which reports age-structured contact frequencies. The POLYMOD survey is implemented 

in OpenCOVID via the R package socialmixr (18) which provides symmetric matrices in 

which the rows and columns are the age class of the ego (the person reporting the contact) 

and the alter (the person receiving the contact), and the cell content is the average number 

of contacts between those age classes. This data can be accessed by country or setting. We 

used contact frequencies based on survey data from France, Germany, and Italy. Setting 

specific or archetypal age-structured demographic data were then used to sample this 

contact frequency space and create an age-structured random network by sampling with 

replacement, weighted by the average number of contacts per cell. We sample such that 

the resulting network has a mean number of contacts as defined by the ‘contacts’ param-

eters (see Table S1 from (9)). In such a network, not all age classes have the same number 

of contacts. Younger age classes have more contacts and especially have more contacts 

with other young age classes while older age classes have fewer contacts (Figure S2). This 

network does not distinguish between work, school, or home networks but is rather inte-

grated across all these separate networks. 

With beta set at a fixed value, the population average number of contacts can then be 

calibrated such that observed epidemiological data is matched. The primary signal for the 

contacts parameter is the exponential increase in all observed metrics during a given wave 

prior to the observed impact of any control measures. 

3.3. Risk groups 

Risk groups include those with comorbidities with risk increasing with increasing 

age. Those most at risk of succumbing to COVID-19-related death are those aged 70-79 

and 80 years and older. 

3.4. Priority groups 

Priority groups represent the prioritisation for receiving a vaccination based on age 

groups by risk. OpenCOVID vaccinates people strictly according to their priority group, 

with the highest priority group receiving all doses until the target coverage is reached. 

Vaccine coverage can be specified by priority group for each vaccine dose. 

4. Interventions 

4.1. Testing, diagnosis, and isolation 

Upon infection, an individual is assigned a date at which they may potentially seek 

a test and be diagnosed as a confirmed COVID-19 case. The delay between symptom onset 

and a potential diagnosis for each individual is sampled from a truncated Gaussian dis-

tribution. By definition, all COVID-19 cases that seek hospital care receive a diagnosis. 

After taking hospitalised diagnoses into account, other individuals with severe disease 

outside of the hospital setting and individuals with mild disease are randomly selected as 

those who seek testing and are assigned a diagnosis in the model. To represent future test-

seeking behaviour, the model calculated proportion of cases diagnosed per infected case 

over the past 14-days is fixed into the future. We note here that this assumption is not 

robust to major changes in testing policies or behaviours, including, but not limited to, 

mass testing. We assume no change in behaviour for individuals who test negative, and 

further assume that all non-severe cases isolate for a 10-day period immediately following 

diagnosis. 
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4.2. Vaccination 

In OpenCOVID non-pharmaceutical interventions (NPIs) can curb the spread of 

SARS-CoV-2 by reducing the number of potentially transmissible pairwise contacts. Such 

measures may include the closing of non-essential shops, restrictions on mass gatherings, 

and facemask mandates in publicly accessible spaces. We do not explicitly simulate the 

effect of individual measures, but instead model the total effect of all NPIs in place. 

4.3. Treatment 

Individuals are only eligible for treatment if they have been diagnosed with a SARS-

CoV-2 infection. A five-day delay between infection and diagnosis and between diagnosis 

and treatment initiation was modelled. Treatment can be targeted at any disease stage, 

those with mild symptoms not in hospital, those with severe symptoms in hospital, and 

those in critical condition admitted to an intensive care unit (ICU). Treatment coverage 

can be differentiated by priority group. We assume a certain treatment efficacy to reduce 

the risk of hospitalisation or death. Treatment efficacy represents the proportion who will 

be successfully treated in the model. Those successfully treated return to the recovered 

stage and are once more susceptible to infection. We assume the immunity of a person 

who has been successfully treated is the same as that for a person who naturally recov-

ered. This may not be fully representative but was modelled accordingly for simplicity. 

5. Model parameters and model fitting 

5.1. Model parameters 

See Table S1 from (9). 

5.2. Model fitting 

Using an average number of daily contacts the model was fitted to an initial effective 

reproduction number, Re, of 1.15 at the start of the simulation period. This represents a 

global trend of case numbers for a dominant Omicron variant. This inherently captures 

the effect of any non-pharmaceutical interventions that were in place at that time, such as 

masking. To reflect the element of chance that naturally occurs in model transmission dy-

namics, 200 random stochastic simulations were performed for each scenario with 95% 

prediction intervals presented. 

6. Impact of PM2.5 exposure 

6.1. Scenario design 

The impact of a 1 to 5 μg/m3 increase in average annual exposure to particulate matter 

≤2.5 microns in diameter (PM2.5) was modelled with either a 13% [95% CI 8−17%] increase 

in susceptibility to SARS-CoV-2 infection (19) or an 11% [95% CI 6−17%] increase in sever-

ity of COVID-19 disease (20). Log10 and linear and relationships between these two asso-

ciations were as modelled as shown in Figure S9. 
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Figure S9. Effect multiplier as PM2.5 increases. Exposure to the PM2.5 (particulate matter ≤2.5 microns 

in diameter) air pollutant was modelled to have a 13% [95% CI 8−17%] increased effect on suscepti-

bility to SARS-CoV-2 infection (19) (left panel) or an 11% [95% CI 6−17%] increased effect on COVID-

19 severity (20) (right panel) per unit increase in exposure (0 to 5 μg/m3) with a log10 (solid curves) 

or linear (dashed curves) increase in effect. Uncertainty is shown in shaded areas around the curves. 
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7. Supplementary figures 

 

Figure S10. Baseline model metrics. The daily projected baseline model metrics with no increase in 

exposure to PM2.5 (particulate matter ≤2.5 microns in diameter). 
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Figure S11. a. Projected COVID-19 health outcomes as PM2.5 increases. The effect incrementally in-

creasing exposure to PM2.5 (particulate matter ≤2.5 microns in diameter)(+1‒5μg/m3) on new SARS-

CoV-2 infections (top left panel, as shown in main text Figure 2), COVID-19 hospital admissions 

(top right panel, as shown in main text Figure 2), COVID-19 ICU admissions (bottom left panel), 

and COVID-19 deaths (bottom right panel) per 100,000 people per year with either a log10 (solid 

curves) or linear (dashed curves) increase in PM2.5 exposure effect on susceptibility to SARS-CoV-2 

infection (red curves, assuming a 13% [95% CI 8−17%] increase in effect per unit increase in exposure 

(19)) or COVID-19 severity (blue curves, assuming a 11% [95% CI 6−17%] increase in effect per unit 

increase in exposure (20)). Uncertainty and differences are shown in shaded areas between the curve 

pairs (red shading for susceptibility and blue shading for severity).
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Figure S11. b. New SARS-CoV-2 infections and COVID-19 hospital admissions as PM2.5 increases 

illustrated separately by effect of susceptibility and effect on severity. The effect incrementally in-

creasing exposure to PM2.5 (particulate matter ≤2.5 microns in diameter) (+1‒5μg/m3) on new 

SARS-CoV-2 infections (top row) and COVID-19 hospital admissions (bottom row) per 100,000 peo-

ple per year with either a log10 (solid curves) or linear (dashed curves) increase in PM2.5 exposure 

effect on susceptibility to SARS-CoV-2 infection (red curves; assuming a 13% [95% CI 8−17%] in-

crease in effect per unit increase in exposure (19)) or COVID-19 severity (blue curves; assuming a 

11% [95% CI 6−17%] increase in effect per unit increase in exposure (20)). Uncertainty attributed to 

the best estimate for increase in effect is shown in the dark red shaded areas for susceptibility and 

dark blue areas for severity. Uncertainty attributed to the upper and lower bounds for increase in 

effect is shown in the light red shaded areas for susceptibility and light blue areas for severity, as 

well as the differences between the curve pairs. 
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Figure S12. Daily ICU occupancy per 100,000 over time as PM2.5 increases. The daily projected im-

pact of incremental increases of exposure to PM2.5 (particulate matter ≤2.5 microns in diameter) (+1‒

5µg/m3) on ICU occupancy per 100,000 people over a two-year period assuming a log10 (left panels) 

or linear (right panels) increase in effect of exposure on susceptibility to infection (top row) or 

COVID-19 severity (bottom row) compared with a no exposure increase baseline (grey curves). Un-

certainty shown in the shaded areas around the curves. 
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Figure S13. Daily COVID-19 deaths per 100,000 over time as PM2.5 increases. The daily projected 

impact of incremental increases in exposure to PM2.5 (particulate matter ≤2.5 microns in diameter) 

(+1‒5μg/m3) on COVID-19 deaths per 100,000 people over a two-year period assuming a log10 (left 

panels) or linear (right panels) increase in effect of exposure on susceptibility to infection (top row) 

or COVID-19 severity (bottom row) compared with a no exposure increase baseline (grey curves). 

Uncertainty shown in the shaded areas around the curves. 
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Figure S14. Cumulative SARS-CoV-2 infections per 100,000 as PM2.5 increases. The cumulative im-

pact of incremental increases in exposure to PM2.5 (particulate matter ≤2.5 microns in diameter) (+1‒

5µg/m3) on new SARS-CoV-2 infections per 100,000 people per year relative to baseline simulated 

with either a log10 (left panels) or linear (right panels) increase in effect of exposure on susceptibility 

to infection (top row) or COVID-19 severity (bottom row). Uncertainty shown in the shaded areas 

around the curves. 
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Figure S15. Cumulative COVID-19 hospital admissions per 100,000 as PM2.5 increases. The cumula-

tive impact of incremental increases in exposure to PM2.5 (particulate matter ≤2.5 microns in diame-

ter) (+1‒5μg/m3) on COVID-19 hospital admissions per 100,000 people per year relative to baseline 

over a two-year period assuming a log10 (left panels) or linear (right panels) increase in effect of 

exposure on susceptibility to infection (top row) or COVID-19 severity (bottom row). Uncertainty 

shown in the shaded areas around the curves. 
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Figure S16. Cumulative COVID-19 ICU admissions per 100,000 as PM2.5 increases. The cumulative 

impact of incremental increases in exposure to PM2.5 (particulate matter ≤2.5 microns in diameter) 

(+1‒5μg/m3) on COVID-19 ICU admissions per 100,000 people per year relative to baseline over a 

two-year period assuming a log10 (left panels) or linear (right panels) increase in effect of exposure 

on susceptibility to infection (top row) or COVID-19 severity (bottom row). Uncertainty shown in 

the shaded areas around the curves. 
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Figure S17. Cumulative COVID-19 deaths per 100,000 as PM2.5 increases. The cumulative impact of 

incremental increases in exposure to PM2.5 (particulate matter ≤2.5 microns in diameter) (+1‒5μg/m3) 

on COVID-19 deaths per 100,000 people per year relative to baseline over a two-year period assum-

ing a log10 (left panels) or linear (right panels) increase in effect of exposure on susceptibility to 

infection (top row) or COVID-19 severity (bottom row). Uncertainty shown in the shaded areas 

around the curves. 
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