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Abstract: This study evaluated the historical precipitation simulations of 49 global climate models
(GCMs) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) in reproducing annual
and seasonal precipitation climatology, linear trends, and their spatial correlation with global SST
across Africa and the Arabian Peninsula during the period of 1980–2014, using Global Precipitation
Climatology Centre (GPCP) data as a reference. Taylor’s diagram was used to quantify the strengths
and weaknesses of the models in simulating precipitation. The CMIP6 multi-mean ensemble (MME)
and the majority of the GCMs replicated the dominant features of the spatial and temporal variations
reasonably well. The CMIP6 MME outperformed the majority of the individual models. The spatial
variation of the CMIP6 MME closely matched the observation. The results showed that at annual
and seasonal scales, the GPCP and CMIP6 MME reproduced a coherent spatial pattern in terms of
the magnitude of precipitation. The humid region received >300 mm and the arid region received
<50 mm across Africa and the Arabian Peninsula. The models from the same modeling centers
replicated the precipitation levels across different seasons and regions. The CMIP6 MME and the
majority of the individual models overestimate (underestimate) in humid (arid and semi-arid)-climate
zones. The annual and pre-monsoon seasons (i.e., DJFMA) were better replicated in the CMIP6 GCMs
than in the monsoon-precipitation model (MJJASON). The CMIP6 MME (GPCP) showed stronger
wetting (drying) trends in the northern hemisphere. In contrast, a strong drying trend in the CMIP6
MME and a weak wetting trend in the GPCP were shown in the Southern Hemisphere. The CMIP6
MME captures the spatial pattern of linear trends better than individual models across different
climate zones and regions. The relationship between precipitation and sea-surface temperature (SST)
exhibited a high spatial correlation (−0.80 and 0.80) with large variability across different regions and
climate zones. The GPCP (CMIP6 MME) exhibited a heterogenous (homogeneous) spatial pattern,
with higher correlation coefficients recorded in the CMIP6 MME than in the GPCP in all cases.
Individual models from the same modeling centers showed spatial homogeneity in correlation values.
The differences exhibited by the individual GCMs highlight the significance of each model’s unique
dynamics and physics; however, model selection should be considered for specific applications.

Keywords: Africa; Arabian Peninsula; GPCP; CMIP6; precipitation; historical simulation

1. Introduction

Under a warming climate, changes in precipitation (PREC) distribution and timing
pose significant challenges to the survival of humans, flora, and fauna [1]. For this reason,
accurate knowledge of the amount and timing is critically important, particularly across
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regional water basins experiencing water scarcity [2]. Thus, measuring and monitoring
this essential climate variable is of significant interest for many sectors of our society
(agriculture, drinking-water supply, energy production, eco-hydrology, etc.) [3].

Traditionally, the use of rain gauges is a direct and the most accurate form of measuring
PREC, but consistent records are lacking in many global regions [4]. The availability of
satellites covering nearly all of the Earth’s land surface makes it easier to estimate PREC
indirectly [4].

Recently, precipitation estimates from satellite-based systems have become alternatives
rather than substitutes. The availability of data-driven models makes it possible to merge
different data sources or inputs (e.g., satellite measurement and in situ observations) to
generate high-resolution products at global coverage and longer time scales. One typical
product is the Global Precipitation Climatology Project (GPCP). Readers are directed
to [5] for details. Furthermore, another indirect method is simulating PREC from either
model reanalysis or global climate model (GCM) output archived in the Coupled Model
Intercomparison Project Phase [6,7]. The latter features significant contributions from many
climate-modeling centers [7]. The latest version to have been released is the CMIP Phase 6
(CMIP6), and over 50 models have been released [7].

Historical GCM simulations serve as benchmarks of model performance, and they
are usually validated against observed data to determine their reliability in reproducing
climate variables of interest (e.g., PREC) [8]. Since the release of CMIP6, many studies have
comprehensively evaluated precipitation across different regions of the globe [9].

These studies have reported that the simulated precipitation from CMIP6 performs
comparably to observed data or even better than its predecessors [7,8]. Regional variability
has become a special focus of the scientific community. The African continent is of particular
interest due to its unique size, location, and complex and diverse climate in the Northern
and Southern Hemispheres.

In the context of the African continent, previous studies have conducted sub-regional
evaluations to judge the reliability of the CMIP6 in reproducing historical-precipitation
simulations. For example, Amalzouri et al. [10] evaluated 27 CMIP6 GCMs and ensembles
using the Climatic Research Unit (CRU) as observed data over Africa and found that the
CMIP6 model ensemble reasonably replicated the historical precipitation, despite consid-
erable regional differences across the continent [10]. Lim Kim Sian et al. [11] compared
the mean precipitation from 23 GCMs using CMIP6 models with Global Precipitation
Climatology Centre (GPCC) observations in the southern African subcontinent. Babaous-
mail et al. [12] compared the mean precipitation from 15 CMIP6 models using CRU and
GPCC observations in the Northern Africa region. Faye et al. [13] compared extreme
precipitation for an ensemble mean of 27 CMIP6 models with GPCP and Tropical Rainfall
Measuring Mission Multi-satellite Precipitation Analysis 3B42 (TRMM) from 1997–2014 in
West Africa. In addition, Ajibola et al. [14] compared the mean precipitation from seven (7)
High-Resolution Model Intercomparison Project (HighResMIP) simulations of CMIP6 with
CRU, GPCC, and University of Delaware (UDEL) v5.01 during 1950–2014 in West Africa.
Akinsanola et al. [15] compared the mean precipitation from 16 CMIP6 models with GPCP
and TRMM observations in East Africa. Furthermore, Ayugi et al. [16] analyzed projected
precipitation extremes over Eastern Africa using 15 CMIP6 models. In summary, all these
studies generally indicated that the CMIP6 model ensemble can reproduce historical sim-
ulations of mean or extreme precipitation, despite the varied performance among these
studies, which may be attributed to the number of models used. It is still inconclusive
whether the models used offer a constrained understanding of the precipitation variability
across Africa, since the number of CMIP6 models used in previous studies in the region is
less than 30. However, a comprehensive study on mean-precipitation-based large CMIP6
models (i.e., 49 models) that do not examine the seasonality, trends, and large-scale impacts
in the region to provide additional information on the spatiotemporal variability of simu-
lated PREC is lacking. In particular, it is unknown how the CMIP6 ensemble of 49 models
would explain the seasonality, the magnitude and direction of trends, and the changes to
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mean precipitation due to sea-surface temperatures (SSTs) in a given region. To address this
knowledge gap, we compared the mean precipitation in historical simulations of 49 GCMs
of CMIP6 and the MME in reproducing annual and seasonal precipitation climatology,
linear trends, and their spatial correlation with global SSTs across Africa and the Arabian
Peninsula during the period 1of 980–2014, using GPCP as reference data.

First, 49 CMIP6 models and the MME were evaluated to determine their ability to
reproduce mean precipitation with GPCP observations from 1980 to 2014. This study
argues that extending the CMIP6 model’s ensemble size to >30 can help to understand the
characteristics of mean precipitation over Africa. Furthermore, the long-term trends are
considered from the African perspective, as the continent’s agricultural production system
wholly or partially depends on the correct amount and timing of PREC. In addition, recent
studies have shown a strong association between precipitation variability and large-scale
circulations [17]. The unique geographic location of Africa, which meets both the Indian
and Atlantic Oceans, means these teleconnections may significantly alter the redistribution
of mean precipitation over Africa [17]. The long-term trends in the annual and seasonal
variation of mean rainfall with teleconnections are investigated.

Lastly, due to changing climatic and socio-economic scenarios, water demand is
increasing due to increased population and agricultural requirements. However, the
African region is still significantly under-represented in terms of research output compared
to other global regions [18–21]. The latest IPCC-assessment reports (AR6) advocated more
impact-vulnerability assessments. This study aims to contribute to the body of research
on the region’s mean precipitation. Specifically, we (1) statistically assessed the strength
of 49 CMIP6 GCMs and their ensemble (MME) relative to satellite-based observation,
(2) analyzed the precipitation climatology at annual and seasonal scales, (3) investigated
the linear trends of the precipitation at annual and seasonal scales, and (4) determined the
relationship between precipitation and global sea-surface temperature from 1980 to 2014.

The remainder of the paper is organized as follows: Section 2 describes the satellite
datasets, CMIP6 models and the methods. Section 3 describes the results and presents the
discussion. A summary and conclusions are presented in Section 4.

2. Materials and Methods
2.1. Study Area

The African continent covers a total land mass of approximately >30 million km2. It
extends from 14◦00′ W, 52◦00′ E, and 32◦00′ N to 35◦00′ S, straddling the equator (Figure 1).
The continent is divided into sub-regions, namely, West Africa (WAF), East Africa (EAF),
North Africa (NAF), Central Africa (CEF), and Southern Africa (SAF) [22]; these terms
are widely used [10,23–25]. The continent has complex topographic features that vary
significantly, including mountainous regions, such as the Ethiopian Highlands, Kenyan
Highlands, Cameroonian Highlands, and the Atlas Mountains in North Africa, regions
interspersed with lowlands, and hilly areas with river valleys interleaved across the conti-
nent. The highest elevation, which is >5000 m, is Mount Kilimanjaro, in Tanzania (Figure 1).
The continent has a large number of water bodies, such as Lake Victoria, the Nile River,
etc., and the Congo Basin, which helps to regulate the climate of the region. The monsoon
season features much precipitation, while the dry season’s precipitation is related to local
causes. Generally, the mean precipitation (temperature) across the entire continent is <350
mm year−1 (15 ◦C to 27 ◦C) [10]. The WAF and EAF are dominated by the monsoon
seasons with a pattern of onset to cessation of May–June–July–August–September–October–
November (MJJASON) in the Northern Hemisphere (NH) [15,25,26]. The CAF has a
tri-modal rainfall pattern [10]. The SAF and NAF have unimodal rainfall patterns and
follow the December–January–February–March–April (DJFMA) monsoon pattern. The
Arabian Peninsula (ARP)’s climate is largely influenced by the Indian summer monsoon
in the South and the Mediterranean synoptic scale systems in the North [27,28]. The four
seasons in the ARP are the northeast monsoon in the winter (December–January–February–
March, DJFM), the spring transition (April–May), the southwest monsoon (June–July–
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August-September, JJAS), all of which are related to convective PREC, and the autumn
(October–November) [28].
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Figure 1. Digital elevation model (DEM) of the African continent and Arabian Peninsula.

2.2. Data
2.2.1. Gridded Satellite Precipitation Datasets

We used the Global Precipitation Climatology Project, version 3.2 (GPCPv3.2), pro-
vided by the NASA website at www.earthdata.nasa.gov/esds accessed on 10 May 2022, as
the reference observation-based dataset. The GPCP dataset covers the African continent
and the Arabian Peninsula (ARP) for performance purposes. The GPCPv3.2 was developed
by the World Climate Research Program (WCRP)/Global Water Cycle and Energy Exper-
iment (GEWEX). The GPCP v3.2 has a spatial resolution of 0.5◦ × 0.5◦, with a timespan
ranging from January 1979 until the present. The GPCP v3.2 combines global satellite
products and in situ observations [29]. The GPCP has been widely used to evaluate GCMs
across different climate regions [29].

www.earthdata.nasa.gov/esds
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2.2.2. CMIP6 Models

In this study, we used the monthly precipitation output of 49 CMIP6 historical runs [7],
obtained from https://esgf-node.llnl.gov/search/cmip6 accessed on 22 January 2023, for
the period 1950–2014. The selected GCMs from CMIP6 were based on their availability
under r1i1p1f1 initial conditions, and the quality of their performance in simulating pre-
cipitation in Africa in previous studies [3,10]. We regridded all models to the observation
datasets of 0.5◦ × 0.5◦ using bilinear interpolation. The study computed the multi-model
ensemble mean (MME) of the 49 CMIP6 runs (Equation (1)). The motivation for using
MME was based on the argument that MME is superior to individual models [30].

2.2.3. Global Sea-Surface Temperature

We obtained the observed monthly mean SST dataset from the GHRSST Global Data
Assembly Center (GDAC) at the Jet Propulsion Laboratory (JPL) Physical Oceanography
Distributed Active Archive Center (PO.DAAC) with a horizontal resolution of 1.0◦ × 1.0◦.

It was downloaded from the website http://ghrsst.jpl.nasa.gov/GHRSST_product_
table.html (accessed on 22 January 2023).

All the datasets were converted into a spatial resolution of 0.5◦ × 0.5◦ using a bilinear
interpolation [31,32]. Table 1 summarizes the details of the models.

Table 1. The information on the CMIP6 Global Climate Models (GCM) used in this study.

No. Model Name Institution Resolution

1 ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research
Organisation (CSIRO), Australia 192 × 145

2 ACCESS-CM2

Commonwealth Scientific and Industrial Research
Organisation (CSIRO) and Australian Research Council

Centre of Excellence for Climate System Science
(ACCESS), Australia

192 × 144

3 AWI-CM-1-1-MR Alfred Wegener Institute Climate Model 384 × 192

4 AWI-ESM-1-1-LR Alfred Wegener Institute Climate Model 192 × 96

5 BCC-CSM2-MR Beijing Climate Center, China Meteorological
Administration, China 320 × 160

6 BCC-ESM1 Beijing Climate Center, China Meteorological
Administration, China 128 × 64

7 CAMS-CSM1-0 Climate Academy of Meteorological Sciences-Climate
Simulation Model 100×100

8 CanESM5 Canadian Centre for Climate Modelling and Analysis
(CCCMA), Canada 128 × 64

9 CanESM5-CanOE Canadian Centre for Climate Modelling and Analysis
(CCCMA), Canada 100×100

10 CESM2 National Centre for Atmospheric Research (NCAR), USA 288 × 192

11 CESM2-FV2 National Centre for Atmospheric Research (NCAR), USA 144 × 96

12 CESM2-WACCM National Centre for Atmospheric Research (NCAR), USA 288 × 192

13 CESM2-WACCM-FV2 National Centre for Atmospheric Research (NCAR), USA 144 × 96

14 CMCC-CM2-HR4 Euro-Mediterranean Centre on Climate Change, Italy 288 × 192

15 CMCC-CM2-SR5 Euro-Mediterranean Centre on Climate Change, Italy 288 × 192

16 CMCC-ESM2 Euro-Mediterranean Centre on Climate Change, Italy 288 × 192

17 CNRM-CM6-1
Center National de Recherches Météorologiques– Center

Européen de Recherche et de Formation Avancée en Calcul
Scientifique, France.

256 × 128

https://esgf-node.llnl.gov/search/cmip6
http://ghrsst.jpl.nasa.gov/GHRSST_product_table.html
http://ghrsst.jpl.nasa.gov/GHRSST_product_table.html
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Table 1. Cont.

No. Model Name Institution Resolution

18 CNRM-CM6-1-HR
Center National de Recherches Météorologiques– Center

Européen de Recherche et de Formation Avancée en Calcul
Scientifique, France.

720 × 360

19 CNRM-ESM2-1
Center National de Recherches Météorologiques– Center

Européen de Recherche et de Formation Avancée en Calcul
Scientifique, France.

256 × 128

20 E3SM-1-0 Lawrence Livermore National Laboratory (LLNL), USA 360 × 180

21 E3SM-1-1 E3SM Project 360 × 180

22 E3SM-1-1-ECA 360 × 180 360 × 180

23 EC-Earth3-AerChem EC-EARTH consortium, The Netherlands/Ireland 512 × 256

24 EC-Earth-CC EC-EARTH consortium, The Netherlands/Ireland 512 × 256

25 EC-Earth3-Veg-LR EC-EARTH consortium, The Netherlands/Ireland 512 × 256

26 FGOALS-f3-L Chinese Academy of Sciences, China 288 180

27 FGOALS-g3 Chinese Academy of Sciences, China 180 × 80

28 FIO-ESM-2-0 First Institute of Oceanography Earth System Model Earth
System Models 288 × 180

29 GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory, USA 288 × 180

30 GISS-E2-1-H NASA Goddard Institute for Space Studies, USA 144 × 90

31 HadGEM3-GC31-LL Met Office Hadley Centre, United Kingdom 192 × 144

32 HadGEM3-GC31-MM Met Office Hadley Centre, United Kingdom 432 × 324

33 INM-CM4-8
Institute for Numerical Mathematics, Russia

180 × 120

34 INM-CM5-0 180 × 120

35 IPSL-CM5A2-INCA
Institut Pierre-Simon Laplace, France

180 × 120

36 IPSL-CM6A-LR 144 × 143

37 KACE-1-0-G National Institute for Meteorological Sciences/Korean
Meteorological Administration (NIMS-KMA) 192 × 144

38 MCM-UA-1-0 University of Arizona (UA), USA 96 × 80

39 MICRO6 Japan Agency for Marine Earth Science and Technology
(JAMSTEC), The University of Tokyo, Japan 256 × 128

40 MICRO-ES2L The University of Tokyo, Japan 128 × 64

41 MPI-ESM1-2-HR
Max Planck Institute for Meteorology, Germany

384 × 192

42 MPI-ESM1-2-LR 192 × 96

43 MRI-ESM2-0 Meteorological Research Institute, Japan 320 × 160

44 NESM3 Nanjing University of Information Science and
Technology, China 192 × 96

45 NorCPM1 Norwegian Climate Center, Norway 144 × 96

46 NorESM2-LM Norwegian Climate Center, Norway 144 × 96

47 SAM0-UNICON Seoul National University, South Korea 288 × 192

48 TaiESM1 Research Center for Environmental Changes, Taipei, Taiwan 192 × 96

49 UKESM1-0-LL Met Office Hadley Centre, United Kingdom 192 × 144

2.3. Methods

We aggregated the monthly datasets into annual and seasonal values using Climate
Data Operator (CDO, version 1.6.4). The climatology was computed by spatial and temporal
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averaging of the long-term dataset from 1980 to 2014 and quantified over the African
continent and Arabian Peninsula. The mean bias of spatial distribution was reported for
satellite-based precipitation data (GPCP) and the CMIP6 GCMs.

The GCM multi-model mean (MME) was computed by averaging forty-nine (49)
individual GCMs (Table 1) based on Equation (1)

MME =
1
n

n

∑
i=1

GCMsi (1)

To quantify the agreement between observations and model simulations, Taylor di-
agrams [33] were used to show the ability of different GCMs to simulate precipitation
compared to observation at annual and seasonal scales. The Taylor diagram was computed
based on the following metrics: the Pearson correlation coefficients, standard deviations of
the error, and root-mean-square errors (RMSD).

The climatological precipitation patterns were computed to compare the consistency
between the GPCP and the GCM simulations. We averaged the monthly values at each
grid point for spatial climatological mean into annual and seasonal.

This study used two seasons (i.e., monsoon and pre-monsoon seasons). These were the
West African monsoon season (i.e., May–June–July–August–September–October–November
(MJJASON), representing the wettest season, and December–January–February–March–
April (JFMA), representing the driest season in the Northern Hemisphere (NH). Conversely,
DJFMA represents the wettest season in the Southern Hemisphere (SH), while MJJASON
represents the driest. These seasonal differences largely follow the continent’s agricultural
calendar, as agriculture is rain-based. The precipitations in the dry seasons in both hemi-
spheres are related to the local rainfall during this season. Previous studies in the region
applied this seasonal analysis [34,35].

We averaged monthly values into annual and seasonal time series for GPCP and GCM
simulations to compute the annual cycle. The mean annual precipitation anomalies were
calculated as the deviations (using the Z-score method (Equation (2))) from the climatology
from 1980 to 2014.

Zstd =
Zi − Z

σ
(2)

where Zstd denotes standardized Z, Z is the average, and σ is the standard deviation of the
variable Z.

To understand the wetness and dryness trends over the period, we computed the
significance of the linear trends to compare the consistency between the CMIP6 MME,
the GCMs, and the GPCP using the Man Kendal test [36,37] and the Sen slope test [38]
at 95% confidence intervals. The benefits of using these non-parametric tests are that
they are unaffected by outliers and that they are widely recommended by the World
Meteorological Organization as standard tests for trend analysis [39]. They are widely used
for hydro-meteorological studies across Africa [24,34,40].

Furthermore, we explored the relationship between precipitation and SST to examine
how these datasets capture their interrelationships. These relationship are examined in
both the GPCP and CMIP6 MME datasets. Several studies examined such relationships in
the past [17,41].

3. Results and Discussion
3.1. Performance Evaluation of GPCP and CMIP6 Models

Figure 2 presents the Taylor diagram for the average precipitation for the GPCP and
the simulated GCMs. The correlation (r), normalized root-mean-square difference (RMSD),
and standard deviation values for GPCP/CMIP6 MME/49 GCMs are presented. As shown
by the high value of r, low RMSD (SD) values are desirable to indicate improvements in
the GCMs’ -simulation capability relative to GPCP [33].
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Figure 2a presents the Taylor diagram for the mean annual precipitation for the GPCP
and CMIP6 MME and the 49 selected GCMs. The GPCP r/RMSD/SD were 1/0 mm/1.46 mm.
We observed an overlap in the values of a few of the models. The following models
showed dispersion lower than the observed value (GPCP = 1.46 mm): CAMS-CSM1 (1.10),
FGOALS-f3-L (1.02), GISS-E2-1-H (1.17), MICRO6 (1.17), CNRM-CM6-1-HR (1.28), AWI-
ESM-1—HR (1.30), MPI-ESM1-2-HR (1.30), NorESM2-MM (1.33), CNRM-ESM2-1 (1.34),
MPI-ESM1-2-LR (1.35), HadGEM3-GC31-MM (1.34), AWWI-CM-1-1-LR (1.38), CNRM-
CM6-1 (1.36), UKESM1-0-LL (1.40), HadGEM3-GC31-LL (1.42), and SAMO-UNICON (1.43).
The study recognized that four GCMs showed a degree of scattering that was slightly
higher than the GPCP but lower than the CMIP6 MME, Earth3-Aer (1.47), EC-Earth-CC
(1.49), EC-Earth3-Veg-LR (1.5), and INM-CM4-8 (1.50), while ACCESS-CM2 showed an
identical SD to CMIP6 MME (1.53). The remainder, in Table S2, showed higher SD values
than the CMIP6 MME.

The Taylor-diagram results in the MJJASON (Figure 2b) and December (Figure 2c)
showed higher r, RMSD, and SD values. The GPCP (CMIP6 MME) r/RMSD/SDs were
1/0 mm/1.75 mm (0.96/1.34/1.66) in the MJJASON. The E3SM-1-1 (1.75) exhibited an iden-
tical SD to the GPCP. The following five models showed SD values slightly closer to those
of the GPCP but higher than those of the CMIP MME, in ascending order: CMCC-ESM2
(1.74), SAMO-UNICON (1.71), FIO-ESM-2-0 (1.69), TaiESM1 (1.69), and EC-Earth3-CC
(1.67) (Figure 2b). The remaining models showed SD values that were lower (higher) than
the CMIP6 MME in the MJJASON; these are shown in Table S2 and Table S3, respectively.

In December, the GPCP (CMIP6 MME) exhibited the following r/RMSD/SD values:
1/0/2.01 (0.74/1.58/2.3). Few models showed SD values that were lower than those of the
GPCP: MPI-ESM1-2-HR (2.01), NorESM2-MM (1.99), CNRM-CM6-1 (1.72), CNRM-ESM2-1
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(1.72), HadGEM3-GC31-MM (1.72), CNRM-CM6-1-HR (1.73), CAMS-CSM1 (1.69), MICRO6
(1.63), FGOALS-f3-L (1.17), GISS-E2-1-H (1.63). The remaining 40 models showed greater
scattering (SD) than the GPCP (Figure 2c).

In Figure 2d, comparable to the r/RMSD/SD of the GPCP, the MME (r/RMSD/SD)
values were 1/0/1.92, compared with the 0.64/1.63/1.90 in the JFMA. The TaiESM1 (1.92)
exhibited better SDs than the CMIP6 MME (1.90) relative to the GPCP (1.92). About
31 models showed high r and larger RMSD and SD values, respectively (Figure 2c). Details
are provided in Table S2-JFMA. We observed that 17 models showed slightly lower SD
values relative to the CMIP MME in JFMA, as shown in Figure 2c (further details are shown
in Table S3-JFMA).

It is interesting to note that the degree of scattering among some of the models’ re-
sults differed, with the exception of overlaps relative to the observation (Figure 2). In
general, the MME and individual models produced decent simulations of the annual and
seasonal mean precipitation but with differences in the correlation coefficient, RMSD, and
deviations. At the annual scale, only UKESM1-0-0-LL, MPI-ESM1-2-HR, MPI-ESM1-2-LR,
HadGEM3-GC31-LL, with r/RMSD/SD values closer to those of the GPCP, produced better
performances than the MME relative to the GPCP in every respect (i.e., r/RMSD/SD).
However, MPI-ESM1-2-HR, MPI-ESM1-2-LR, and AWI-ESM-1-1-HR produced better per-
formances during the WAM season (i.e., MJJASON) than the MME relative to the GPCP in
every respect (i.e., r/RMSD/SD). In the post-monsoon season of the JFMA, the normalized
SD of the TaiESM (1.92) was similar to that of the GPCP, while that of the MME (1.90) was
lower. However, the r/RMSD was better in the MME (0.64/1.63) than in the TaiESM1
(0.62/1.68) in the JFMA. The GCM MME showed superior performance, much better than
any individual model in the boreal winter month of December. This study suggests that
the MME showed significantly superior performance to most of the individual models
in most cases. These results are consistent with those of previous studies on the African
continent [10,13,35].

Interestingly, many of the individual models from the modeling centers displayed
comparable performances, despite their slight similarities (differences) in replicating the
mean precipitation in terms of r/RMSD/SD values. For example, the models with similari-
ties in their performance (i.e., r/RMSD/SD) developed by the US Department of Energy
(DOE) (E3SM-1-0, E3SM-1-1, E3SM-1-ECA) and their related modeling groups tended to
share common modeling physics, and showed performances that were consistent with
previous studies [42].

Other developers, CNRM-CERFACS (CNRM-CM6-1, CNRM-CM6-1-HR, CNRM-
ESM2-1) [43,44] and the U.K. Met Office (HadGEM3-GC31-MM, HadGEM3-GC31-LL,
UKESM1-0-LL [45], shared model physics. However, more specific differences arose in the
use of different CMIP6 forcing data, which to tend to influence GCM-model performance.

By contrast, other individual model variants exhibited differences in model perfor-
mance related to their levels of uncertainty, and this result was consistent with the liter-
ature [46–48]. The GCMs produced decent simulations of seasonal mean precipitation
despite disagreement in the models RMSD and SD. The CMIP6 MME performance was
better than that of most of the individual models in simulating annual and seasonal mean
precipitation, which, again, was consistent with previous studies [6,7,35,49,50].

3.2. Climatology of GPCP and CMIP6 Models
3.2.1. Spatial Variations

To investigate the performance of the GCM models in simulating the mean precip-
itation, the spatial distribution of CMIP6 MME was compared with observation (GPCP)
during the period of 1980–2014 (Figure 3). The annual variations in GPCP (Figure 3(a1)
and CMIP6 MME (Figure 3(b1)) and the seasonal variations in GPCP (Figure 3(a2–a4)) and
CMIP6 MME (Figure 3(b2–b4)) were computed over the African continent and the ARP to
compare the agreement in spatial distribution. Compared with the GPCP, the CMIP6 MME
reproduced coherent spatial patterns in many parts of Africa and the Arabian Peninsula,
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despite some differences in the magnitude of precipitation. A striking difference over the
West African coast (15◦ W, 5–10◦ N) extending along the Guinean Coast reproduced spa-
tially heterogeneous distribution and magnitude of precipitation. Our result is consistent
with [10], in which the authors reported regional differences in simulated mean precipi-
tation in GCM-ensemble mean and observations. In this study, for example, the CMIP6
MME’s failure to replicate the spatial pattern over the periphery of the Guinean coast
(15◦ W, 5–10◦ N) compared to GPCP was not surprising, since previous studies reported
the drawbacks of GCMs in simulating tropical precipitation, especially since convective
and large circulations are integral mechanisms linked to the features of the West African
monsoon (WAM) [35,51–53].

The spatial patterns of the Sahara Desert (15–30◦ N) and the Arabian Peninsula,
in the Northern Hemisphere (NH), were presented well. However, the magnitude was
mainly limited to <50 mm/year, which was consistent with those of drier regions with
Mediterranean climates [12,54–56]. Additionally, the precipitation over the Sahelian belt
and the whole East African (26–52◦ E, 10◦ S–5◦ N) region was relatively comparable with
that of the GPCP (Figure 3), in line with previous studies [15]. The GPCP and CMIP6
MME captured the higher mean PREC amounts in the near-equatorial NH and Southern
Hemisphere (SH). For example, the Central African tropical rainforest regions recorded the
highest PREC values.

Figure 3(a2–a4,b2–b4) show the spatial distribution in terms of magnitude and pattern
based on long-term mean precipitation from the 34-year historical period (1980–2014).
Overall, the CMIP6 MME reproduced the precipitation amount and spatial pattern better
than observation (i.e., GPCP). Figure 3(a2,b2) shows a spatial pattern for the MJJASON
seasons, which are influenced by the West African monsoon (WAM), which develops in
boreal spring and summer around the 5–10◦ N from May to August due to the seasonal
migration of ITCZ at its northmost position in the JJA, at 10◦ N [57,58]. The CMIP6 MME
(Figure 3(a3,b3)) had a PREC amount along the Guinean Coast and southern Sahel that
was higher by about >250 mm than that of the GPCP, which was consistent with [13,26].
The reduced amount towards locations in the Western equator and the Congo Basin in the
MJJASON is attributable to seasonal withdrawal in boreal autumn [35].

The intra-seasonal-precipitation distribution based on long-term mean precipitation
from the 34-year historical period (1980–2014) for December is shown in Figure 3(a3,b3).
In the boreal winter month of December, high precipitation amounts started at 5◦ S in
the Central African tropical rainforest regions and stretched from the Kalahari Desert
(25–30◦ S) towards the south-eastern coast of the Mozambique area and Madagascar, with
precipitation >300 mm in December (Figure 3(a3,b3)).

In the boreal JFMA seasons, high amounts were found in the SH between 10◦ S and
30◦ S, with high magnitude within the Kalahari Desert (25–30◦ S) extending towards the
Mozambique area and Madagascar (Figure 3(a4,b4)). This was related to the ITCZ at its
southmost position, at 15◦ N, which the satellite and CMIP model’s features represented
reasonably well—except for a limited amount in areas of southwestern Southern Africa
(SAF). The relatively high amounts of precipitation over 25–30◦ S compared with the
precipitation in the JFMA seasons was consistent with [11].

The EAF (26–52◦ E, 10◦ S–5◦ N) region presented the same mean precipitation pattern
at the annual scale (Figure 3(a1,b1)). However, more variations in precipitation regimes
were contrasted between the MJJASON in the EAF and the JFMA in the EAF, respectively
(Figure 3(a2,a3,b2,b3)). In the EAF, the long rains are in boreal spring, and the short
rains are in boreal autumn [59,60]. High spatial variations in precipitation amounts with
EAF precipitation were limited to the Ethiopian and Kenyan highlands [61] in the annual,
MJJASON, and JFMA periods, respectively. It should be noted that the high spatiotemporal
distribution of the precipitation in the EAF region was related to the complex climatological
cycle of the East African monsoon system (EAMS) [13,15].

To further explore the climatology of Africa and the Arabian Peninsula, we computed
the interannual variations in the 49 GCM models. As shown by the interannual (Figure 4)
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and seasonal (Figures S1–S3) variations, the majority of the individual CMIP6 matched the
observed GPCP. The agreement was more evident in the replications of the simulated PREC
shown in Figure 4, in Dec (Figure S2), and in the JFMA (Figure S3) than in the MJJASON
(Figure S1).

Figure 3. Spatial distribution of multi-year mean precipitation in GPCP (a1–a4), and MME (b1–b4)
for annual (a1,b1), JFMA (a2,b2), MJJASON (a3,b3), and December (a4,b4) periods during 1980–2014.
The unit is mm year−1.
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The spatial patterns were consistent with the climatology of the arid and semi-arid
areas, and this was more pronounced in the arid climates at 15–30◦ N, 10◦ S, and 30◦ S, as
well as along the 26–52◦ E, 10◦ S–5◦ N regions. In particular, CMIP6 models from the same
modeling group tend to show similar spatial patterns, consistent with [43–45].

Furthermore, some of the individual model variants used in this study, such as CAMs-
CSM1, FIO-ESM-2-0, GFDL-ESM4, GISS-E2-1-H, KACCE-1-0-G, MCM-UA-1-0, NESM2,
SAMP-UNICON, and TaiESM1, showed similar spatial patterns to the observed GPCP,
which might have been related to the improved model physics in the CMIP6 architecture,
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consistent with [6]. These results indicate that the ability of many of the individual models
to reproduce a realistic precipitation climatology and variability during the historical
period is consistent with that in previous studies of the whole African region [10], West
Africa [13,14], EAF [15], SAF region [11], and Northern Africa [12]. This helps to build
confidence in CMIP6 PREC projection studies.

The seasonal cycle showed that the majority of the individual models reproduced the
simulated precipitation satisfactorily in the MJJASON (Figure S1), Dec (Figure S2), and the
JFMA (Figure S3), respectively. Most of the models in the eastern part of the Sahelian belt
showed relatively high precipitation, extending to the Ethiopian Highlands. In particular,
the individual models that matched the spatial variations were related to the models that
tended to share most of the model physics [6,7]. The similarities were more pronounced in
the arid- and semi-arid-climate zones in the NAF and SAF.

The performance of the older modeling centers tended to replicate the PREC suffi-
ciently well in all cases in all the climate regions across Africa (i.e., annual and seasonal)
compared with observations compared with the new modeling centers. For example, all the
models reproduced the precipitation in the arid climatic regions across Africa and the ARP.
However, the monsoon PREC (i.e., MJJASON) in humid regions with bimodal annual cycles
performed poorly in replicating the PREC. The older centers that replicated the spatial pat-
tern of the monsoon PREC to similar degrees were as follows: E3SM-Project, USA (E3SM-
1-0, E3SM-1-1, E3SM-1-ECA), IPSL, France (IPSL-CM6A-LR, IPSL-CM6A-INCA), MPI,
Germany (MPI-ESM1-2-HR, MPI-ESM1-2-LR, MPI-ESM2-0), CNRM-CERFACS (CNRM-
CM6-1, CNRM-CM6-1-HR, CNRM-ESM2-1), the U.K. Met Office (HadGEM3-GC31-MM,
HadGEM3-GC31-LL, UKESM1-0-LL, BCC, China (BCC-CSM2, BCC-ESM1), EC-EARTH,
Europe (EC-Earth3-Veg-LR, EC-Earth-CCC, EC-Earth3-AerChem), CSIRO, CCSR, Japan
(MICRO6, MICRO-E32L), CSRIO (ACCESS-CM2, ACCESS-ESM1), and NCAR, US (ESM2-
FV2, CESM2-WACCM, CESM2-WACCM). This was related to the sharing of significant
model physics and configurations between these centers. Stand-alone centers that devel-
oped individual model variants replicated the monsoon precipitation relative to observation
(TaiESM1, SAMO-UNICON, NESM3, MCM-UA-1-0, and KACE-1-0-G) in the humid equa-
torial regions. In other regions, Konda et al. [19] found that similar individual models based
on the seasonal mean performed well in replicating rainfall in India (AWI-ESM-1-1-LR,
BCC-CSM2-MR, BCC-ESM1, CNRM-CM6-1, CNRM-ESM2-1, GFDL-CM4, INM-CM5-0,
MIROC-ES2L, MIROC6, and TaiESM1). However, a few exceptions occurred, in which the
models could not reproduce the WAM in the MJJASON, as shown along the southwestern
coast stretching to Cameroon and the Nigerian Coast of the WAF (Figure S1). Similar results
in the EAMS in Dec (Figure S2) and the JFMA (Figure S3) and a few cases in the JFMA
(Figure S3) in humid climates in the equatorial region were observed, with a precipitation
variability between 0◦ and 5◦ W. Other modeling centers, such as the Alfred Wegener
Institute (AWI-CM-1-LR, AWI-ESM-1-HR), NCC, Norway (NorCMP1, NorESM2-LM),
EURO Mediterranean Centre, Italy (CMCC-CM2-HR4, CMCC-CM2-SR5, CMCC-ESM2),
Institute for Numerical Mathematics, Russia (INM-CM4-8, INM-CM5-0), and CASS, China
(FGOALS-f3-L, FGOALS-g3) underestimated the monsoon-season (MJJASON) precipita-
tion in equatorial regions. This is unsurprising and is related to the drawbacks in GCMs’
ability to simulate seasonal precipitation. In turn this may be related to the difficulty in
parameterizing different versions of large-scale and convective precipitation [7]. Past stud-
ies reported GCMs’ inability to simulate the precipitation seasonality in terms of spatial
patterns and magnitude over Central Africa (i.e., 5◦ S) [62–64], East Africa [59,65], and
sub-Saharan Africa [66]. Overall, CMIP6 MME simulates seasonal precipitation better than
individual models. Our results were consistent with previous studies in other regions of
the world. For example, using 27 GCMs of the CMIP6, Pimonsree et al. [18] evaluated
the performance of the CMIP6 in replicating GPCC rainfall in South-East Asia (SEA). The
authors found that the CMIP6 models simulated the annual mean rainfall climatology. A
similar result was revealed by Iqbal et al. [67], but with 35 CMIP6s replicating APHRODITE
rainfall in mainland South-East Asia (MSEA) for the period of 1975–2014. Furthermore,
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Ding et al. [20] evaluated the performance of 12 GCMs of the CMIP6 against CRU data in
the Yellow River Basin. They found that the IPSL-CM6A-LR and EC-Earth3-CC models
had excellent performances in replicating precipitation in the study area.

3.2.2. Temporal Variations

Here, we explore the annual mean cycle of the observed GPCP. Next, we compare it
with the simulated CMIP6 MME and the 49 individual model products (Figure 5). The
interannual variations in the GPCP (black color) and the CMIP6 MME (magenta) showed
an increasing trend. However, some of the models showed an increasing trend with GPCP
and CMIP6 MME, while a few showed a decreasing trend. Similar results were shown for
the MJJASON (Figure S4a), December (Figure S4b), and JFMA (Figure S4c) with increasing
(decreasing) trends in simulated precipitation relative to observation. This suggests that
some of the CMIP6 models performed better and others were poorer in capturing the
interannual variability. Furthermore, fewer models showed overlap or no appreciable
difference between the CMIP6 MMEs. Overall, the GCM ensemble showed better results
than the individual models. Furthermore, most of the individual models belonging to
the same modeling centers typically had similar simulated values in their precipitation
anomalies, which was consistent with the literature [6,7,35,49,50].
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The annual cycle variations of the MME GCM-simulated precipitation and 49 se-
lected CMIP6 simulations (colored lines) for 1980–2014 are compared with the observation
(i.e., GPCP, dotted black line) in Figure 6. In Figure 6, the GPCP’s annual-precipitation
cycle begins in boreal winter and peaks in boreal spring (1.85 mm day−1). It ends in boreal
summer, with the lowest value in June (1.6 mm day−1). Generally, the precipitation peaks
in March and the lowest is in June, which is comparable to most of the GCMs, which had
CMIP6 MME peaks in April (1.35 mmday−1) and their lowest values in June (0.7 day−1).
The GPCP and CMIP6 MME mimicked the annual cycle well, but all the individual GCMs,
including the ensemble mean, were underestimated. The simulated precipitation’s annual
cycle matched the observed data in the arid- and semi-arid-climate zones in the NAF and
SAF, where the precipitation cycle was unimodal (Figure 6). By contrast, the simulated
mean precipitation did not match the observed GPCP in the humid climates in the equato-
rial region with bimodal annual cycles (Figure 6). Overall, the CMIP6 MME exhibited a
much better performance than the majority of the individual models, which was consistent
with previous studies [35,47]. Similar results in replicating the annual cycle were revealed
by Pimonsree et al. for South-East Asia (SEA) for the period 1975–2014, with 27 GCMs of
the CMIP6 [18].

Figure 6. Annual cycle of precipitation (mm) in GPCP (dotted black line) and CMIP6 models (colored
lines) averaged over the period from 1980 to 2014.

3.3. Linear Trend in Annual and Seasonal Precipitation

Considering the whole study area over the period 1980–2014, the GPCP trend and
CMIP6 MME ranges −1.10 to +0.75 mm/decades were computed based on the M-K and
Sen’s Slope test (Figure 7). Figure 7(a1–a4) shows the linear trends in the GPCP observations,
while Figure 7(b1–b4) shows the equivalent values for the CMIP6 MME. Overall, the results
showed that most of the regions across the study areas exhibited differences in their wetting
and drying trends between the GPCP and the CMIP6 MME (statistically significant at 0.05).
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that the trend passes the 0.05 significance test.
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In arid climates (in 15–30◦ N) in the NAF, both the GPCP and the CMIP6 MME showed
similar trends in wetting/drying, with pockets of mixed wetting (drying) results in both
datasets. The Arabian Peninsula showed the opposite results, where the annual trend
analysis showed wetting in the CMIP6 MME and drying in the GPCP. Furthermore, similar
arid climates in the SAF showed a wetting (drying) trend in the GPCP (CMIP6 MME),
with differences in magnitude values. The equatorial region showed a wetting trend in
the CMIP6 MME, but mixed results in the GPCP. In Figure 7(a1), the Central Africa Forest
region, extending to the interior areas of the East Africa Rift Valley, showed distinct positive
(negative) linear trends in the GPCP. However, a resemblance with distinct spatial patterns
in the wetting trend was observed in the Sahelian belt, with differences in magnitude
(Figure 7(a1,b1)).

The seasonal characteristics of the linear trends are presented. The seasonal charac-
teristics of the monsoon precipitation (MJJASON) in the GPCP (Figure 7(a2,b4)) and the
CMIP6 MME ((Figure 7(b2,b4)) showed that the wetting trend in the WAF region was
consistent with similar studies conducted in the past [35]. Furthermore, in Figure 7(a2,a4),
the drying (wetting) linear trend in the ARP (SAF) contrasts with Figure 7(b2,b4), where
a wetting (drying) trend in the Arabian Peninsula (SAF) is displayed. The CMIP6 MME
showed wetting in the Sahelian belt, region 5◦ S in the Central African tropical rainforest
regions extending to the Kalahari Desert (25–30◦ S), and the south-eastern coast of the
Mozambique area and Madagascar. In contrast, the observation dataset showed mixed
results of wetting (drying) linear trends (Figure 7(a2,b2,a4,b4)). The mixed results of the
wetting (drying) in the tropical regions, particularly semi-arid regions, were expected, as
previous studies reported uncertainty in climate seasonality in warming climates [68].

In Figure 7(a3,b3), the major differences are shown for the whole Arabian Peninsula
and the SAF. The Arabian Peninsula showed wetting trends in both datasets; however,
the CMIP6 MME was more pronounced than in the GPCP, while the SAF region showed
a wetting (drying) trend in the GPCP (CMIP6 MME). The remaining regions’ results
were similar to those of other regions. This result is of high societal importance and
provides important information for agricultural-impact analysis. The regional and seasonal
differences in wet and dry trends need further studies to determine whether these trends
are related to the warming climate or internal/natural variability.

3.4. Temporal Correlation Analysis via Heatmaps

The individual models’ interdependencies, their MME, and the GPCP precipitation
were analyzed through the Pearson correlation coefficient. Significant positive correlation
coefficients were found among many of the models, whereas significant negative correlation
coefficients were obtained within the data. Only two models, i.e., CNRM-ESM2-1 and
HadGEM3-GC31-MM), were strongly correlated over time, with a correlation coefficient
of 1. It was found that in December (Dec), models such as the CESM2 (0.33), E3SM-
1-0 (−0.36), and INM-CM5-0 (−0.36) were significantly correlated with GPCP. During
the JFMA season, the CMCC-CM2-HR (0.46), CMCC-ESM2 (0.43), FGOALS-f3-L (−0.36),
and MPI-ESM2-0 (0.44) were found to be related to the observation data. Meanwhile,
the ACCESS-CM2 (−0.34), CanESM5-CanOE (−0.4), and NorCPM1 (0.33) models were
significantly associated during the monsoon period. However, no evidence of a relationship
between GPCP and the individual models and their MME over the continent of Africa,
including the Arabian Peninsula, were observed at the annual scale. The best-performing
GCMs and their ensembles’ mean relative to the GPCP over the study area (as shown by
the correlation coefficients) are summarized and presented in Figure 8.

3.5. Relationship between Precipitation and Sea-Surface Temperature (SST)

We computed the interannual and seasonal correlation between the precipitation
(CMIP6 MME–observation) and the global sea-surface temperature (SST) (Figure 9). The
correlation between precipitation (CMIP6–observation) and the global sea-surface tem-
perature at the annual scale is shown in Figure 9(a1,b1). A positive correlation typically
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means wetter conditions associated with higher SST values, while a negative correlation is
associated with dryer conditions. The CMIP6 MME showed strongly positive (statistically
significant) correlations around the tropical Atlantic and Indian Oceans, respectively; the
CMIP6 MME related to warm SST favors convective processes, which may increase precipi-
tation. However, the GPCP showed weakly negative but statistically significant correlations
for the same geographic region. A few exceptions were found in the equatorial region
(25◦ W–25◦ E, 0◦–15◦ N), which displayed a positive correlation; however, the CMIP6 MME
showed strong statistically significant trends. Most of the regions exhibited an inverse
relationship between the GPCP-SST and the CMIP6 MME-SST.
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Furthermore, we computed the correlation coefficient between the mean precipitation
(GPCP and CMIP MME) and the SST anomalies for different seasons during the period of
1980–2014 (Figure 9(a2–a4,b2–b4)). We observed that both the CMIP6 MME and the GPCP
in Figure 9(a2,b2) exhibited a similar spatial-correlation structure between precipitation and
SST compared with those in Figure 9(a1,b1). Generally, the inverse relationship between the
GPCP-SST and the CMIP6 MME-SST (Figure 9(a2,b2)) exhibited was related to the position
of the ITCZ in the CMIP6 models and how the ITCZ was resolved, as reported in previous
studies [35]. The observed ITCZ was positioned in the NH around May to August, around
15◦ N [58].

In the tropical Indian Ocean, positive (negative) correlations were seen in GPCP
(CMIP6 MME) in February and March, and the observed ITCZ was positioned in the
SH [57]. In December (Figure 9(a3,b3)) and the JFMA (Figure 9(a4,b4)), both the CMIP6
MME and the GPCP exhibited a similar spatial correlation structure. Overall, in the
equatorial region (25◦ W–25◦ E, 0–15◦ N), positive values were shown in both datasets. A
similar relationship was observed between the Indian-summer-monsoon rainfall (ISMR)
and its SST at different timescales when Konda et al. [19] analyzed the ensemble of 30 GCMs
from the CMIP6.

The spatial distributions of the correlation coefficients of the GPCP and the CMIP6
MME PREC (i.e., annual and seasonal) and SST during 1980–2014 were computed over land
(Figure 10). To a large extent, similar correlation patterns are shown in Figure 10(a1,a2,b1,b2).
Both showed that the spatial patterns of the CMIP6 MME tended to be closer to the GPCP
and with corresponding magnitudes (correlation coefficients of −0.80 and +0.80). Over-
all, the major differences in the direction and magnitude of the spatial correlation were
observed in NAF (i.e., 15–30◦ N) and the Arabian Peninsula, the Guinea Coast extending to-
wards the Central Africa Forest region and the interior areas of EAF (26–52◦ E, 10◦ S–5◦ N),
the Kalahari Desert, and the south-eastern coast of the Mozambique area and Madagascar
(25–30◦ S). In contrast, we observed distinct spatial patterns in the positive correlations in
the Sahelian belt (Figure 10(a1,b1)), suggesting the Sahelian belt (with its semi-arid climate)
as spots as both datasets were well reproduced by the spatial correlation. However, the
absolute values of correlation were slightly lower in the GPCP. Similar results are shown in
Figure 10(a3,a4) and Figure 10(b3,b4), respectively. In contrast, the GPCP and CMIP6 MME
reproduced almost the same correlation pattern, with corresponding magnitudes, in the
WAF and SAF regions.

Similarly, we computed the spatial distributions of the correlation coefficients of
49 individual models annually (Figure 11) and seasonally (Figures S5–S8) between the
simulated precipitation and the SST from 1980 to 2014. We observed a more homogeneous
spatial correlation among many of the individual models (r > 0.7), with arid and semi-arid
climates showing negative and humid climates showing positive values. Overall, the
individual CMIP6 models better matched the observed GPCP in the semi-arid and arid
climates, despite differences in the magnitude of the correlation values. A major difference
in the humid climates, especially around the equatorial region, extending towards the
Horn of Africa region, was observed. These discrepancies were pronounced at the seasonal
scale (Figures S5–S8), and the trends in the variability were consistent with the complex
interactions of the different models’ physics [7,35].
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4. Summary and Conclusions

This study evaluated the performances of 49 CMIP6 GCMs over the African continent
and Arabian Peninsula compared with satellite-based observed data (i.e., GPCP) during
1980–2014. A Taylor diagram was used to quantify the CMIP6 MME and the 49 models’
ability to simulate the precipitation relative to the observed data. In the spatial and temporal
climatology, linear trends were examined to compare how well the GCMs replicated the
precipitation at the annual and seasonal scales. The spatial correlation was computed to
determine the relationship between the precipitation and the global SST.
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We summarize the key findings as follows:

1. The CMIP6 MME exhibited a much better performance than the majority of the
individual models.

2. The CMIP6 MME reproduced the spatial pattern of the African monsoon more realis-
tically than the majority of the GCMs. The CMIP6 MME and the GCMs exhibited a
better ability to replicate the simulated precipitation in arid and semi-arid conditions
in the NAF, Arabian Peninsula, SAF, and pockets of the EAF and the Sahelian belt.
However, the model’s performance was low in humid regions along the Guinean
Coast of the WAF, extending to the 5◦ S in the CEF.

3. Most of the models reproduced pre-monsoon precipitation (i.e., December and JFMA)
better than monsoon precipitation (MJJASON), suggesting that GCMs exhibit poor
performance in simulating the spatial patterns of precipitation in monsoon seasons
than in pre-monsoon seasons. In particular, individual models from the same model-
ing centers exhibited similarities in replicating wet (dry) precipitation bias at seasonal
scales, suggesting dependence on the sharing of model physics and configurations.

4. Regarding which GCMs are superior in replicating spatial and temporal variations,
model sub-setting is encouraged, as most of the GCMs’ performances in reproduc-
ing precipitation were region- and season-specific. These seasonal differences are
more insightful and provide significant information for agricultural-impact analysis.
Depending on the application, model sub-selection is strongly encouraged.

5. Furthermore, the GPCP exhibited a more heterogenous spatial correlation, and the
CMIP6 MME showed a more homogeneous spatial correlation, in the equatorial region
(at both annual and seasonal scales). Few of the models showed more heterogenous
spatial correlations, while the majority showed homogeneous spatial correlations.

This study demonstrated the GCMs’ performances in simulating precipitation patterns,
magnitudes, and trends and the correlation with major circulation features at annual and
seasonal scales. Most of the models reproduced pre-monsoon precipitation (i.e., December
and JFMA) better than monsoon precipitation (MJJASON) in the tropics; this was related to
GCMs’ drawbacks in predicting convective precipitation. The differences exhibited by the
individual GCMs highlight the significance of each model’s unique dynamics and physics.
This study provides a framework for further research into the future effects of climate
change and human adaptation and mitigation strategies. Therefore, it allows the selection
of appropriate models tailored to specific climate regions and for various applications.
Readers are advised to interpret these results with caution as the inferences are subject
to considerable uncertainties, and any further studies should perform bias correction to
minimize these uncertainties. This is necessary when determining the patterns and trends
for sustainable development and future adaptation measurements.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14030607/s1, Figure S1. Spatial distribution of MJJASON
mean precipitation in 49 selected models from 1980 to 2014. Figure S2. Spatial distribution of
DEC mean precipitation in 49 selected models during 1980–2014. Figure S3. Spatial distribution of
JFMA mean precipitation in 49 selected models during 1980–2014. Figure S4. Seasonal variations in
observation (i.e., GPCP, black line), CMIP6 MME, and 49 CMIP6-simulated precipitation anomalies
from 1980 to 2014 across Africa and the Arabian Peninsula. Anomalies are calculated through the
mean over the period. Figure S5. Spatial distributions of correlation coefficients of 49 selected CMIP6
models and SST during 1980–2014 in MJJASON. Hatched area indicates a 95% confidence level.
Figure S6. Spatial distributions of correlation coefficients of 49 selected CMIP6 models and SST
during 1980–2014, in December. Hatched area indicates a 95% confidence level. Figure S7. Spatial
distributions of correlation coefficients of 49 selected CMIP6 models and SST during 1980–2014 at
JFMA. Hatched area indicates a 95% confidence level.
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