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Abstract: GNSS single-frequency occultation processing technology has the advantage of simple
instrumentation, but it is not clear about the accuracy of the Beidou-based single-frequency occultation
processing. This paper verifies the single-frequency occultation processing algorithm of the BeiDou
navigation system (BDS) and analyzes its accuracy based on occultation observation data from the
FY3E satellite. The research aimed to verify the single-frequency ionospheric relative total electron
content (relTEC), analyze the accuracy of the reconstructed second frequency B∗

3 ’s excess phase
Doppler, and analyze the accuracy of the refractive index products. Results: (1) As for relTEC and
excess phase Doppler, the correlation coefficient between single-frequency occultation processing and
dual-frequency occultation processing is greater than 0.95. (2) The relative average deviations of the
excess phase Doppler of B∗

3 are mostly less than 0.2%, and the relative standard deviations are mostly
around 0.5%. (3) The bias index and root mean square index of single/dual-frequency inversion have
good consistency compared with ERA5 data. All the results show that the single- and dual-frequency
inversion refractive index products have comparable accuracies, and the accuracy of the standard
deviation of single-frequency inversion refractive index products over 25 km being slightly lower
than that of dual-frequency inversion refractive index products.

Keywords: BDS occultation; single-frequency processing; excess phase; refractive index

1. Introduction

Global navigation satellite system (GNSS) radio occultation was originally developed
to measure the planetary atmosphere when exploring the solar system [1,2]. Then, in the
mid-1960s, Fishbach put forward the GNSS radio occultation theory for remote sensing
of the Earth’s atmospheric parameters [3,4], which provides accurate atmospheric param-
eter profiles worldwide. The theory is useful for numerical weather forecasting, climate
monitoring, and atmospheric research. Because this theory requires putting multiple signal
transmitting devices and signal receiving devices in space, until the late 1980s the United
States Global Positioning System (GPS) tended to be perfect, providing the necessary
satellite constellation for GNSS radio occultation [5,6].

GNOS, a global navigation satellite radio occultation detector carried by China’s
Fengyun 3 series meteorological satellites, can simultaneously receive GPS navigation sig-
nals and BeiDou navigation system (BDS) navigation signals for occultation detection [7]. It
is the world’s first radio occultation detector compatible with BDS and GPS systems [8]. The
BDS occultation observation data in this paper comes from the dual-frequency occultation
observations of BDS B1I signals and BDS B3I signals carried by the second-generation
radio occultation detector (GNOS II) on the FY-3E satellite (FY-3E) in the Fengyun series of
missions. The operating frequency of BDS B1I signals is 1561.098 MHz. The signal adopts
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multifrequency transmission technology and time-division frequency multiple-access tech-
nology, which have strong anti-interference ability and can eliminate errors in navigation
and positioning worldwide. The BDS B1I signal has higher accuracy and reliability. The
operating frequency of BDS B3I signals is 1268.52 MHz. In this paper, the carrier phase (B∗

3)
of a quasi-B3I signal is reconstructed, and the results are compared with the actual BDS B3I
signal in dual-frequency measurement.

In GNSS atmospheric occultation data processing, the ionospheric error will greatly
affect the accuracy of atmospheric occultation retrieval products [9,10]. Dual-frequency
occultation processing means that when the radio-wave signal transmitted by the LEO
satellite is received by the high-precision dual-frequency radio occultation receiver carried
by the LEO satellite, the radio wave signal will have a certain amount of bending and delay
effects through the lower atmosphere and the ionosphere due to atmospheric refraction,
scattering, and other reasons, and the bending and delay effects will cause the frequency
of the receiver signal to change [11,12]. In general, the ionosphere-free combination using
dual-frequency observations can effectively eliminate the influence of the first-order term
of the ionosphere, thus improving the product accuracy [13,14]. After eliminating the
ionospheric delay through the ionospheric combination between the dual-frequency BDS-
based carrier-phase observations, the Doppler frequency shift of the BDS signal is calculated
using the high-precision velocity, position, and clock-difference information of the receivers
of the BDS satellite (reference satellite) and the low-orbit satellite (occultation satellite), so
as to invert the curved angular profile of the atmosphere [15–18].

In some flight missions, single-frequency receivers may also be used for GNSS atmo-
spheric occultation detection. Since sometimes even single-frequency receiver occultation
detection cannot eliminate the ionospheric error through combination, the half-sum com-
bination of the single-frequency carrier phase and pseudorange has been developed to
eliminate ionospheric error [19–21]. For example, a GPS radio occultation receiver named
Turbooge carried on the Danish Ørsted satellite launched in February 1999 only received
the single-frequency occultation signal normally [22], so the scientific researchers used
the double-difference single-frequency occultation processing method for GNSS atmo-
spheric occultation processing. However, the double-difference single-frequency occultation
processing results used in the follow-up calculations cannot be compared with the double-
frequency occultation processing results because the Turbooge receiver did not receive the
dual-frequency signal. The single-frequency occultation processing method has the advan-
tage of simple instrumentation, but it is not clear about the accuracy of the Beidou-based
single-frequency occultation processing. At present, the latest GNSS radio occultation tech-
nology uses single-difference or non-difference technology for data processing [23,24], which
requires algorithm verification and accuracy analysis of the single-frequency occultation
processing method based on BDS observations under the current differential technology.

This paper introduces a method of using B1 single-frequency carrier phase and pseu-
dorange observations to calculate the relative ionospheric total electron content (TEC). It
then reconstructs the algorithm of B3 carrier-phase observations, which is described in
detail in Section 2. The sources of the data are described in Section 3. Then, Section 4
reconstructs the second frequency B∗

3 of occultation data observed by the FY3E satellite,
compares the consistency of the B∗

3 with the actual B3, and ends up with inverting the
atmospheric refractive index product. In Section 4.1, the relTEC change rate results are
compared, and in Section 4.2, the correctness of the single-frequency occultation processing
method is verified by comparing the excess phase Doppler. In Section 4.3, this paper
compares the BDS single-frequency occultation refractive index product with the ERA5
reanalysis field data to evaluate the accuracy of the single-frequency occultation product.

2. Single-Frequency Occultation Data Processing Method Based on BDS

The inversion algorithm based on BDS single-frequency radio occultation data means
that when there is only observation of frequency band B1, the pseudorange and carrier
phase are used to calculate the ionospheric delay, and further reconstruct the inversion
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of occultation products (atmospheric refractive index) in the frequency band B∗
3 . In this

paper, the BDS observation data used to retrieve atmospheric occultation products is the B1
carrier-phase measurement at 50 Hz sampling rate and B1I pseudorange measurement (C1)
at the 1–50 Hz sampling rate. Due to the lack of data for the second frequency, the error
caused by the ionospheric effect cannot be eliminated by difference combination. However,
when only single-frequency measurement is used, the linear combination of B1 and C1 data
can be used to construct B∗

3 , but the result will be affected by the noise of the observation
value C1 itself [25–27].

This paper adopts a special filtering method to solve this problem. During data
processing, with the help of a low-pass filter, the B1 −C1 data are filtered. At the same time,
the regularization method [28] that minimizes the second derivative is used to interpolate
to 50 Hz and repair the data gap so as to reduce the noise impact from the observations.
The filter can be described as matrix F, given by the following formula:

F = (̃I + γS
T

S)−1 (1)

where Ĩ is an incomplete identity matrix, which means the only diagonal element corre-
sponding to the position where both B1 and C1 data are available is 1. Since in this paper
the interpolation needs to be 50 Hz, the size of Ĩ is about 500 × 500. Although there are
many elements in the matrix Ĩ, only about 10–500 elements on the diagonal are 1, and the
other elements are all 0. The specific value of Ĩ is determined by the sampling rate of the
carrier phase and the pseudorange. Matrix S is a second-order derivative finite-difference
operator [29], ST is its transposition, and γ is a regularization parameter that determines
the smoothing strength. Here, γ = 106, corresponding to a low-pass filter with a cut-off
frequency of ~0.05 Hz, the cut-off frequency is selected to effectively eliminate the uncertain
high-frequency noise in C1 data from the signal BDS B1I. Therefore, the result of the filtered
B1 minus C1 is obtained by the following formula:

B1−C1= F(B 1−C1
)

(2)

where (B 1−C1) is a vector with about 500 elements, and the missing data point of B1 or
C1 is 0. The expression k(B1−C1

)
is the relative total electron content of the ionosphere,

relTEC, in which the coefficient k is the conversion coefficient between the ionospheric
delay and the total electron content. The carrier-phase measurement of B∗

3 is based on the
carrier-phase measurement of B1 and the result of filtered B1−C1. The formula is as follows:

B∗
3 = B1−0.5(1− f2

1

f2
3
)(B1−C1) (3)

where f1= 1561.098 MHz is the observed signal frequency, and f3 is the frequency of the
observed signal to be constructed. In order to verify and analyze the reconstructed B∗

3
and single-frequency occultation processing method, this paper proposes constructing
the B3I signal with a frequency of 1268.52 MHz. The carrier-phase measurement of the
reconstructed B∗

3 without ionospheric influence can be directly calculated through the
carrier-phase measurement B1 and pseudorange measurement. Follow-up calculations
based on B1 and B∗

3 (the single-frequency occultation processing method) to invert of
occultation products and based on B1 and B3 (the dual-frequency occultation processing
method) are the same [30–33].

3. Data Sources

The occultation observation data are selected from the ROEX-format occultation
observation data received by the GNOS radio occultation detector on Fengyun 3E satellite
on 4 January 2022. According to the instrument design, the GNOS instrument’s occultation
data sampling rate is 50 Hz for closed-loop and 100 Hz for open-loop, and the accuracy of
the occultation data is comparable to that of similar international occultation products [34].
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As for precision orbit determination, the positioning data also come from the BDS
positioning data of GNOS. The GNSS precise ephemeris selects the GBM fast product
released by the GFZ analysis center of IGS, and uses the simplified dynamic precise
orbit determination to obtain the FY3E precise orbit and clock deviation. Precision orbit
determination of low-orbit satellites is a repeated iterative process. Firstly, the initial
orbit of the low-orbit satellite is obtained by pseudorange and carrier phase measurement,
which could calculate the initial orbit parameters. Then, the orbital parameters are further
corrected by the least squares LSQ. A more precision orbit is then calculated with new
orbital parameters. Through multiple iterations and residual judgment, the precise orbit
and orbital acceleration parameters are finally obtained. In addition, the time arc of each
precision orbit determination is 30 h, so for the adjacent two days, there is a 6 h orbit
overlap, which is used to evaluate the accuracy.

The position accuracy of the final FY3E precision orbit is at the centimeter level, and
the speed accuracy is on the order of millimeters per second. This accuracy can usually
be used for subsequent occultation data processing. It is worth noting that the single- and
dual-frequency occultation processing use the same FY3E orbit data, so we believe that
the influencing factors of the occultation products in the study are only reflected in the
difference between the single- and the dual-frequency occultation processing.

4. Verification and Accuracy Analysis of Single-Frequency Occultation Processing
4.1. relTEC Correctness Verification

In Section 2, the total relative electron content of the single-frequency ionosphere, rel-
TEC, is measured by the difference between the pseudorange data of frequency B1 observed
from occultation and the carrier-phase observation data. The relTEC in the dual-frequency
observations in this paper is the difference between the B1 obtained from occultation ob-
servation data and the B3 carrier-phase observation data and the correctness of relTEC
is verified based on the relTEC change rate observed by dual-frequency observations.
Because the excess phase Doppler solution (in Section 4.2) in the occultation inversion
reflected in the TEC is the relTEC change rate, the relTEC change rate at different heights
will better reflect the influence of single- and dual-frequency occultation processing on
occultation products. Taking two periods of occultation time as an example, Figure 1 shows
the calculation results of the relTEC change rate of the BDS single- and dual-frequency
at 0–140 km altitudes of occultation tangency points, where the horizontal axis is the rel-
TEC change rate in the unit mM/s, and the vertical axis is the tangent height in the unit
km. Blue and pink dots represent the change rate of single-frequency and dual-frequency
relTEC, respectively. The results show that the relTEC change rate between single- and
dual-frequency occultation processing is in the same order of magnitude, and the two have
good trend consistency. Compared with the pink dots (the dual-frequency relTEC change
rate), the blue point (the single-frequency relTEC change rate) shows a slight divergence,
which means that the relTEC change rate calculated by the measurement difference of
the pseudorange and carrier phase of only one frequency still has residual ionospheric
error, and it is also affected by the pseudorange noise. Even though the introduction of
pseudorange observations also brings some noise, and there is a slight difference between
the two at this stage, the overall trend of relTEC change rate is the same, and the effect is
ideal. The relTEC change rate calculated by the differential solution of the pseudorange
and carrier phase of the single-frequency and calculated by the differential solution of the
carrier phase of the dual-frequency are basically consistent at different altitudes within
0–120 km.

To better quantify the consistency of single-frequency and dual-frequency occultation
processing results, first-order linear fitting should be done on all single-frequency relTEC
change rates calculated by an occultation event, and then the fitted function could be
compared with the function y = x. Figure 2 is the comparison diagram of the relTEC
change rate function of between the BDS single-frequency observations and the BDS dual-
frequency observations under two occultation events with different data volumes. In
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the figure, the horizontal axis is the relTEC change rate calculated by the dual-frequency
carrier-phase observation combination, and the vertical axis is the relTEC change rate
calculated by the single-frequency pseudorange-carrier phase combination. The blue dots
represent the relTEC change rate of each single-frequency observation. The fitting function
of the single-frequency relTEC change rate is represented by a red line, and the function
y = x, representing the consistency of the two, is represented by a blue line. As the figure
shows, the more data there is for an occultation event, the more consistent the results of
the single-frequency occultation processing and the dual-frequency occultation processing.
Moreover, the concentration is higher when the data volume is greater. The two occultation
events show that the blue dots are distributed near the curve of the function y = x, and the
red fitting curve is very close to the curve position and curve trend of the function y = x.
The effect is highly ideal.
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The analysis in Figure 2 shows the consistency of the intensity of the linear relationship
between the single-frequency and dual-frequency occultation processing. It shows that the
two keep pace to a large extent in terms of their increasing or decreasing trends, even if
they do not maintain a proportional relationship; that is, the characteristics of the position
sequence in the occultation data processing are not considered. Therefore, the consistency
of the relTEC results calculated by single-frequency and dual-frequency observations will
be analyzed from the perspective of order.

In statistics, Spearman’s correlation coefficient quantifies the correlation between
independent variable X and dependent variable Y. It relies fully on the data sample ranking
value. If Y tends to increase when X increases, Spearman’s correlation coefficient is positive,
while if Y tends to decrease when X increases, Spearman’s correlation coefficient is negative.
When X and Y are more and more close to a complete monotonic correlation, Spearman’s
correlation coefficient will increase in absolute value, and when X and Y are completely
monotonically correlated, the absolute value of Spearman’s correlation coefficient is 1. The
fully monotonically increasing relationship means that for any two pairs of data (Xi, Yi)
and (Xj, Yj), the results of Xi−Yi and Yi−Yj always share the same plus or minus sign.
Spearman’s correlation coefficient is calculated as

ρ =

1
n ∑n

i=1

((
R(Xi)− R(x)

)
·
(

R(Yi)− R(y)
))

√(
1
n ∑n

i=1

(
R(Xi)− R(x)

)2
)
·
(

1
n ∑n

i=1

(
R(Yi)− R(y)

)2
) (4)

where R(Xi) represents the ith relTEC change rate sequence calculated by the occultation
data at the BDS single-frequency received by FY3E; R(Yi) represents the ith relTEC change
rate sequence calculated by the occultation signal at the dual-frequency of BDS received
by FY3E; and R(x) and R(y) represent the median of single-frequency and dual-frequency
relTEC change rates, respectively.

Figure 3 shows the distribution histogram of Spearman’s correlation coefficient be-
tween single- and dual-frequency occultation processing of an occultation event on 4 Jan-
uary 2022. The dual-frequency carrier phase combination is used to calculate the relTEC
change rate (as an independent variable X), and the single-frequency pseudorange-carrier
phase combination is used to calculate the relTEC change rate (as a dependent variable
Y), with an interval of 0.05. It is shown that the correlation coefficient between the rate
of change of the dual-frequency solution and the rate of change of the single-frequency
solution is greater than 0.95 in most (nearly 90%) of the occultation events of the BDS B1I
signal. Moreover, the proportion of data with Spearman’s correlation coefficient greater
than 0.8 is 96.8%, showing a strong correlation. The Spearman’s correlation coefficient
of all data is greater than 0.7. Therefore, the relTEC change rate results of single- and
dual-frequency observation have strong consistency related to order.

The analysis of the relTEC change rate form above three angles—direct plot the relTEC
change rate with the altitude of 0–120 km (Figure 1), y = x consistency comparison (Figure 2),
Spearman correlation coefficient histogram (Figure 3)—shows that in the occultation obser-
vations of BDS B1I signals, the relTEC calculated by the combination of single-frequency
pseudorange carrier phase shows good consistency with the relTEC calculated by the
dual-frequency carrier phase, and the result of the single-frequency occultation processing
is ideal.

4.2. Reconstruction Excess Phase Doppler Correctness Verification

In Section 2, after the ionospheric relTEC step is calculated by combining the pseudor-
ange and carrier phase of frequency B1, the quasi-carrier-phase observation B∗

3 of frequency
band B3 is then reconstructed with the combination of frequency B1. In the double difference
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method for occultation processing, excess phase Doppler is a very important parameter [35].
The excess phase Doppler ∆f of frequency B1 is calculated by the excess phase delay:

∆f = − 1
λ
·dL̃

dt
(5)

where L̃ indicates the excess phase delay of the single-frequency carrier phase and the
quasi-carrier-phase (or the excess phase delay of the dual-frequency double difference),
and λ indicates the wavelength of frequency B1.
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Figure 3. Spearman correlation coefficient distribution histogram of the relTEC change rate solved by
dual-frequency carrier phase combination and single-frequency pseudorange carrier phase combination.

It is helpful to study the excess phase Doppler in the occultation process. Figure 4
shows the comparison of the excess phase Doppler calculated from the reconstructed quasi-
carrier-phase observation B∗

3 and from actual dual-frequency observation, in which the
horizontal axis is the excess phase Doppler, in Hz, and the vertical axis is the tangent point
height, in km. Pink and blue dots represent the excess phase Doppler of the reconstructed
B∗

3 and the excess phase Doppler of the actual observation B3. Due to the coincidence of
many data dots in Figure 4, it also shows the result of 100× magnification at some positions.
At the beginning of occultation, the tangent point of the ray passes through the ionosphere
and the upper stratosphere, where the medium is relatively thin, the amplitude of the
signal is relatively constant, and the excess phase Doppler is close to 0. As the ray drops
in the atmosphere, the vertical gradient with stronger refractive index will cause the ray
to become more curved, resulting in excess phase Doppler delay changes. The figure also
shows that the overall trend of the excess phase Doppler of reconstructed B∗

3 and that of the
actual observation B3 is the same and highly consistent. No matter how many observations
are conducted in an occultation event, the excess phase reconstructed by a single frequency
is consistent with that of the real observation B3.

Next, the trend change between the reconstructed excess phase and the actual excess
phase are compared, a first-order linear fitting of all the reconstructed excess phase Doppler
of an occultation event is performed, and then the fitted function is compared with the
function y = x. Figure 5 is the comparison of the excess phase Doppler function between BDS
single-frequency observation reconstruction and BDS dual-frequency observation under
two occultation events. The enlarged details are shown in the small box. The horizontal axis
is the excess phase Doppler of real observation B3, and the vertical axis is the excess phase
Doppler of the reconstructed B∗

3 (the blue dots). At the same time, the fitting function of the
single-frequency reconstructed B∗

3 ’s excess phase Doppler is represented by a blue curve,
and the function y = x, which represents the 100% consistency of the two, is represented
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by a red curve. As can be seen in Figure 5, when there is more data of an occultation
event (Figure 5A), the fitting function of the single-frequency reconstructed B∗

3 excess phase
Doppler is closer to the red curve. The two occultation events show that the blue data dots
are distributed near y = x, and the red fitting curve is almost identical to y = x. The result of
B∗

3 excess phase Doppler reconstruction is very promising.
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Similar to the consistency analysis of relTEC change rate in Figure 3, Spearman’s
correlation coefficient is also used as a statistical indicator in the consistency analysis of
reconstructed excess phases Doppler. Figure 6 shows the statistical results of Spearman’s
correlation coefficient histogram of the excess phase Doppler between the reconstructed B∗

3
and the actual B3 observed by FY3E satellite on 4 January 2022, with the histogram interval
of 0.05. The figure shows that the Spearman correlation coefficients of the data are all
above 0.5, and most of the correlation coefficients are concentrated near 1.0, showing strong
correlations. The proportion of Spearman correlation coefficients greater than 0.8 (that is,
those showing extremely strong correlations) exceeds 90%, while those with correlation
coefficients greater than 0.95 make up nearly 78%. Therefore, the correlation between the
reconstructed excess phase Doppler and the actual excess phase Doppler is significant and
highly consistent.
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In addition to the above-mentioned analysis, the relative average deviation and relative
standard deviation of the reconstructed excess phase Doppler are also calculated. Figure 7
shows the histogram of the relative average deviation and relative standard deviation
distribution of the excess phase Doppler between the reconstructed B∗

3 and the actual B3.
The horizontal axis of Figure 7A is the percentage of the deviation between the excess
phase Doppler of the reconstructed B∗

3 and that of B3. The horizontal axis of Figure 7B is
the relative standard deviation percentage of the excess phase Doppler of the reconstructed
B∗

3 and the actual B3. The figure shows that the relative average deviation of the single-
frequency measurement of the reconstructed B∗

3 ’s excess phase Doppler is less than 1%, the
absolute value of most of the relative average deviation is less than 0.2%, and the deviation
amplitude is low. The relative standard deviation is less than 1%, and most deviations are
around 0.5%. Compared with the excess phase Doppler measured by dual-frequency, the
data quality of the excess phase Doppler reconstructed by single frequency is nearly ideal.
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To sum up, the reconstructing excess phase B∗
3 is verified by considering the excess

phase Doppler. By the analysis of four aspects: direct plot the excess phase Doppler
(Figure 4), y = x consistency comparison (Figure 5), Spearman correlation coefficient
histogram (Figure 6), and plot the relative average deviation and relative standard
deviation (Figure 7). All results show that the reconstructed excess phase Doppler and
the dual-frequency excess phase Doppler not only have good consistent frequencies but
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also have strong monotonic correlations. The standard deviation and average deviation
of the reconstructed excess phase Doppler are very low, indicating that the quality of the
reconstructed excess phase Doppler is good.

4.3. Accuracy Analysis of Refractive Index Products

The vertical profile of the refractive index is important in occultation data processing.
In the ionosphere, the refractive index is directly related to the electron density [36,37]. In a
neutral atmosphere, the refractive index is a function of pressure, temperature, and water
vapor density [38,39]. In this section, the accuracy of refractive index products measured
by single-frequency occultation of BDS signal is analyzed. The reference atmospheric
refractive index product is the ERA5 reanalysis field data provided by the European
Centre for Medium-Range Weather Forecasts. Specifically, the pressure, temperature, and
humidity data in ERA5 reanalysis field data are converted into a refractive index, and
then as a function of geopotential height, the consistency between the refractive index
of single-frequency occultation inversion and dual-frequency inversion, as well as the
deviation between the refractive index of ERA5 reanalysis field data and the refractive
index of dual-frequency inversion, are compared through the average deviation index
and the root mean square error index, so as to evaluate the accuracy of single-frequency
inversion products.

The single-/dual-frequency refractive index inversion results of the BDS B1I and B3I
signal from FY3E in the first two weeks of January 2022 are selected. The ERA5 reanalysis
field data product is used as the reference value for accuracy statistics. The results are
shown in Figure 8. Figure 8A compares the single-frequency and dual-frequency refractive
index accuracy in the first week of 2022, and Figure 8B compares the single-frequency
and dual-frequency refractive index accuracy in the second week of 2022. The solid line
represents the average deviation bias between the inversion result and ERA5 data, the
blue solid line represents the percentage deviation of the inversion result of the single-
frequency reconstruction, and the black solid line represents the percentage deviation of
the dual-frequency inversion result. It can be seen that between the geopotential heights of
10 km and 40 km, the average deviation index of the refractive index produced by single-
frequency and dual-frequency inversion is less than 1%, and both are distributed around 0,
with a very high degree of consistency. The average deviation index of the refractive index
near the Earth’s surface is 2–5% for both single-frequency and dual-frequency inversions,
and it quickly converges to 0. The dotted line represents the distribution of root mean
square standard deviation between the inversion results and ERA5 data, the red dotted line
represents the percentage standard deviation of the inversion results of single-frequency
reconstruction, and the blue dotted line represents the percentage standard deviation of the
dual-frequency inversion results. It can be seen from the figure that the single-frequency
and dual-frequency refractive index inversion results are consistent with the standard
deviation root mean square of ERA5 data. From the surface to 25 km, the root mean square
error index is highly consistent. The root mean square error index of the single-frequency
and dual-frequency inversion results of the part with the geopotential height greater than
25 km has some slight deviation, but the deviation does not exceed 1%, and the standard
deviation from ERA5 data is generally less than 6%.

The reason for the slight deviation of the single- and dual-frequency inversion pro-
cessing results may be that it is necessary to assume the symmetry of the large weather
balloon and use the Abel integral transform [40,41] to determine the refractive index from
the bending angle in the inversion of the refractive index. Because the Abel transform
suppresses high-frequency noise to a certain extent [42], the fractional error of the refractive
index is often several times smaller than the corresponding fractional error of bending
angle, so in the troposphere, the residual ionospheric noise (not filtered out below 15 km)
is not expected to have a significant impact on the error in the retrieved refractive index
profile. However, the root mean square error of partial single-frequency and dual-frequency
inversion of refractive index above 25 km may come from the smoothed residual iono-
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spheric noise and the prior climatologic situation near the transition layer, which have a
certain impact. However, on the whole, the refractive index trend of single/dual-frequency
inversion is basically the same, with good consistency.
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To sum up, the standard deviation of the single-frequency inversion of refractive index
is slightly lower than that of dual-frequency inversion over 25 km, but the system deviation
of the single-frequency reconstruction and that of the dual-frequency observation inversion
of the refractive index are basically the same.

Through the correctness verification of the single-frequency relTEC change rate, recon-
struction excess phase Doppler and the accuracy analysis of the refractive index products,
the single-frequency occultation inversion algorithm based on the BDS B1I signal in this
paper is shown to be correct and feasible.

5. Conclusions and Discussion

This paper introduces a method of using the B1 single-frequency carrier phase and
pseudorange observations to calculate the relative ionospheric TEC, then reconstructs
the algorithm of carrier-phase observation B3. The quasi-carrier-phase observation B∗

3 is
reconstructed from the pseudorange and carrier-phase observation of the frequency B1. The
refractive index product is inverted, and the accuracy of the relTEC, the reconstructed excess
phase B∗

3 , and the refractive index product in the single-frequency inversion algorithm
is evaluated. On the whole, the reconstructed excess phase Doppler and dual-frequency
excess phase Doppler not only have good frequency consistency but also have a strong
monotonic correlation. The relative average deviation of the reconstructed excess phase
Doppler is less than 1%, and most deviations are less than 0.2%. The relative standard
deviation is less than 1%, and most standard deviations are less than 0.4%, indicating that
the reconstructed excess phase Doppler quality is good. The refractive index of single-
frequency and dual-frequency inversion shows good consistency, and the deviation from
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ERA5 results is less than 1%. The single- and dual-frequency inversion products have
comparable accuracies, and the inversion results are satisfactory. The accuracies of dual-
and single-frequency inversion products are on the same order of magnitude, with overall
comparable accuracy of products, except for the slight decrease in the standard deviation
accuracy of single-frequency inversion products over 25 km.

The use of dual-frequency receivers for single-difference or non-difference technology
for occultation data processing is maturing. The BDS B1I signal is a high-precision and
robust signal that covers the whole world. This paper studies the correctness of the single-
frequency occultation inversion algorithm and product availability by taking the occultation
observation of the BDS B1I signal by the FY3E satellite as an example. On the one hand,
single-frequency occultation processing has the advantage of simple instruments. On
the other hand, in practical applications, due to cost considerations or other accidents,
the occultation receiver can only rely on single-frequency occultation measurement for
GNSS atmospheric occultation detection. At this time, the ionospheric error cannot be
eliminated by dual-frequency combination, which requires algorithm verification and
accuracy analysis of the single-frequency processing method under current differential
technology based on BDS occultation observations.

Overall, the development of a single-frequency receiver for occultation data processing
using reconstruction methods can reduce satellite-related costs. With the further advancement
of global navigation satellite signals, low-cost and fast atmospheric occultation detection data
processing will provide more support for meteorological business applications.
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