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Abstract: More than 500 million people will be added to Africa’s cities by 2040, marking the largest
urbanization in history. However, nonrenewable fossil energy sources are inadequate to meet Africa’s
energy needs, and their overexploitation leads to intensified global warming. Fortunately, Africa
has a huge potential for biomass energy, which will be an important option for combating climate
change and energy shortage. In this study, we present a typical large-scale biogas plant in Burkina
Faso, West Africa (Ouagadougou Biogas Plant, OUA), which is the first large-scale biogas generation
plant in West Africa. The primary objective of OUA is to treat human feces, and it serves as a
demonstration plant for generating electricity for feed-in tariffs. The objectives of this study are to
assess the greenhouse gas reduction capacity and economic, environmental, and social benefits of
OUA and to analyze the opportunities and challenges of developing biogas projects in Africa. As
a result, the net economic profit of the OUA biogas plant is approximately USD 305,000 per year,
with an anticipated static payback period of 14.5 years. The OUA plant has the capacity to treat
140,000 tons of human feces and 3000 tons of seasonal mixed organic waste annually, effectively
reducing greenhouse gas emissions by 5232.61 tCO2eq, improving the habitat, and providing over
30 local jobs. Finally, the development of biogas projects in Africa includes advantages such as
suitable natural conditions, the need for social development, and domestic and international support,
as well as challenges in terms of national policies, insufficient funding, technical maintenance, and
social culture.

Keywords: renewable energy; biomass; biogas plant; greenhouse gas

1. Introduction

The overuse of fossil fuels due to rapid industrialization and urbanization is accel-
erating global warming. In addition, the increase in population and rapid economic and
industrial development has led to a massive increase in global solid waste production [1,2].
Municipal solid waste (MSW) is a major contributor to climate change, responsible for
over 70% of global greenhouse gas (GHG) emissions [3,4]. Therefore, finding alternative
energy sources and advanced energy use technologies is crucial in reducing dependence
on fossil fuels, GHG emissions, and the greenhouse effect without negatively affecting
population and economic growth [5–7]. Studies have shown that the development of
renewable energy and modern energy utilization technologies is an effective solution to
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the problems of climate change, energy stress, and waste management [8–10]. Biogas
projects, as a form of renewable energy, have great potential in the development of modern
energy utilization [11]. The use of effective biogas engineering techniques can minimize the
impacts associated with global warming and climate change while improving the human
environment [4].

In Africa, around 600 million people have no way to access electricity, and around
700 million use non-clean cooking [12]. The shortage of electricity severely limits social
and economic development in Africa [13]. The International Energy Agency (IEA) predicts
that Africa’s total electricity demand will grow at an average rate of 4% per year by 2040.
However, even by 2030, some 500 million people will still lack access to electricity due to
population growth and other factors [14,15]. Energy poverty is defined as a lack of access
to electricity and a heavy reliance on traditional biomass. It is widespread and unevenly
distributed in Africa, with the most severe cases found in West Africa [16]. “Traditional uses
of biomass” refers mainly to the inefficient use of solid biomass by low-income households
that do not have access to modern energy sources and technologies [17]. With the exception
of South Africa, about 80% of the total primary energy demand in sub-Saharan Africa (SSA)
is provided by solid biofuels and biomass feedstocks are mainly used in traditional forms in
SSA [18]. Approximately 50% of the total energy used in Africa comes from fuelwood [19].
Unsustainable fuelwood harvesting causes forest depletion, and time-consuming wood
collection processes result in lost production time and place a heavy burden on human
health, particularly on women and children [12,20]. Fossil fuels account for approximately
40.0% of the overall energy mix in SSA, with coal accounting for 13.0% and natural gas for
16.0% [21]. More than 80% of urban households in SSA use charcoal as a cooking fuel [22].

The incomplete combustion of solid fuel produces large amounts of GHGs and par-
ticulate matter, resulting in the accumulation of indoor smoke and air pollution, which
is hazardous to human health [23–25]. The World Health Organization estimates that
7 million people die each year from diseases related to environmental and household air
pollution [26]. Studies have shown that air pollution caused 1.1 million deaths across Africa
in 2019, of which 697,000 were caused by indoor air pollution, and 394,000 were caused
by ambient air pollution [27]. In recent years, as urbanization in Africa has accelerated,
SSA, particularly in West Africa, has become heavily dependent on unsustainable energy
sources for economic growth, leading to a dramatic increase in carbon emissions [28]. In
addition to energy issues, Africa’s poor infrastructure, especially inadequate sanitation
systems, poses a huge challenge to human health. Over 80% of the population in SSA use
unimproved on-site sanitation facilities (toilets not connected to sewers) [29]. Untreated
fecal matter exposed to the air produces unpleasant odors and breeds bacteria, increasing
the pathway for the spread of germs and posing a serious threat to human health [30].

Biogas technology is one of the modern bioenergy utilization technologies that has
been widely concerned by all countries in the world due to its obvious advantages over
other renewable energy utilization technologies in terms of waste management, environ-
mental sanitation, human health, and energy utilization [31]. Europe is the global leader
in biogas generation, with 18,943 biogas projects established as of 2019, accounting for
65% of global biogas generation capacity, which is about 21.6 GW [32]. Germany is the
world’s number one producer of biogas, accounting for half of Europe’s biogas production,
with advanced biogas production technology leading to the development of biogas plants
worldwide. Germany was one of the first European countries to introduce subsidies for
renewable electricity and biogas production, and the introduction of the Renewable Energy
Act (Erneuerbare Energien Gesetz) in 2000 has effectively accelerated the development of
biogas plants in the country. By the end of 2019, 9527 biogas plants had been developed
in Germany [33]. However, the eco-friendliness of energy crops, the second most utilized
feedstock in European biogas plants, for biogas production is questioned because of the
impact on soil fertility and food production [34,35].

Biogas projects are more widely used in rural areas of developing countries and are
an integral part of securing agriculture, waste management, and energy security, mainly
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represented by small biogas digesters. A total of approximately 50 million small-scale
digesters are in operation worldwide, mainly in China and India. In 2017, China produced
12.366 Gm3 of biogas, capable of replacing around 8.605 Mt of standard coal per year [36,37].
Estimations show that 700,000 biogas plants have been installed in other parts of Asia,
Africa, and South America [38]. Although the number of large-scale biogas plants in Africa
is currently small, the potential to be exploited is huge [39]. Tumwesige et al. highlighted
the huge potential for biogas use in rural areas of SSA [40]. According to the International
Renewable Energy Agency (IRENA), biogas production has increased remarkably over the
last decade. The global distribution of total biogas production for electricity generation at
the end of 2020 is shown in Figure 1 [41].
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The Ouagadougou biogas plant (OUA) in Burkina Faso, funded by the Bill and
Melinda Gates Foundation, is the first large-scale industrial biogas plant in West Africa.
Its primary objective is to treat human feces and generate biogas for grid electricity, and
it is also the first biogas demonstration plant in West Africa. The feedstock for the OUA
biogas plant is mainly human feces and organic waste from neighboring plants, such as
jatropha and water hyacinth. This study assesses the carbon reduction capacity of the
plant and evaluates its economic, environmental, and social benefits. The opportunities
and challenges of developing biogas technology in Africa are explored, particularly in
low-income developing countries such as Burkina Faso.

2. Materials and Methods
2.1. Data Collection

The GHG reduction potential of the OUA biogas plant was calculated by using the
2019 Refinement to the 2006 IPCC guidelines for national greenhouse gas inventories (IPCC)
and Clean Development Mechanism (AMS-III. D) [42,43]. Next, a quantitative analysis
of the benefits of OUA was conducted by using cost-benefit analysis. The opportunities



Atmosphere 2023, 14, 876 4 of 18

and challenges affecting the development of renewable energy sources, such as biogas
projects in African countries, were analyzed in the context of the current status of biogas
development in Africa.

The data collection procedure for this study involved three main steps.

(1) Designing a questionnaire to be sent to the plant manager of the OUA biogas plant.
The questionnaire covered aspects such as initial investment, operation and man-
agement, profit from by-products, and related costs of environmental management
and treatment.

(2) Reviewing the preparation and preliminary design phase of the OUA biogas plant
between 2015 and 2017.

(3) Collecting data on renewable energy sources in Africa, including biogas, from publicly
available statistics. The parameters for GHG emission calculations were obtained
from the IPCC, the Kyoto Protocol to the United Nations Framework Convention
on Climatic Change (UNFCCC) [44] and on-site research conducted by the Univer-
sity of Science and Technology Beijing (USTB) and Chengdu Detong Environmental
Engineering Co., Ltd. (Chengdu, China)

2.2. Study Subjects

The study focused on Ouagadougou, the capital city of Burkina Faso, which has a
catchment area of 51,800 hectares and an estimated population of 2.64 million. The city
faces challenges in accessing basic urban services, inadequate housing, unemployment,
and urban insecurity. Less than 10% of the population is connected to the central sewerage
network, and the majority face on-site problems, such as household toilets and cesspits
that require regular maintenance and emptying. The location of the OUA plant is shown
in Figure 2. The OUA biogas plant is centered on a large continuous stirred tank reactor
(CSTR) with a volume of 2500 m3. The plant uses multistage digestion to produce biogas,
which can generate 7000 kWh of electricity per day for use in the grid. The plant processes
400 tons of human feces and 5–10 tons of seasonal mixed organic matter per day, including
organic waste, such as jatropha oil press cake, water hyacinth, fruit, and vegetable waste.
The main objective of the OUA biogas plant is the co-digestion of human feces and waste
organic matter, leading to biogas production, GHG reduction, and environmental improve-
ment. The main facilities of the biogas plant include a CSTR, cover anaerobic lagoon,
gasholder, and combined heat and power (CHP) units. The specific construction facilities
are shown in Table 1. The process flow, mainly composed of raw material pretreatment,
hydrolysis acidification, anaerobic digestion, desulphurization, grid, and production of
biogas fertilizer, is shown in Figure 3.
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Table 1. Main facilities of the OUA biogas plant.

Nr. Structure Amount Parameter

1 Sedimentation pound 1 600 m3

2 Acidification tank 1 300 m3

3 Pasteurization tank 1 100 m3

4 Adjustment pound 1 45 m3

5 CSTR tank 1 2500 m3

6 Lagoon 1 1300 m3

7 Buffer tank 1 100 m3

8 Gasholder 1 1500 m3

9 CHP units 2 1.1 MW
10 Solid separator 1 45 m3/h
11 Torch 1 150 m3/h
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2.2.1. Raw Material Pretreatment Systems

Considering that the biogas content produced by anaerobic fermentation using fecal
sludge alone is extremely low, mixed digestion is beneficial for improving the stability and
productivity of the process [45]. As part of this process, 100 tons of concentrated human
fecal sludge are extracted from 400 tons of fecal effluent per day, along with 5–10 tons
of co-fermented materials, such as jatropha press cake and brewery waste. The sand in
the incoming fecal sludge is first separated and removed by using a screw desander to
prevent problems, such as blockages in the material transfer pipeline and deposition in the
fermentation tank.
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2.2.2. Hydrolysis and Acidification Process

This process reduces the possibility of a dangerous anaerobic tank acidification acci-
dent. Micro-organic matter in the hydrolysis is broken down to improve the homogeneity
of the substrate and reduce odor and carbon dioxide emissions. A small amount of carbon
dioxide is yielded in this stage, leading to the rise of final methane content in the produced
biogas. The acidification step takes approximately 3 days, after which the substrate is
pasteurized at 70 ◦C for 1 h to eliminate pathogens and bacteria and make the fermentation
residue safe for use as a biofertilizer. The substrate is then left in the pasteurization tank,
and the temperature is reduced before being pumped into the fermenter.

2.2.3. Fermentation, Biogas Purification, and Desulfurization Technology

The methanization step is divided into two parts: a CSTR and a covered anaerobic
lagoon. The substrate is reacted in the CSTR with a volume of 2500 m3 at 38 ◦C for
approximately 20 days. Subsequently, the digestate passes through the buffer tank and
solid–liquid separator. The solid digestate can be collected and applied as a biofertilizer. The
liquid part flows into the covered lagoon digester before being directed to the neighboring
drying bed. In the two units, CSTR digester and covered lagoon digester, about 3000 m3 of
biogas will be produced per day in full operation.

The first desulfurization step involves adding FeCl2 liquor during the acidification
process. The chemical redox reaction between ferrous ions and sulfide decreases the
formation of other sulfide compounds, such as hydrogen sulfide. Therefore, corrosion
damage to plant components is effectively prevented, ensuring better methane production
in the fermentation step. The second desulfurization step consists of an active carbon filter
unit to minimize the hydrogen sulfide concentration and protect the CHP unit, guaranteeing
durability. The purified gas is stored in a double membrane gas cabinet with a volume of
1500 m3. The above stabilization process allows for effective bioenergy recovery and the
conversion of more than 80% of volatile solids into biogas.

2.2.4. Combined Heat and Power Generation

The biogas is used to generate electricity via two CHP units with a total installed
capacity of 1100 kW. One of the CHP units (100 kW) covers the energy demand of the plant
equipment and enables self-sufficiency of the biogas plant. The larger CHP unit (1 MW)
generates 7000 kWh per day and feeds electricity to the power grid. In addition, the 445 kW
heat loss from the 1 MW cogeneration is used to preheat the substrate in the pasteurization
tank or to heat the CSTR tank, which can heat the liquid in the pasteurization tank to
70 degrees centigrade and maintain that temperature for at least 1 h.

2.3. GHG Emission Reduction Calculation

The GHG emission reduction assessment was conducted on the basis of the baselines
and plant emissions [46]. The baseline emissions were calculated under scenarios where
human feces and seasonal mixed organic matter, such as jatropha press cake, are used
as co-substrates. The first scenario was that human feces was left to decay anaerobically
within the plant boundary, and methane was emitted directly into the atmosphere. The
second scenario was that the seasonal mixed organic matter was left to decay at the solid
waste disposal site (SWDS). The GHG emission reductions from the OUA biogas plant and
GHG emissions from the baseline scenario are calculated by Equation (1) and Equation (2),
respectively [42,46].

ERCH4 = BECH4 − PEOUA (1)

where
ERCH4 = GHG emission reduction from OUA biogas plant in year (t CO2 eq);
BECH4 = Baseline scenario GHG emissions in year (t CO2 eq);
PEOUA = Project activity emissions in year (t CO2 eq);

BECH4 = BEHF + BESWDS (2)
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where
BEHF = Baseline emission of human feces in the open lagoon scenario in year (t CO2 eq);
BESWDS = Baseline emissions of seasonal mixing of solid waste in the SWDS scenario

in year (t CO2 eq);

2.3.1. Open Anaerobic Pond Scenario in an Open Lagoon, the Baseline Discharge of
Human Feces Is Calculated as Follows

The OUA biogas plant treated 400 tons of human feces every day. If these human feces
are not properly treated and disposed of, then they will be easy to breed bacteria, emit
a foul odor, pollute the natural ecological environment, and seriously endanger human
health [47]. In addition, the GHGs produced will be emitted directly into the atmosphere,
causing negative impacts on global warming and climate change [4]. Thus, the biogas plant
plays an important role in the GHG emission process. The baseline emission of human
feces in an open lagoon is calculated as follows [42,43]:

BEHF = VSHF × BO × DCH4 × UFb × MCFHF × GWPCH4 (3)

where
VSHF = Total organic matter of human feces used in an anaerobic co-digestion plant in

year (919,800 kg in this study).
Bo = Maximum methane production potential of the volatile solid (m3 CH4/kg VS)

(0.35 m3 CH4/kg VS, according to onsite study by USTB and DeTong Knowledge);
DCH4 = CH4 density (0.67 kg/m3 at 20 ◦C and 1 atm pressure);
UFb = Model uncertainty correction factor (0.94 recommended by the FCCC);
MCFHF = Annual methane conversion factor (80.0%, recommended by the IPCC);
GWPCH4 = Impact of CH4 relative to CO2 on global warming potential (t CO2/t CH4)

(28 from the IPCC [48]).

2.3.2. Solid Waste Disposal Site

Seasonal mixed fermentation feedstocks include organic waste, such as jatropha and
water hyacinth, which are mainly derived from surrounding industries, agriculture, and
plantations. Organic waste that has not been effectively treated can be a waste of resources
and a burden on the natural environment. On the basis of the first-order decay method
(FOD), the baseline emission of seasonal mixed organic waste at solid waste disposal sites
is determined as follows [42,43]:

BESWDS = DOC f × MCF × M × DOC × 16
12

× F ×
(

1 − e−k
)
× (1 − OX)× (1 − f )× ϕ × GWPCH4 (4)

where
DOCf = Fraction of degradable organic carbon degraded and released in SWDS for

year (0.5, recommended by the IPCC);
MCF = Methane correction factor for unmanaged SWDS (80.0%, recommended by

the IPCC);
M = Amount of seasonal mixing of solid waste disposed of in SWDS in year (2051.3 t/year

in this study);
DOC = Fraction of degradable organic carbon in seasonal mixing of solid waste (15.0%,

recommended by the IPCC);
F = Fraction of methane in SWDS gas (0.5, recommended by the IPCC);
k = Decay rate for seasonal mixing of solid waste (1/year) (0.05, recommended by

the IPCC);
OX = Oxidation factor (0.1, recommended by the IPCC);
f = Fraction of methane captured and treated, burned, or otherwise used to prevent

the release of methane into the atmosphere in year (0.5, recommended by the UNFCCC);
ϕ = Model correction factor (0.8, recommended by the IPCC).
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2.3.3. Plant Activity Emissions

Project emissions associated with the OUA biogas plant are determined by Equation (5).
The GHG emissions by biogas leakage are calculated by Equation (6). The annual GHG
emission reduction from electricity generation using produced methane as a substitute for
coal is calculated through Equation (7) [42,43].

PEOUA = PEEC + PECH4 − AGCH4 (5)

where
PEEC = Project activity emissions from electricity consumption in year (t CO2 eq);
PECH4 = Project emissions of methane leakage in year (t CO2 eq);
AGCH4 = GHG emission reductions from methane replacement of coal for power

generation in year (t CO2 eq);

PECH4 = QBiogas × DCH4 × f × EFCH4 × GWPCH4 (6)

where
PECH4 = Project emissions of methane leakage in year (t CO2 eq);
QBiogas = Quantity of biogas produced in the digester in year (1,080,000 m3 biogas)
f = Value for a fraction of methane in the biogas (default, 60% m3 CH4/m3 biogas)
EFCH4 = Emission factor for a fraction of CH4 produced that leaks (default, 10% fraction)

AGCH4 = EFcoal × Q × DCH4 ×
NCVCH4

NCVcoal
(7)

where
AGCH4 = GHG emissions reduced by methane captured and effectively used by the

plant activity in year (t CO2 eq);
EFcoal = GHG emissions from the use of standard coal (2.658, recommended by

the IPCC);
Q = Annual methane production from biogas digester (648,000 m3 CH4);
NCVCH4 = Net calorific value of methane with a default value of 50.4 MJ/kg;
NCVcoal = Net calorific value of standard coal with a default value of 29.307 MJ/kg.

3. Results and Discussion
3.1. GHG Potential Reduction

The OUA biogas plant reduces GHG emissions by 5232.61 tCO2eq per year through
co-digestion of human feces and seasonal mixed organic waste; the specific GHG emission
calculation results are shown in Table 2. Some of the literature on GHG emission reductions
from biogas projects can be found in Table 3. Family-scale biogas projects mainly use
animal manure as the main fermentation material to produce biogas for electricity and
heat. Farm-scale biogas projects using agricultural waste as fermentation raw material are
generally medium to large in size, with a daily biogas production greater than 150 m3. The
main fermentation raw materials include livestock and poultry manure, such as cow dung
and pig manure, and agricultural waste, such as maize straw. Large-scale biogas projects
have relatively higher biogas production and show good GHG emission reduction capacity
by utilizing various agricultural waste resources.

In anaerobic systems, the co-digestion of organic waste can improve system stability
and gas production efficiency, contributing to GHG reduction [49]. The OUA biogas
generation plant is the first large-scale biogas plant in West Africa with the main objective
of treating human feces and producing 1,080,000 m3 of biogas per year, with a volumetric
biogas production rate of 1.18 m3/m3 per day. Compared to the human feces biogas plant
in Cui Ge Zhuang village, China (where the feedstock is almost exclusively human feces),
the OUA biogas plant has a higher volumetric biogas production rate [50]. The plant
effectively utilizes human feces and seasonal organic waste, such as jatropha press cake,
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for co-digestion, achieving harmless treatment and resourceful use of all types of organic
waste while reducing GHG emissions and generating environmental benefits.

Table 2. Baseline variables for carbon emission calculations.

Variable Description Data (tCO2eq/Year)

BEHF
Baseline emission of human feces in the open

lagoon scenario in year 4541.63

BESWDS
Baseline emissions of seasonal mixing of solid

waste in the SWDS scenario in year 40.34

PEEC
Project activity emissions from electricity

consumption in year 118.27 a

PECH4 Project emissions of methane leakage in year 1215.65

AGCH4
GHG emission reductions from methane

replacement of coal for power generation in year 1984.56

BECH4 Baseline scenario GHG emissions in year 4581.97
PEOUA Project activity emissions in year −650.64

ERCH4
GHG emission reduction from OUA biogas plant

in year 5232.61

a The daily electricity consumption of the OUA biogas plant is 315 kWh, and the consumption of 1 kWh of
electricity generates 0.997 kg of CO2 [49].

Table 3. Summary of GHG reduction effects of selected biogas plants.

Substrates Type Biogas Production
(m3/Year)

Volumetric Biogas
Production Rate

(m3/(m3·d))

GHG Emission
Reduction

(tCO2eq/Year)
Reference

Food waste Pilot-scale 3103 4.25 0.11 Liu et al. [51]
Cow dung Family-scale 355 0.48 1.40 Haryanto et al. [52]
Cow dung Family-scale 578 0.26 5.29 Haryanto et al. [53]

Kitchen waste
and sludge Industrial-scale 862,313 NR 1554.9 Guo et al. [49]

Cow manure Farm-scale 2400 0.41 0.24 Richards et al. [54]
Pig manure and

corn straw Farm-scale 20,415 1.22 303.08 Wang et al. [55]

Pig manure Farm-scale 116,800 0.40 1334.95 Chen et al. [56]
Pig manure Farm-scale 321,200 0.40 4016.95 Chen et al. [56]
Pig manure Farm-scale 657,000 0.82 5236.95 Chen et al. [56]

Straw Farm-scale 485,450 0.81 5582.03 Wang et al. [57]
Pig manure Farm-scale 6,570,000 NR 49,300 Zhang et al. [58]

Human feces Industrial-scale 58,000 0.40 69.2 Zhang et al. [50]
Human feces Industrial-scale 1,080,000 1.18 5232.61 This study

3.2. Benefits of the OUA Biogas Plant
3.2.1. Economic Benefits of the OUA Biogas Plant

The initial investment cost of the OUA was approximately USD 4,435,000, with all the
items invested listed in Table 4.

The biogas plant currently produces 1,080,000 m3 of biogas and 2.16 million kWh
of electricity per year, providing a convenient source of clean electrical energy for the
local area and alleviating the current electricity shortage. The direct economic return on
electricity is USD 300,000 per year. The OUA biogas plant produces 2500 tons of organic
fertilizer each year, providing high-quality fertilizer for local agricultural production, with
a direct economic return of USD 25,000 per year from the fertilizer. The environmental
treatment costs of the relevant authorities can be reduced by treating organic waste, such
as human feces, residues from jatropha press extraction, and fruit and vegetable waste,
generating an economic benefit of approximately USD 70,000 per year. Thus, the total
economic benefits of the OUA biogas plant can reach approximately USD 395,000 per year.
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Table 4. Initial investment of biogas plant.

Nr. Item Investment
(104 $) Percentage

1 Manure collection system 4 0.90
2 Manure pretreatment system 10 2.25
3 Anaerobic digestion system 100 22.55
4 Biogas utilization system 100 22.55

5 Solid manure/biogas residue (producing
organic fertilizer)system 45 10.15

6 Subsidiary facilities 80 18.04
7 Land use costs 3 0.68

8 Public facilities (fire control, roads,
landscaping, etc.) 1.5 0.34

9 Power supply system 40 9.02
10 Other costs (design fee and contingency fee) 60 13.53

Total 443.5 100

The operating costs of the OUA are approximately USD 90,000 per year (Table 5) and
consist mainly of maintenance, labor, management, energy consumption, and materials
(accessories). After operating costs, the net economic profit of the OUA biogas plant is
approximately USD 305,000 per year, with an anticipated static payback period of 14.5 years,
not considering reductions in GHG emissions.

Table 5. Operating costs for the biogas plant.

Nr. Item Running Cost
(104 USD) Percentage

1 Maintenance costs 2 22.22
2 Labor costs 3 33.33
3 Management expenses 1 11.11
4 Energy consumption costs 1.5 16.67
5 Materials (accessories) costs 1 11.11
6 Other costs 0.5 5.56

Total 9 100

3.2.2. Environmental and Social Benefits of the OUA Biogas Plant

Burkina Faso is a country with abundant biomass resources, but its efficient use of
biomass is limited, and it has only recently started to use biogas for electricity generation,
beginning in 2016 (Table 6). According to the IEA, as of 2020, only 21% of the population has
access to electricity, and 11% of the population uses clean cooking fuels, making Burkina
Faso one of the lowest-ranked countries in West Africa in terms of access to clean energy.
The other nine West African countries with less than 5% of the population having access to
clean cooking are not shown in Figure 4.

Table 6. Bioenergy use in Burkina Faso, 2013–2020.

Type 2013 2014 2015 2016 2017 2018 2019 2020

Installed
Capacity (MW)

Liquid Biofuels 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

Biogas NR NR 0.75 0.75 0.75 0.75 0.75 0.75

Electricity Gener-
ation(GWh)

Liquid Biofuels 0.05 0.15 0.30 0.30 0.30 0.30 0.30 0.30

Biogas NR NR NR NR 1.00 1.00 1.00 1.00

Source: IRENA, Select table, 2022, summarized by the authors.
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The OUA biogas plant treats 140,000 tons of human feces and 3000 tons of seasonal
mixed organic waste per year, producing 1,080,000 m3 of biogas, 2,160,000 kWh of elec-
tricity, and 2500 tons of organic fertilizer per year, and achieving a GHG reduction of
5232.61 tCO2eq. This reduction has a positive impact on the environment by decreasing
pollution, GHG emissions, and the spread of disease. The OUA biogas plant provides
appropriate biogas technology for the treatment of sewage and human feces, which can
help reduce disease transmission channels, improve the sanitary conditions of the local
population’s toilets and living environment, and create employment opportunities for over
30 people. Therefore, the OUA plant generates good environmental and social benefits.

The successful construction and operation of the OUA mark the first large-scale
commercial human feces biogas power generation plant supported by the Bill & Melinda
Gates Foundation, which is of practical importance in achieving the objectives of the
strategic cooperation between the Chinese Ministry of Science and Technology and the
Gates Foundation.

4. Opportunities and Challenges
4.1. Main Opportunities for Biogas Project Development in Africa
4.1.1. Favorable Natural Conditions

Africa has a typical hot, low rainfall and dry climate [59]. Burkina Faso has a savan-
nah climate with an average annual temperature of around 27 ◦C. The inherent climatic
advantage makes the additional energy required to insulate anaerobic digesters much
less, creating favorable conditions for the development of biogas projects in the region.
Approximately 630 million hectares of land in SSA are covered by forest, which accounts
for about a quarter of the land area [60]. Africa has a huge potential for renewable energy
development, and biomass is an important renewable energy source in SSA, including
solid resources such as wood, animal manure, and agricultural waste [61]. Biomass energy
can provide a large proportion of the grid balance required for a fully renewable power
system [62]. It also contributes to the achievement of the sustainable development goals
(SDGs), which mainly include improved environmental health (SDG 6), access to affordable,
sustainable and stable clean energy (SDG 7), and climate action (SDG 13) [63].

4.1.2. Economic Development and Environmental Health Needs

Currently, for every 1 percentage point increase in per capita electricity consumption
on the African continent, its GDP per capita will increase by 0.09 percentage points, high-
lighting the critical role of electricity in driving economic development [64]. However, the
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SSA region still lags behind with only 46.8% access to electricity, leaving 570 million people
without electricity, which accounts for three-quarters of the global population without
access to electricity [65]. The ongoing COVID-19 epidemic has further exacerbated the
situation, with 25% of the region’s health facilities lacking electricity and over 70% without
access to stable power, hindering the region’s efforts to combat the epidemic and promote
recovery [66]. Basic sanitation facilities are also not guaranteed in Africa, with 709 million
people lacking access to basic sanitation services, and open defecation remains a problem
in many areas, such as Burkina Faso, with 9.8 million people affected [29]. In this context,
biogas projects offer a promising solution to address the regions’ energy and sanitation
needs [11]. The anaerobic digestion process generates biogas for electricity generation while
also inhibiting potential pathways for the spread of germs from urban waste, especially
human feces, and providing basic sanitation services to local communities. In addition, the
rational use of biogas energy as an alternative to traditional solid biomass combustion for
domestic production can help reduce GHG emissions, such as particulate matter, carbon
dioxide, and methane, thereby reducing the greenhouse effect [4].

4.1.3. Urbanization and Energy Needs

Despite having the lowest modern energy supply. Africa has the highest urbanization
and population growth rates in the world [67]. By 2040, half of the world’s new population
is expected to be African, with 70% of the growth concentrated in urban areas, and the urban
population of Africa will increase by more than 500 million people, making the largest
urbanization in history [12]. African countries are currently lagging behind in economic
development, which has led to problems such as poor infrastructure, power shortages,
and energy shortages. With the acceleration of urbanization, Africa’s energy needs will
continue to grow, and energy will become central and critical to national development [68].
The development of biogas technology is expected to address the contradiction between
Africa’s rapid urbanization, energy shortages, and climate change. This condition can
contribute to the reducing deforestation in SSA, the pressure on women and children to
collect firewood over long distances to meet household needs, and the number of premature
deaths caused by air pollution [69–71]. Subedi et al. suggested that biogas from anaerobic
digesters can help reduce deforestation on the African continent by up to 26% by 2030 as a
result of replacing a portion of firewood consumption with biogas [72]. The development
of biogas technology in Africa is important in terms of improving the efficiency of biomass
fuels, disposing of increasing amounts of agricultural waste, addressing the threat of urban
waste, and improving ecological sanitation [68].

4.1.4. Domestic and International Support

In September 2015, world leaders at the UN Summit adopted the 2030 Agenda for
Sustainable Development, which aims to eradicate all forms of poverty through 17 SDGs.
The seventh SDG aims to achieve universal access to energy and states that “ensuring
access to modern, affordable, reliable, and sustainable energy for all” is crucial [63]. The
development of large-scale biogas projects is an important measure to achieve sustainable
development goals. The OUA biogas plant is the first pilot plant in West Africa, using biogas
technology and models from China, funded by the Bill & Melinda Gates Foundation. The
plant has received high recognition from the World Bank, the West African Development
Bank, the Government of Burkina Faso, and ECOWAS [21,73,74].

4.2. Main Barriers to Biogas Project Development in Africa

Africa lacks effective policies for the development of renewable energy. Current
African national policies remain biased toward fossil fuels, and the implementation of
policies on renewable energy cannot be guaranteed [75,76]. The use of and investment in re-
newable energy in SSA countries are inhibited by national policies. Inadequate regulations,
institutions, and unenforced regulatory authorities have created many obstacles to private
investment and biogas projects [77,78]. Especially in rural areas, unstable incomes result in
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many households not being able to afford the initial construction costs of a digester, while
state subsidies for fossil fuels and the easy availability of traditional biomass fuels make
renewable energy uncompetitive. The high initial investment costs for the construction
of large-scale biogas projects in Africa and the funding gap caused by the high initial
investment costs are inhibiting project financing in the renewable energy sector [79–81].

Secondly, the development of biogas technology in Africa is in its infancy, and equip-
ment and technology for the construction of biogas plants need to be imported from
abroad. For example, the most common design in East Africa is the fixed dome Chinese
digester [82,83]. In most cases, biogas installers do not provide adequate technical support
and sound post-maintenance training to users. The lack of post-maintenance results in
biogas systems being prone to breakdowns and damage during operation, which eventually
leads to the abandonment of the biogas system [84]. In addition, the design and installation
of many biogas projects ignore the needs of the users and local characteristics, such as the
seasonality of the feedstock, the quantity of feedstock, and the difficulty of collection, all of
which make it difficult to operate the installed biogas projects [84,85]. In addition to the
technical challenges, the development of biogas projects in Africa has also been affected
by socio-cultural influences. Compared with solar and wind energy, biogas technology
is socially unacceptable because it is mainly based on organic pollutants, such as animal
manure, agricultural waste, food waste, and toilet waste [75,86]. In addition, the use of
biogas for heating, cooking, and lighting is likely to cause physical disgust and moral
aggression among the population [75]. Finally, the lagging technical standards and norms,
differences in living habits, and political security issues also make it difficult to develop
biogas projects in Africa to varying degrees [87,88]. Attracting investors to biogas projects
is difficult in areas where security is not available because biogas projects are long-term
investments [82].

Although the development of renewable energy has received attention in Africa, the
continent’s share of renewable energy in total final energy consumption was still on a
declining trend [89]. A causal loop diagram using system dynamics (Figure 5) reveals
that active national policies, appropriate subsidies, and technical expertise are particularly
important in promoting biogas projects in Africa.
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5. Conclusions and Recommendations

The overuse of fossil fuels is causing increased GHG emissions, and biogas technology
has proven to be a successful means for many nations to battle climate change, reduce
GHG emissions, conserve forest vegetation, and secure energy sources, among other needs.
The OUA biogas plant in Burkina Faso aims to produce biogas for electricity generation
by effectively using human feces and seasonal organic waste. It is the first industrial-scale
biogas plant in West Africa with a major focus on treating human feces. The scaled-
up biogas plant creates a closed-loop system from waste collection to treatment to use,
accounting for energy generation and waste management, which can lessen reliance on
fossil fuels and encourage energy independence in the African region. The carbon emission
reduction analysis and cost-benefit analysis show that the OUA plant has brought good
social, environmental, and economic benefits and inspired African countries and other low
and middle-income countries to expedite their energy transformation. However, the OUA
biogas plant is supported by funds from the Bill Gates Foundation, and the main purpose
of building the OUA biogas plant is to solve the sanitation problems of the local population.
Therefore, trying to commercialize such a biogas plant in Africa is difficult to achieve due
to financial and other problems.

Specifically, the OUA biogas plant in Burkina Faso has good economic benefits, with
a direct economic return of USD 325,000 per year through electricity generation and the
organic fertilizer produced. The Ouagadougou, Burkina Faso, biogas facility also offers
major environmental and social advantages. The biogas plant can process 140,000 tons
of human feces and 3000 tons of seasonal organic waste annually, resulting in a 35232.61
tCO2eq reduction in GHG emissions, mitigating environmental pollution, lowering the risk
of germ transmission, and providing the community with a clean, healthy environment to
live in. At the same time, it can simultaneously support local employment and provide
jobs for more than 30 people. Finally, the development of biogas projects in Africa includes
advantages such as suitable natural conditions, the need for social development, and
domestic and international support, as well as challenges in terms of national policies,
insufficient funding, technical maintenance, and social culture.

A better balance between faster urbanization and rising energy use needs to be
achieved in African nations. Although establishing biogas projects in Africa has many
advantages, considering potential drawbacks, such as ineffective national policies and
regulations, high start-up costs, and antiquated technology, is essential. To address these
issues, we recommend that African governments create incentives for renewable energy
projects, provide energy subsidies to renewable energy companies to promote increased
production, and involve the public and private sectors in expanding energy financing. We
also suggest promoting policies that attract foreign direct investment, raising awareness
about the advantages of using biogas technology in communities, and training professional
technical maintenance teams. The success of the OUA biogas plant highlights the need
for increased financial and technical support for additional biogas projects and the de-
velopment of cutting-edge energy use technologies that promote economic growth while
reducing GHG emissions and minimizing environmental and public health risks.
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