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Abstract: Among the monitored telemetry raw data record (RDR) parameters with the STAR In-
tegrated/Validation System (ICVS), the Advanced Technology Microwave Sounder (ATMS) scan
motor mechanism temperature is especially important because the instrument might be unavoidably
damaged if the mechanism temperature exceeds 50 ◦C. In the current operational flight processing
software, the instrument automatically enters safe mode and stops collecting scientific data whenever
the mechanism temperature exceeds 40 ◦C. This approach inevitably leads to the instrument entering
safe mode unnecessarily at a premature time, causing the loss of scientific data before the mechanism
temperature reaches 50 ◦C. This study seeks to leverage the influence the main motor current, com-
pensation motor current, and main motor loop integral error have on mechanism temperature to
forecast the maximum mechanism temperature over the upcoming 6 min. A long short-term memory
(LSTM) neural network predicts maximum mechanism temperature using ATMS RDR telemetry
data as the input. The performance of the LSTM is compared with observed maximum mechanism
temperatures by applying the LSTM coefficients to several cases. In all cases studied, the mean
average error (MAE) of the forecast remained under 1.1 ◦C, and the correlation between forecasts
and measurements remained above 0.96. These forecasts of maximum mechanism temperature are
expected to be able to provide information on when the ATMS instrument should enter safe mode
without needlessly losing valuable data for the ATMS flight operational team.

Keywords: Joint Polar Satellite System (JPSS); Advanced Technology Microwave Sounder (ATMS);
long short-term memory (LSTM) networks; machine learning (ML); anomaly forecasting; scan drive
mechanism temperature

1. Introduction

The STAR Integrated Calibration/Validation (or Cal/Val) System (ICVS) Long Term
Monitoring (LTM) (hereinafter named ICVS for clarity) group has functioned for over a
decade. Its mission is to provide the general public with accurate and informative mon-
itoring that characterizes the quality of observations primarily from a series of NOAA
satellites and/or instruments, including NOAA legacy Polar-orbiting Operational Envi-
ronmental Satellites (POES) and Joint Polar Satellite System (JPSS) instruments. Notably,
the quality of instrument parameters monitored by ICVS has increased significantly [1–7].
In particular, the instruments under the purview of ICVS include but are not limited
to Advanced Technology Microwave Sounder (ATMS) [8], Cross-track Infrared Sounder
(CrIS) [9], Visible Infrared Imaging Radiometer Suite (VIIRS) [10], Ozone Mapping Profiler
Suite (OMPS) [11,12], and Advanced Microwave Sounding Unit-A (AMSU-A) [13]. Apart
from AMSU-A, the abovementioned instruments fly aboard Suomi National Polar-orbiting
Partnership (S-NPP) and JPSS-1, which is also known as NOAA-20. In addition, these four
instruments will also fly aboard JPSS-2 after its launch, which is currently planned for late
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2022. The monitoring parameters cover more than 4000 instrument-based raw data record
(RDR) and sensor data record (SDR) observations, thus offering significant information
regarding the health of JPSS instruments and quality scientific data for satellite flight team
engineers, calibration scientists, and data users within NOAA and beyond. A detailed
introduction to the fundamentals of the ICVS LTM and related advanced inter-sensor
functions can be found in recent studies [14,15].

Among the instruments monitored by ICVS, the ATMS is a cross-track scanning mi-
crowave instrument that measures profiles of atmospheric temperature and moisture. One
key feature of microwave sounders such as the ATMS is their ability to make observa-
tions under all weather conditions since the microwaves emitted at various levels of the
atmosphere are not inhibited by clouds as they travel to the instrument. Combining the
capabilities of its predecessors, the AMSU-A and the Microwave Humidity Sounder (MHS),
the ATMS provides observations of antenna (brightness) temperatures at 22 channels rang-
ing from 23 to 183 GHz. Previous studies document the immense value the ATMS SDRs
provide for short-to-medium range (1–10 days) weather forecasts generated by numerical
weather prediction (NWP) systems [16–19]. Various satellite-based algorithms use these
data to retrieve environmental data records (EDRs) describing processes of the Earth’s atmo-
sphere, ocean, and surface [20–28]. ICVS also uses machine learning to better characterize
JPSS data [29,30].

For all aforementioned invaluable applications, a continuous supply of scientifically
valid SDRs from ATMSs is of the utmost importance. However, the instrument does not
collect such data when placed in its “safe mode”. Safe mode events protect valuable instru-
ment components against damage caused by overheating by disabling certain functions of
the instrument, thereby allowing it to cool down (Figure 1). In the case of S-NPP ATMS, one
source of potentially damaging excessive temperatures is the scan drive mechanism, which
is a single-axis torque-compensating continuous-rotation gimbal assembly [31]. Perma-
nent damage to the ATMS instrument can occur whenever the temperature of the gimbal
assembly in the scan drive mechanism rises above 50 ◦C. Accordingly, it is important
to predict these overheating events with enough forewarning to allow a switch to safe
mode operations before the mechanism heats up enough for permanent damage to occur.
Likewise, it is important that such predictions do not trigger safe mode needlessly, causing
unnecessary interruptions to the collection of scientifically valid ATMS SDRs. This study
seeks to improve upon existing methods and discover whether it is possible to predict
spikes in mechanism temperature, i.e., a local maximum mechanism temperature, using
observations of various parameters found in ATMS telemetry RDRs in a long short-term
memory (LSTM) artificial neural network (ANN). In short, the current status quo consists
of the following shortcomings in capabilities:

1. Limited use of deep learning methods [32] (including LSTM) to retroactively classify
telemetry data anomalies [33–36];

2. No attempts to predict increases in mechanism temperature using any method;
3. Transition to the ATMS’ safe mode operations is controlled only by whether current

observations exceed a threshold value and not guided by any attempted forecasts.

Based on our best knowledge, this study is the first published attempt to go beyond
these gaps. This is the first application of an ANN to predict a local maximum mechanism
temperature for the JPSS ATMS instrument. Making such predictions in near real time (NRT)
facilitates improvements in ATMS operation. Accordingly, this study seeks to describe a
novel method for reducing data loss in an operational environment when the scan drive
mechanism temperature exceeds the threshold at which safe mode has historically been
activated. Likewise, this is a new application of the LSTM method that demonstrates the
ever-increasing versatility of neural networks in a variety of tasks.

This study is organized as follows: The next section introduces LSTMs and presents the
design of LSTM in a model that predicts maximum mechanism temperature. The prediction
of ATMS maximum mechanism temperature using LSTM is given in the following section.
A summary and conclusions are provided in the final section.
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Figure 1. Time series of mechanism temperature during a safe mode event in August 2021. No valid 
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made RNNs an attractive means for unsupervised anomaly detection [32], particularly 
when it comes to satellite spacecraft [33–36]. Unlike other RNNS, LSTM’s architecture 
avoids vanishing and exploding gradient problems [37]. This makes LSTM an excellent 
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timestep, cell state (Ct−1) and hidden state (ht−1), and one from the input layer of the neural 
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while the hidden state is the output that will be used to make predictions and provide 
additional information to the succeeding cell. Both the cell state and hidden state are vec-
tors with the same dimensionality. 

Figure 1. Time series of mechanism temperature during a safe mode event in August 2021. No valid
data was collected when the instrument was in safe mode, resulting in a notable data gap. In addition,
the mechanism temperature dropped tremendously during safe mode.

2. Long Short-Term Memory (LSTM) Method and Its Application for Predicting
Maximum Mechanism Temperature
2.1. An Introduction to Long Short-Term Memory (LSTM) Networks

Like other recurrent neural networks (RNNs), LSTMs provide an advantage over other
deep learning methods because they contain a “memory” capable of learning connections
between observations in the past and those in the immediate future. This has made RNNs
an attractive means for unsupervised anomaly detection [32], particularly when it comes
to satellite spacecraft [33–36]. Unlike other RNNS, LSTM’s architecture avoids vanishing
and exploding gradient problems [37]. This makes LSTM an excellent tool for predicting
local maxima in a time series [38], such as the mechanism temperature (T) [39]. A brief
summary of LSTM networks is given below, but a more detailed description can be found
in its original publication [40].

The LSTM layer is composed of a series of sequentially connected cells (Figure 2) rather
than an array of nodes connected with nodes in other layers but not directly connected to
each other. A detailed description of one cell is shown in Figure 3. As shown in the figure,
a cell at timestamp t receives three inputs, two from the cell at the preceding timestep, cell
state (Ct−1) and hidden state (ht−1), and one from the input layer of the neural network
at the current timestep (xt). The cell state serves as the “memory” of the LSTM, while the
hidden state is the output that will be used to make predictions and provide additional
information to the succeeding cell. Both the cell state and hidden state are vectors with the
same dimensionality.

Like other neural networks, an LSTM unit computes its outputs using a series of
trainable weights and biases. Each cell in the LSTM contains four gates, each with an
identical number of these weights and biases. For notation purposes, weights acting
upon the input vector are denoted with a W, and weights acting upon the hidden vector
are denoted by U. All four of these gates take the exact same input, a concatenation of
the input vector from the current timestep (xt) and the hidden vector from the previous
timestep (ht−1). Each gate contains an internal deeply connected layer that applies a linear
transformation to the concatenated vector.
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Figure 2. Simplified schematic showing how a series of sequentially arranged LSTM cells are
connected. A prediction (T̂max) is created by passing the output of a single LSTM cell through two
deeply connected layers. The LSTM output is a function of the most recent input vector and the two
output vectors produced by the previous LSTM cell in the temporal sequence.
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Circles with a C represent vector concatenation. Seven inputs taken from ATMS Telemetry RDRs
form the vector xt at each time step, which enters the LSTM at the bottom of the schematic.

One gate that processes the concatenated vector is the forget gate, which computes the
forget matrix:

ft = σ (Wf xt + Uf ht−1 + bf), (1)

Linear multiplication of the weights Wf and Uf with xt and ht−1, respectively, leads to a
matrix that can be an input to the sigmoid activation function (σf). The sigmoid activation
function is nonlinear and forces the forget matrix to only contain values in the open interval
(0, 1). When the forget matrix is multiplied piecewise with the cell state from the previous
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step (Ct−1), any values in the previous cell state that correspond to values near zero in
the forget matrix are reduced to near zero. This near-removal of a value is how the forget
matrix causes the cell state to “forget” information that may not be relevant any longer.

The next two gates are the input gates, which form a matrix from the piecewise
multiplication of two separate matrices, each created from a separate gate:

it = σ (Wi xt + Ui ht−1 + bi), (2)

Čt = tanh (Wc xt + Uc ht−1 + bc), (3)

The first of these matrices is the input matrix, it, created by a similar process to the
formation of the forget matrix, albeit with separately trained weights and biases applied
to the concatenation of xt and ht−1. The second of these matrices, Čt, is also created by
funneling the concatenation of xt and ht−1 through yet another sequence of separately
trained biases and weights, but the hyperbolic tangent (tanh) serves as the activation
function instead of the sigmoid. Because tanh outputs to the interval (−1, 1) rather than
(0, 1), it allows negative values to be included in the matrix that updates the cell state.
Unlike the forget matrix, which is ultimately multiplied piecewise with the cell state,
the input matrix undergoes piecewise addition with the cell state, which allows for new
information to be added to the cell state and affect the output of subsequent cells.

Ct = ft ∗ Ct−1 + it ∗ Čt, (4)

Thus, the cell state is a function of the previous cell state, with the forget matrix
removing unneeded information from the previous cell state and the input matrix adding
new information to the cell state. In addition to becoming an input for the subsequent
LSTM cell, Ct is an input to operations affecting the cell’s output, ht.

The final gate is the output gate, which creates the hidden vector that feeds both
the LSTM cell at the next timestep as well as the deeply connected layers that ultimately
forecast the relevant predictand. Here, ht is created from the piecewise multiplication
of two separate matrices. One is the previously computed new cell state activated by
the hyperbolic tangent function, tanh(Ct), and the other, ot, is the result of yet another
gate operating upon the concatenated vector, xt + ht−1. Once again, a deeply connected
network architecture with separately trained weights and biases supplies the necessary
linear transformation.

ot = σ (Wo xt + Uo ht−1 + bo), (5)

ht = ot ∗ tanh (Ct), (6)

Therefore, ht is a function of both the current input vector, xt, previous cell state, ct−1,
and the results from the previous cell, ht−1. A key feature of the LSTM architecture is the
separation of the weights given to the four gates, keeping the processes of memory deletion,
memory addition, and output computation segregated.

2.2. LSTM Design for Forecasting Local Mechanism Temperature Maxima

To apply the abovementioned LSTM to ATMS data for forecasting local mechanism
temperature maxima, each cell of the LSTM corresponds to a single timestep with 8 s, while
the size of the vectors passed from one cell to the next is set to 150 nodes. Here, each node
contains one element of the vector. The vector size of 150 elements is determined based
on the sensitivity analysis for 5 ATMS anomaly events about the mean retrieval error, as
shown in Figure 4. The MAE decreases rapidly once the size of the cell memory reaches at
least 100. Because the MAE is insensitive to further increases in memory, this study utilized
150 nodes in the cell memory of its LSTM model.
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As shown in Figures 2 and 3 above, in the LSTM, the 150-element vector gets fed into
a dense layer that transforms it into a 20-element vector. Another dense layer transforms
the 20-element vector into a 1-element vector, which is T̂max, the forecast of maximum
mechanism temperature, T. The temperature T̂max is a predictand that can be used to
control whether ATMS enters safe mode or not. These final two dense layers function
identically to the deeply connected layers of an ANN. This part of the diagram is also
shown in Figures 2 and 3 above.

The LSTM computes its output, a 150-element vector in this study, by passing a
concatenation of current observations and previous outputs through four gates. In this
study, the input vector at the current timestep contains 7 elements, and the hidden vector
from the previous timestep contains 150 elements; therefore, the concatenated vector that
enters the four gates in each cell contains 157 elements. Each of the four gates consists of a
dense layer with 157 × 150 + 150 = 23,700 trainable parameters. These parameters include
157 × 150 weights connecting the 157 nodes in the concatenated vector with 150 nodes in
the hidden vector and an additional 150 biases. With four such gates in each LSTM cell, the
total number of trainable parameters is 4 × 23,700 = 94,800 weights and biases for each cell
in the whole LSTM network. In this study, each cell’s weights and biases are identical, so
the number of cells does not affect the total number of trainable parameters.

In addition, generating forecasts of T̂max requires chaining multiple LSTM cells to
work together in temporal space (Figure 2 above). The cell corresponding to time t−1
passes its cell state (ct−1 ∈ R150) and its hidden state (ht−1 ∈ R150) to the next cell, which
corresponds to time t. The cell at time t combines the cell state and hidden state it receives
from the previous cell with the most recent telemetry observations (xt ∈ R7) according to
the weights and biases in its four internal gates (Figure 3), which were described in detail
above. This produces a new hidden state (ht ∈ R150) that is outputted to the next layer,
which is a dense layer deeply connected to the previous LSTM layer and a successive dense
layer. The first dense layer transforms ht ∈ R150 into vt ∈ R20, reducing the dimensionality
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considerably. The second dense layer transforms vt ∈ R20 into T̂max(t) ∈ R1, which is the
prediction of maximum mechanism temperature.

Implementation of the LSTM architecture relies upon several open-source software
libraries. Python [41] serves as the primary programming language because of the flexibility
offered by its packages, including NumPy [42], Pandas [43], and Matplotlib [44], which
process, manage, and visualize data, respectively. The Keras [45] interface to the Tensor-
Flow [46] library developed by Google facilitates the creation of many ANNs, including
RNNs such as the LSTM.

3. Prediction of ATMS Maximum Mechanism Temperature Using LSTM
3.1. Acquisition of datasets for Testing and Training and Determination of the Optimal Duration
for Predicting Maximum Mechanism Temperature

The plausibility of predicting spikes in mechanism temperature first requires the
definition of a useful predictand. Qualitatively as shown in a time series of every parameter
for an anomalous ATMS event in the S-NPP ATMS telemetry RDR (Figure 5), the current
from the main motor, Imm, the current from the compensator motor, Icm, and the error in the
main motor loop integral, Eli, are correlated with future spikes in the overall temperature of
the mechanism, T, a few minutes later. Apparently, the main motor current and loop integral
error increase a few minutes before mechanism temperature (T). This pattern appears in all
the anomalies examined in this study. Because overheating events are the only relevant
issue at hand, it is more useful to predict the maximum mechanism temperature, Tmax, over
a certain window of time, tforecast. The optimal duration of tforecast will yield a definition of
Tmax that is more easily predicted by Imm, Icm, and Eli. It is thus expected that the optimal
duration of tforecast can maximize the correlation between the predictors Imm, Icm, and Eli
and the predictand Tmax. In this study, an unsupervised data-driven anomaly detection
algorithm utilizing an LSTM layer makes predictions of Tmax that minimize mean average
error (MAE) in its training dataset, which is derived from thousands of observations during
a single anomaly case.
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integral error (Eli), and mechanism temperature (T) during one of the cases included in this study.

To identify anomaly cases for this study, ICVS acquired S-NPP ATMS telemetry RDR
data for the timespan of 8 December 2016 to 31 December 2021. From this time series,
17 instances where T exceeded 27 ◦C were identified. Of those 17 instances, only eight
cases comprised at least 10 observations of T greater than 27 ◦C within 40,000 s of the first
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observation over 27 ◦C, and of those eight cases, two of them were not unique, occurring
within two weeks of a previous anomaly. To determine the optimal duration of tforecast, ICVS
computed the correlation between Tmax and each of the input parameters as a function of
tforecast for each of these six cases over the full 80,000 s period. Detailed descriptions for the
6 cases are given in Section 3.2 below. In all six of these cases, the maximum correlation
between Tmax and both Imm and Eli occurred at either tforecast = 4 min or tforecast = 6 min.
Consequently, the optimal predictand is T̂max with a forecast window of 6 min. Training the
LSTM meant picking one of the six anomaly cases to serve as a training dataset. Arbitrarily,
the final anomaly, which occurred in November 2021, was chosen to train the model.

To train the neural network, all relevant telemetry parameters were normalized and
scaled to the interval [0, 1]. In addition, the maximum of the input parameters over the
previous 102 min was computed in order to reduce the influence of orbital fluctuations. In
total, seven parameters were used as inputs to the model, recent single orbit maxima of T,
Imm, Imm, and Eli, as well as the most recently observed Icm, Imm, and Eli.

For a perfect forecast of maxima in T in the ensuing 6 min, Tmax is the “truth” against
which the model’s predictand, T̂max, can be compared. The temperature Tmax was first com-
puted for 5400 observations preceding and succeeding the first moment when T exceeded
27 ◦C for the training case in November 2021. Because ATMS telemetry RDR records data
every 8 s, these 10,800 observations represented approximately one full day of observations.
Unsupervised training began by assigning random weights to each neuron in the network
and computing the predictand accordingly for each of the 10,800 points in the time series.
To make computation easier, these 10,800 points in the time series were divided into smaller
batches of just 64 observations each. Comparing the predicted values (T̂max) with the true
ones (Tmax), computing the mean absolute error (MAE), determining adjustments to neuron
weights using gradient descent, and backpropagating those adjustments to the preceding
layers constituted a single training iteration of the model, known as an epoch. To prevent
the network from converging too quickly on a suboptimal solution, the learning rate was
set to 0.0001. After 50 training epochs, the model consistently converged on a solution with
a satisfactorily low MAE.

3.2. Case Studies

The rest of the five cases among the selected six anomalous ATMS RDR telemetry
events were used to assess the performance of the derived coefficients from the training data
set. For all five test cases, MAE across the 10,800 predictions in each test case consistently
dropped to around 1 ◦C or below in multiple models trained independently on the same
data. Such a low MAE bodes well for this forecasting technique. Results from all five
cases are summarized in Table 1. Indeed, looking at individual case studies confirms the
quality of the prediction. Furthermore, results comparing the predicted and measured
(truth) maximum ATMS mechanism temperatures are presented in Figures 6–8 in several
different ways. Specifically, Figure 6 shows the time series of the predictors (Imm, Icm, and
Eli) and predictands (Tmax and T̂max) for each of the five cases, while Figure 7 shows a
scatterplot depicting the relationship between the true predictand (Tmax) and the forecasted
predictand (T̂max). Figure 8 depicts the residual (Tmax − T̂max) as a function of time for each
case. Detailed descriptions per case are given below in reverse chronological order.

Table 1. Results from five testing case studies, one training case study, and whole time series.

Date N Avg MAE (◦C) Avg RMSE (◦C)

15 January 2017 (Testing Data) 89 1.00 1.09
20 February 2017 (Testing Data) 89 1.11 1.26

21 September 2018 (Testing Data) 89 0.68 1.33
25 February 2020 (Testing Data) 89 1.07 1.37

24 June 2020 (Testing Data) 89 0.86 1.13
18 November 2021 (Training Data) 89 0.63 1.16

Whole Series 89 0.80 0.98



Atmosphere 2023, 14, 503 9 of 16Atmosphere 2023, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 6. Time series showing the quality of the forecast for the temperature anomaly for five test 
cases that occurred on different dates: (a) 15-01-2017, (b) 20-02-2017, (c) 21-09-2018, and (d) 25-02-
2020 (e) 24-06-2020. 

Figure 6. Time series showing the quality of the forecast for the temperature anomaly for five test
cases that occurred on different dates: (a) 15-01-2017, (b) 20-02-2017, (c) 21-09-2018, and (d) 25-02-2020
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For the anomaly case on 24 June 2020, it looks like the time series of the telemetry
inputs (Imm, Icm, and Eli), the true predictand (Tmax), and the forecasted predictand (T̂max)
match quite well (Figure 6a). Both Tmax and T̂max rise at nearly the same time and crest
almost simultaneously a few minutes later. The MAE for this example is 0.987 ◦C, and the
Pearson correlation coefficient between Tmax and T̂max is 0.982 (Figure 7a). This was one of
the larger anomalies examined in this study, and the model performed superbly.

The anomaly case on 25 February 2020 has a smaller magnitude than the 24 June 2020
anomaly, but the match between the true predictand (Tmax) and the forecasted predictand
(T̂max) appears to show a great deal of similarity. This anomaly features two significant
increases in Tmax, and from a subjective standpoint, the model predicts both adequately
(Figure 6b). More rigorously, the Pearson correlation coefficient between Tmax and T̂max is
0.988 (Figure 7b), which is the highest correlation observed across all five case studies. The
MAE is 1.1 ◦C, which exceeds the MAE of the other cases but remains relatively small.

The case study on 21 September 2020 contains two Tmax spikes as well, but with a
noticeable dip in between. Apparently, the forecasted predictand tracks the true predictand
quite well (Figure 6c), which is confirmed by numerical measures. The Pearson correlation
coefficient between Tmax and T̂max is 0.981 (Figure 7c), and the MAE is 0.805 ◦C, which is
the lowest MAE of all five case studies. The correlation scatterplot between Tmax and T̂max
shows a bifurcation, which is presumably a result of the dual peaks in the time series. If so,
this may indicate that one spike was predicted more accurately than the other. Regardless,
the trained neural network performed best when forecasting this case.

The results from the anomaly case on 20 February 2017 show similar patterns to all the
other cases. Qualitatively, the forecasted predictand tracks the true predictand quite well
(Figure 6d), and the statistical measures agree. The Pearson correlation coefficient between
Tmax and T̂max is 0.947 (Figure 7d), and the MAE was 1.084 ◦C. Accordingly, this modest
anomaly was well predicted by the model.

A small anomaly on 15 January 2017 highlights similar patterns. At first sight, the
forecasted predictand tracks the true predictand quite well (Figure 6e). Looking deeper at
more quantitative measures, the Pearson correlation coefficient between Tmax and T̂max is
0.964 (Figure 7e), and the MAE was 0.919 ◦C. Here, the model performed well in this case
too.

Indeed, looking at individual case studies confirms the quality of the prediction. From
the residuals of all five cases (Figure 8), there are brief periods when the model’s forecast
strays as much as 5 ◦C from the truth. Mostly, this stems from a bit of a delay between
the increases in Tmax and T̂max. This may be a consequence of the fact that the optimal
forecast period, tforecast, is slightly different for Imm and Eli. Perhaps a better input into the
forecast model can include time-lagged editions of either of these parameters rather than
the contemporaneous observation of each along with their recent maximum. Nonetheless,
these lags almost always err on the side of caution. Instances when Tmax exceeds T̂max
are vanishingly rare across all five case studies, which bodes well for the operational
implementation of these forecasts onto the spacecraft flight software.

3.3. Discussion for Small Anomalous Events

The above analysis shows promising results with a high correlation coefficient between
Tmax and T̂max for all five cases. It is entirely feasible to predict ATMS motor maximum
mechanism temperature using observations of Imm, Icm, and Eli during a given time window
and inputting them and their orbital maxima into an ANN featuring an LSTM layer. This is
especially true for the cases with larger anomalies, as these cases exhibit some of the largest
correlations between Imm and Tmax, just like those found in the training data.

Smaller anomalies, on the other hand, tend to display much higher correlations with
compensator current at the expense of smaller correlations with Imm and Eli (Figure 9).
A qualitative examination of smaller spikes in mechanism temperature (T) often shows
similar increases in compensation motor current a few minutes earlier. Note that T does
not increase by more than 5 ◦C and never exceeds 25 ◦C, which is 25 ◦C less than the
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temperature where permanent damage to the instrument may occur. Because this pattern
is not found in the training data, these smaller anomalies are not as easily predicted by the
model. However, these anomalies are the least likely trigger an ATMS to enter safe mode
because they are so tiny’ thus, there is comparatively little importance to predicting them as
accurately as the larger anomalies. Still, superior results might be achieved by training the
model on major and minor anomalies separately, taking the maximum of the two forecasts
into account when controlling the ATMS’ safe mode status.
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All in all, the results from the LSTM neural network are very promising. Across all
six unique instances when the gimbal mechanism sustained above 27 ◦C for more than
10 observations, the spike in temperature was accurately forecasted by a model trained on
just one of those instances. By forecasting these temperature anomalies 6 min in advance,
there should be sufficient warning to enter safe mode before permanent damage to the
instrument can occur. Likewise, there is reasonable confidence that there is a low risk of
damage whenever the forecast does not exceed 50 ◦C, even if the current temperature is
above 40 ◦C. Consequently, these forecasts enable the instrument to continue collecting
scientifically meaningful data even when the mechanism temperature is warm enough to
trigger the current precautionary safe mode procedure.

4. Conclusions

This work demonstrates the ability of LSTM neural networks to forecast anomalies in
time series in the ATMS telemetry data. The performance of the LSTM network presented
in this study is quite good and reasonably anticipates all significant spikes in maximum
mechanism temperature observed over a half-decade (2017–2022) aboard S-NPP ATMS. In
all five test cases, the MAE was less than 11 ◦C, and the correlation between forecasts and
truth was above 0.95. Harnessing LSTM predictions, it is thus feasible to build a robust
near real-time (NRT) warning system that puts an ATMS into safe mode only when strictly
necessary to prevent damage to the instrument. Importantly, using a neural network
provides an outright improvement over existing methods for safeguarding the gimbal
assembly against extremely high temperatures. Specifically, for all S-NPP temperature
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anomalies from 2017 to 2021, the actual anomaly peak never exceeds the forecasted peak by
more than 6 ◦C. Current procedures have the instrument enter safe mode if the temperature
rises within 10 ◦C of the threshold at which permanent damage may occur, leading to
fewer safe mode events and significantly decreasing the unnecessary loss of valid scientific
SDRs. Because these accurate 6 min forecasts can be computed in a matter of seconds,
implementation of this model into the flight control software aboard ATMS is entirely
feasible. The use of this LSTM-based method is thus expected to preserve the collection of
useful ATMS data even when the gimbal mechanism temperature rises to 40–44 ◦C.

Certainly, some limitations remain in the current LSTM method for predicting SNPP
ATMS maximum mechanism temperature. The correlation between predictor and predic-
tand reaches its maximum for lag times around 6 min. This short time window may be a
concern for the ATMS instrument flight team seeking to execute ATMS safe mode in an
operational flight software processing environment. In addition, only five large anomalous
cases were tested in this study, and the algorithm was established using only SNPP ATMS
data. Therefore, our future analysis will investigate the feasibility of a longer forecast
period than 6 min without degrading the algorithm retrieval accuracy of the maximum
mechanism temperature. The algorithm will be applied to more SNPP anomalous cases
to ensure the stable performance of the LSTM method in predicting ATMS maximum
mechanism temperatures. Comparisons of the performance of the LSTM method with that
of other ANNs (e.g., an ordinary RNN) are another avenue for future study. Because spikes
in the temperature increase in frequency as the scan drive mechanism ages, this time series
is not stationary, and a Box-Jenkins model will not accurately predict future observations.
Last but not the least important, the algorithm presented in this study will be applied
to NOAA-20 and upcoming JPSS-2 ATMS anomalous mechanism temperature events in
future studies. A reliable LSTM-based operational method is expected to be developed
with those new analyses that can be applied to all ATMS telemetry RDR data to predict
maximum mechanism temperatures with an optimal forecast time window.
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