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Abstract: Near-real-time satellite precipitation estimation is indispensable in areas where ground-
based measurements are not available. In this study, an evaluation of two near-real-time products
from the Center for Hydrometeorology and Remote Sensing at the University of California, Irvine—
PERSIANN-CCS (Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks—Cloud Classification System) and PDIR-Now (PERSIANN-Dynamic Infrared Rain Rate
near-real-time)—were compared to each other and evaluated against IMERG Final (Integrated Multi-
satellite Retrievals for Global Precipitation Measurement—Final Run) from 2015 to 2020 over the
Mekong River Basin and Delta (MRB) using a spatial resolution of 0.1◦ by 0.1◦ and at a daily scale.
PERSIANN-CDR (PERSIANN-Climate Data Record) was also included in the evaluation but was
not compared against the real-time products. In this evaluation, PDIR-Now exhibited a superior
performance to that of PERSIANN-CCS, and the performance of PERSIANN-CDR was deemed
satisfactory. The second part of the study entailed performing a Mann–Kendall trend test of extreme
precipitation indices using 38 years of PERSIANN-CDR data over the MRB. This annual trend analysis
showed that extreme precipitation over the 95th and 99th percentiles has decreased over the Upper
Mekong River Basin, and the consecutive number of wet days has increased over the Lower Mekong
River Basin.

Keywords: near-real-time; satellite precipitation estimation; Mekong River Basin and Delta; extreme
precipitation

1. Introduction

Accurately estimating precipitation is extremely important, as it is a key element of
the hydrological cycle. These estimates are especially useful for understanding water avail-
ability, making predictions, monitoring extreme events, and making water management
decisions. There are several instruments for measuring precipitation, out of which rainfall
gauges are the most commonly used [1,2]. One of the disadvantages of rainfall gauges is
that they are point measurements, which means that they cannot provide a representation
of the spatial distribution of precipitation [3]. Another disadvantage is that they tend to
be sparse in inhabited areas, mountains, and oceans [2]. Another common instrument is
radars [4]. The precipitation estimates from radars have high spatial and temporal resolu-
tions, but they suffer from beam blockages due to changes in terrain, which affects their
accuracy and extent [5]. Moreover, remotely sensed data from satellites are also used to
estimate precipitation. An advantage is that these satellite precipitation products provide
measurements with high spatial and temporal resolutions, so they can be used to estimate
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precipitation. Another advantage of these products is that not only do they provide the
spatial distribution of precipitation, but they are also available over areas where other
measurements are scarce or nonexistent [6].

Although this is true, the accuracy of a precipitation product varies with the climatol-
ogy of the region of study, the topological features, and biases within algorithms. Thus, the
evaluation of satellite precipitation products is crucial for understanding their suitability
over a study area. For example, the authors of [7] evaluated daily rainfall as estimated
by NASA’s Integrated Multi-satellite Retrievals for Global Precipitation (IMERG) and Ver-
sion 7 Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis
(TMPA) over the Mekong River Basin (MRB). These two datasets were evaluated against
rain gauge data from the China Meteorological Data Sharing Service System (CMDSSS)
and the National Oceanic and Atmospheric Administration (NOAA) Global Hourly/Sub-
Hourly Observation Data [7]. In this paper, it was concluded that both IMERG and TRMM
are suitable for hydrological studies over the MRB. Ref. [8] evaluated the TMPA and GPM
IMERG over China, specifically analyzing their performance when quantifying extreme
indices. This study found that IMERG performed better than the TMPA. Ref. [9] concluded
that IMERG is a great satellite precipitation product over Northern Vietnam compared to
the TMPA, and they evaluated it against rainfall gauge data. Finally, Ang et al. (2022) con-
cluded that IMERG Final is the best product for capturing precipitation over Southeast Asia
when compared to Asian Precipitation—Highly Resolved Observational Data Integration
Towards Evaluation (APHRODITE), ERA5, and TMPA [10].

Given the importance of having accurate near-real-time precipitation estimates, the
objective of this study is to determine which near-real-time satellite precipitation product
by the CHRS—specifically, PDIR-Now (Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks—Dynamic Infrared Rain Rate in near-real-
time) or PERSIANN-CCS (PERSIANN—Cloud Classification System)—is more accurate
over the MRB. This comparison was made to assess the improvement from the older dataset
(PERSIANN-CCS) to the newer one (PDIR-Now). PERSIANN-CDR (PERSIANN-Climate
Data Record) was also included in this evaluation to evaluate its performance, but it was
not compared to PERSIANN-CCS and PDIR-Now, considering that climate data records
serve a different purpose from that of near-real-time datasets. These precipitation products
were evaluated against IMERG Final because gauge data were not available to the research
team. Furthermore, IMERG Final is the official NASA product, and it has been widely
evaluated over this study area, exhibiting great performance; thus, it was deemed as an
acceptable product for the evaluation. Something important to note is that PDIR-Now and
PERSIANN-CCS are both near-real-time products, which means that they are available with
a very short latency. On the other hand, IMERG Final is available about 3.5 months after
gathering the data necessary for the algorithm, which means that it is not a near-real-time
product [11].

Accurate precipitation estimates are also essential for the analysis of extreme precipita-
tion events, which can have a significant impact on food security and availability, as is the
case for the MRB. Because of this reason, a trend analysis of extreme precipitation indices
was performed to assess if extreme events increased or decreased over the last few decades.
Past studies, such as [12,13], performed trend analyses of precipitation from 1951 to 2015
using the gridded rainfall gauge dataset from APHRODITE over the MRB. Ref. [12] found
that extreme precipitation over the Upper Mekong River Basin (UMRB) was decreasing,
and the consecutive number of wet days was increasing over the Lower Mekong River
Basin (LMRB) [12,13]. Ref. [13] identified decreasing trends in precipitation above the 95th
percentile and increasing trends in the length of wet spells over the UMRB. They also found
an increase in the length of wet spells over the LMRB. Another study by [14] found that
annual precipitation significantly decreased over the UMRB from 2000 to 2013, with an
alpha of 0.05 [14]. Ref. [15] found a decrease in the length of wet and dry spells from 1960
to 2012 over the Yunnan Province in China, which is close to the UMRB. Ref. [16] used
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12 gauge stations around the delta to check for trends in extreme indices. They identified
downward trends in days with precipitation over 20 and 100 mm of rainfall.

Thus, the objectives of this study were the following:

(a) to perform a daily evaluation of the PERSIANN family of products—specifically, PDIR-
Now, PERSIANN-CCS, and PERSIANN-CDR—at a 0.1◦ by 0.1◦ spatial resolution;

(b) to perform a trend analysis of extreme precipitation indices separately over the UMRB
and LMRB to exemplify the appropriate use of climate record data.

2. Materials and Methods
2.1. Study Area

The study site for this project was the Mekong River Basin and Delta, a politically
important transboundary basin covering six different countries: China, Myanmar, Laos,
Thailand, Cambodia, and Vietnam. Furthermore, the Mekong River is the longest river
in Southeast Asia, measuring 2700 miles. The UMRB, also known as Lancang River
Basin, is located in China, whereas the LMRB covers the rest of the countries listed above
(Figure 1). The LMRB receives more yearly precipitation than the UMRB (Figure 2), and
it is characterized by a wet monsoon from mid-May to mid-October [17,18]. Given the
difference in yearly precipitation amounts, the UMRB and LMRB were separated when
performing the trend analysis of extreme precipitation indices. This river basin is essential
because the river supports the economy of the countries through which it flows, especially
the countries along the LMRB [18,19]. This basin supports agriculture, aquaculture, and
construction in the area, as explained in a WWF report [19]. Agriculture in the area
benefits from the flooding of the basin, which has been affected in the last few years by
low flows during the dry season caused by the over-extraction of water [20]. Another
key problem in this basin is the poor water quality caused by a lack of proper wastewater
treatment [19]. Finally, the delta is suffering from land subsidence caused by upstream
dams in the basin [19,21]. This specifically affects crop production in the area, threatening
food security in the basin [21]. Because of these reasons, having accurate estimates of
precipitation can aid in more effective water management decisions in the basin.

Figure 1. Location of the Mekong River Basin and the mean yearly precipitation from 1983 to 2020 as
estimated with PERSIANN-CDR. UMRB refers to the Upper Mekong River Basin, and LMRB refers
to the Lower Mekong River Basin and Delta. The study area was divided into these two sub-basins to
analyze the trends in extreme precipitation indices.
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2.2. Data Sources

The precipitation products developed by the CHRS used in this evaluation were the
PERSIANN products—specifically, two near-real-time products, PDIR-Now and PERSIANN-
CCS, as well as the climate data record, PERSIANN-CDR [22–24]. PDIR-Now has an hourly
temporal resolution, has a spatial resolution of 0.04◦ × 0.04◦, and is available from 1 March
2000 to the present [22]. PERSIANN-CCS has the same spatial and temporal resolution as
that of PDIR-Now and is available from January 2003 to the present [23]. PERSIANN-CDR
has a spatial resolution of 0.25◦ × 0.25◦ and a daily temporal resolution [24]. The period
that this dataset is available for is from 1983 to the present [24]. PERSIANN-CDR was also
used to study trends in extreme indices. The PERSIANN datasets are available for download
through the CHRS data portal [25].

Rainfall gauge data were not available for use during the period of this evaluation;
thus, IMERG Final was used as the reference dataset due to the promising performance it
has shown in other studies near and in the study area [7–9,21,26–29]. IMERG Final is an
operational satellite product from NASA that has a spatial resolution of 0.1◦ × 0.1◦ and a
30-min temporal resolution [30]. The temporal coverage of this dataset is from June 2000 to
September 2021 [30]. These data are available for download in the Earthdata portal.

2.3. Methods

To evaluate the PERSIANN products, three statistical and three categorical indices
were calculated pixel by pixel over the MRB. These indices were calculated using daily
rainfall estimates from January 2015 to December 2020. The statistical metrics used were the
correlation coefficient (CC, Equation (1)), the root mean square error (RMSE, Equation (2)),
and the bias (Equation (3)). These indices are useful for determining the ability of the
products to estimate rainfall intensity [31]. Specifically, the CC measures linear relationships
between two variables [32]. It is used to assess the strength and direction of the relationship
between two variables; thus, the range for this coefficient is −1 to 1, representing a strong
negative linear relationship and a strong positive linear relationship respectively. The
RMSE exhibits the difference between a dataset and the reference dataset, and the optimal
value is 0. The bias—in this case, the relative bias—is a measure of the systematic error in a
dataset with respect to the observation dataset [33]. The optimal value for this metric is 0.
The formulas used to calculate these indices can be found below:

CC =

1
n

√
∑n

i=1

(
(PPi − PPi)(Re f i − Re f i)

)
σPPσRe f

(1)

RMSE =
1
n

√
n

∑
i=1

(PPi − Re f i)
2 (2)

Bias =
∑n

i=1(PPi − Re f i)

∑n
i=1 Re f i

(3)

where n is the total number of samples, PP is the amount of precipitation at pixel i as
estimated with the PERSIANN datasets, and Ref is the precipitation at pixel i as estimated
with IMERG Final.

The three categorical indices that were used to evaluate these products were the
probability of detection (POD, Equation (4)), the false alarm ratio (FAR, Equation (5)),
and the critical success index (CSI, Equation (6)). These indices were used to test the
ability of the products to detect rain or no-rain pixels [31]. The POD was used to quantify
the precipitation events that were correctly detected by the precipitation product [34].
Additionally, the FAR depicted the fraction of events detected by the precipitation product
but not by the reference dataset [34]. Finally, the CSI combined the POD and FAR to
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assess the skill of the precipitation product [34]. The formulas for these indices can be
found below:

POD =
TP

TP + FN
(4)

FAR =
FP

FP + TN
(5)

CSI =
TP

TP + FP + FN
(6)

where TP represents true positives or the number of instances in which the PERSIANN
dataset captured rain over the same pixel as IMERG Final did. FP represents the number
of instances in which the PERSIANN dataset being evaluated detected rain in a specific
pixel where the reference dataset did not (or false positives). TN represents true negatives
or the instances in which no precipitation was detected by IMERG Final or the PERSIANN
dataset. Finally, FN reflects the number of instances in which the PERSIANN dataset did
not detect rain but IMERG Final did (or false negatives).

The last part of the evaluation included the quantification of mean yearly precipitation
for the entire study period to check which dataset captured the patterns of precipitation
more closely to IMERG Final.

The second part of this study entailed studying trends in extreme precipitation indices.
This work is crucial for understanding what impact these extreme events could have on the
basin and delta. Climate data records are useful for this type of study, as they provide a
long and stable record of precipitation estimates for the area of interest. PERSIANN-CDR,
the climate data record developed by the CHRS, was used to perform a trend analysis
of extreme precipitation indices from 1983 to 2020. Given the difference in precipitation
amounts between the northern and southern parts of the basin, the MRB was divided into
the UMRB and the LMRB for this part of the study. The eight different extreme indices
that were calculated were the simple daily intensity index (SDII), R10mm, R10mmTOT,
consecutive dry days (CDDs), consecutive wet days (CWDs), R95pTOT, R99pTOT, and
PRCPTOT. The definitions of these indices can be found in Table 1.

Table 1. Definitions of the extreme indices analyzed in this study. Eight extreme precipitation
indices were chosen—specifically, SDII, R10mm, R10mmTOT, CDDs, CWDs, R95pTOT, R99pTOT,
and PRCPTOT.

Extreme Index Definition

SDII (mm/day) Sum of the precipitation amounts on wet days (precipitation ≥ 1 mm) over the number of wet days.
R10mm (days) Annual count of days on which precipitation was ≥10 mm.
R10mmTOT (mm) Annual amount of precipitation on days in which precipitation was ≥10 mm.
CDD (days) Maximum number of consecutive days on which precipitation was <1 mm.
CWD (days) Maximum number of consecutive days on which precipitation was ≥1 mm.
R95pTOT (mm) Annual total precipitation when daily precipitation on a wet day was above the 95th percentile.
R99pTOT (mm) Annual total precipitation when daily precipitation on a wet day was above the 99th percentile.
PRCPTOT (mm) Annual total precipitation on wet days.

After calculating these annual extreme indices, a Mann–Kendall (MK) test was per-
formed at a 0.05 significance level. The Mann–Kendall test is a non-parametric test to
check for monotonic trends in data [35,36]. The null hypothesis of this test is that there
is no significant monotonic trend present, and the alternative hypothesis is that there is a
significant monotonic trend [35,36].

3. Results
3.1. Evaluation

The findings from the comparison between the two near-real-time products showed
that PDIR-Now performed more similarly to IMERG Final than PERSIANN-CCS did.
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Specifically, PDIR-Now performed the best for four out of the six statistical and categorical
indices. PDIR-Now had a higher CC than that of PERSIANN-CCS 0.62 and 0.58, respectively.
This means that the spatial distribution of precipitation and the amount of precipitation of
PDIR-Now corresponded better to those of IMERG Final than those of PERSIANN-CCS
did. Furthermore, PDIR-Now had a lower RMSE (8.96 mm) than that of PERSIANN-
CCS (9.72 mm). The only statistical index for which PERSIANN-CCS exhibited a better
performance than that of PDIR-Now was the bias (0.10 and −0.19, respectively).

Three categorical indices were also computed to analyze the ability of the precipitation
products to detect rain or no-rain pixels. In this case, PDIR-Now also performed better
than PERSIANN-CCS when evaluated against IMERG Final. Specifically, PDIR-Now
had a higher POD than that of PERSIANN-CCS (0.89 and 0.79) and a higher CSI (0.74
and 0.70, respectively). However, PERSIANN-CCS had a lower FAR (0.12) than that of
PDIR-Now (0.18). These results are also shown in Table 2.

Table 2. Statistical and categorical indices of both near-real-time satellite precipitation products
(PDIR-Now and PERSIANN-CCS) when evaluated against IMERG Final from 2015 to 2020.

SPP CC RMSE (mm) Bias POD FAR CSI

PDIR-Now 0.62 8.96 −0.19 0.89 0.18 0.74
PERSIANN-CCS 0.58 9.72 0.10 0.79 0.12 0.70

PERSIANN-CDR 0.66 7.85 0.12 0.91 0.22 0.72

Even though PERSIANN-CDR could not be compared to the near-real-time products,
PDIR-Now and PERSIANN-CCS, due to their differences in purpose, the statistical and cat-
egorical indices were also computed to assess if the product’s performance was satisfactory
over the study area. PERSIANN-CDR’s performance was deemed satisfactory with a CC of
0.66, which was higher than 0.5. When evaluated against IMERG Final, the RMSE and bias
of this product were 7.85 mm and 0.12, respectively. Furthermore, PERSIANN-CDR had an
FAR of 0.22, which was lower than 0.5, a POD of 0.91, and a CSI of 0.72, which were both
higher than 0.5. These results are also shown in Table 2.

The CC of PDIR-Now was high over the entire MRB, whereas the CC of PERSIANN-
CCS was lower over the UMRB, as shown in Figure 2a,b. The RMSE of PDIR-Now was
higher in the eastern part of the LMRB, whereas PERSIANN-CCS had a lower RMSE
in that area. However, PDIR-Now showed a lower RMSE over the UMRB than that of
PERSIANN-CCS (Figure 2d,e). Finally, PDIR-Now had a low bias across all of the UMRB,
and PERSIANN-CCS showed some higher bias values in the northern area of the UMRB
(Figure 2g,h).

PERSIANN-CDR had a high CC over the MRB, with higher values toward the eastern
side of the LMRB and slightly lower values in the northern part of the UMRB, as shown in
Figure 2c. Additionally, the RMSE was higher in the eastern part of the LMRB and lower in
the UMRB and western area of the LMRB (Figure 2f). Finally, the bias was low throughout
the MRB, with lower values in the LMRB and higher values in the UMRB, as shown in
Figure 2i.

The POD of PDIR-Now was high across the basin, with slightly lower values over
the delta, whereas in the case of PERSIANN-CCS, the POD had lower values than those
of PDIR-Now, especially in the southern part of the UMRB and over the delta, as shown
in Figure 3a,b. In the case of the FAR, PDIR-Now exhibited slightly higher values than
those of PERSIANN-CCS, and both showed a similar spatial distribution, with higher
values over the UMRB (Figure 3d,e). The CSI of PDIR-Now displayed higher values in
the LMRB, just as the PERSIANN-CCS did (Figure 3g,h). The main difference in the CSI
results between these two datasets occurred in the southern area of the UMRB and over
the delta, where PERSIANN-CCS exhibited lower values than those of PDIR-Now. On the
other hand, the POD of PERSIANN-CDR portrayed high values across the study area, as
shown in Figure 3c. Its FAR values were low over the LMRB and the southern area of the
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UMRB, but they were higher in the northern part of the UMRB (Figure 3f). Finally, the CSI
exhibited high values across the study area, with lower values toward the northern part of
the UMRB, as displayed in Figure 3i.

Figure 2. Results for statistical indices from PDIR-Now, PERSIANN CCS, and PERSIANN-CDR.
The results from PDIR-Now for CC, RMSE, and bias are shown in panels (a,d,g). The results from
PERSIANN-CCS for CC, RMSE, and bias are shown in panels (b,e,h). Finally, the results from
PERSIANN-CDR for CC, RMSE, and bias are shown in panels (c,f,i).

Additionally, the mean yearly precipitation estimate of PERSIANN-CCS (1577 mm)
was the closest to that of IMERG Final (1580 mm). PDIR-Now underestimated the mean
yearly precipitation with an estimate of 1263 mm. However, PDIR-Now captured the
precipitation patterns in the area more closely to IMERG Final than PERSIANN-CCS did,
as shown in Figure 4. PERSIANN-CCS heavily underestimated the precipitation in the
southern region of the UMRB, and it heavily overestimated it in the northern part of the
UMRB, as well as over the LMRB and delta, leading to a similar mean yearly precipitation
estimate. On the other hand, PDIR-Now closely matched the precipitation pattern depicted
by IMERG Final, which led to the conclusion that PDIR-Now was the better near-real-time
product of the two for this study area. Furthermore, the performance of PERSIANN-CDR
was deemed satisfactory given that the CC was greater than 0.5 and the bias was close to
0. The performance of PERSIANN-CDR in the categorical indices was also satisfactory,
as the POD was greater than 0.9, the FAR was lower than 0.5, and the CSI was greater
than 0.5. Moreover, as shown in Figure 4, the precipitation pattern was captured well
by PERSIANN-CDR even though it overestimated the precipitation with an estimate of
1708 mm.
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Figure 3. Results for the categorical indices of PDIR-Now, PERSIANN CCS, and PERSIANN-CDR.
The results of PDIR-Now for the POD, FAR, and CSI are shown in panels (a,d,g). The results of
PERSIANN-CCS for the POD, FAR, and CSI are shown in panels (b,e,h). Finally, the results of
PERSIANN-CDR for the POD, FAR, and CSI are shown in panels (c,f,i).

Figure 4. Mean yearly precipitation as estimated by (a) PDIR-Now, (b) PERSIANN-CCS, (c) PERSIANN-
CDR, and (d) IMERG Final from 2015 to 2020.

3.2. Trends in Extreme Precipitation Indices

In the analysis of trends in extreme indices, the significance level was 0.05, meaning
that if the p-value obtained for a specific index was lower than the significance level, the
trend was statistically significant, and if it was not, then there was no significant trend.
In the case of the extreme indices over the UMRB, there were significant negative trends
in the precipitation above the 95th and 99th percentiles, with p-values of 0.021 and 0.017,
respectively. This meant that these two indices monotonically decreased yearly throughout
the study period from 1983 to 2020. On the other hand, the only index that exhibited a
significant trend was the consecutive number of wet days (CWD) or the length of wet spells
over the LMRB, with a p-value of 0.017. The trend analysis results for all of the extreme
indices can be found in Table 3 with their respective p-values.
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Table 3. Trend results over the UMRB and the LMRB. “T” shows if the indices exhibited a trend.
A result of 1 means that there was a significant positive trend, 0 means that no significant trend
was present, and −1 means that there was a significant negative trend. The indices that exhibited
significant trends are shown in bold in the table. The p-values are also specified.

Extreme Index Upper Mekong Basin Lower Mekong Basin

SDII (mm/day) T = 0 T = 0
p-value = 0.280 p-value = 0.706

R10mm (days) T = 0 T = 0
p-value = 0.209 p-value = 0.083

R10mmTOT (mm) T = 0 T = 0
p-value = 0.615 p-value = 0.125

CDD (days) T = 0 T = 0
p-value = 0.352 p-value = 0.513

CWD (days) T = 0 T = 1
p-value = 0.070 p-value = 0.017

R95pTOT (mm) T = −1 T = 0
p-value = 0.021 p-value = 0.481

R99pTOT (mm) T = −1 T = 0
p-value = 0.017 p-value = 0.436

PRCPTOT (mm) T = 0 T = 0
p-value = 0.421 p-value = 0.059

Moreover, the pixel-by-pixel results of the trend analysis of precipitation over the
95th percentile (Figure 5a) showed negative trends over the southern part of the UMRB.
Even though these areas of significant negative trends were not the majority, there was
been a negative trend in the mean of this index, as shown in Figure 5b. In the case of
the precipitation over the 99th percentile, the pixel-by-pixel trend analysis showed some
significant negative trends in the northern part of the UMRB and an area with a significant
negative trend in the southern part of the UMRB (Figure 6a). Figure 6b shows a significant
negative trend in the yearly mean for the entire UMRB. On the other hand, the pixel-by-
pixel trend analysis results of the consecutive number of wet days (CWD) showed a positive
trend in many areas in the northern part of the LMRB, as shown in Figure 7a. Finally, the
positive trend in the mean of the CWD can also be seen in Figure 7b.

Figure 5. (a) Spatial trend analysis results of extreme precipitation above the 95th percentile
(R95pTOT) over the UMRB. (b) Trend analysis of the yearly mean extreme precipitation above
the 95th percentile over the UMRB.
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Figure 6. (a) Spatial trend analysis results of extreme precipitation above the 99th percentile
(R99pTOT) over the UMRB. (b) Trend analysis of the yearly mean extreme precipitation above
the 99th percentile over the UMRB.

Figure 7. (a) Spatial trend analysis results of the length of wet spells (CWD) over the LMRB. (b) Trend
analysis of the yearly mean length of wet spells (CWD) over the LMRB.

On the other hand, the rest of the extreme indices did not show trends in the mean, as
shown in Table 3. However, some significant trends were found in the spatial trend analysis.
The trends found in the spatial analysis of the SDII included a decreasing trend in the
north of the UMRB and an increasing trend in the southern part of the LMRB (Figure 8a,d).
The R10mm and R10mmTOT indices increased in several areas of the LMRB (Figure 8e,f).
Additionally, there were a few areas in the UMRB where the length of dry spells increased
and others where the length of wet spells increased (Figure 8b,c).

Even though there were no significant trends found in the mean yearly precipitation
over the UMRB or the LMRB, Figure 9a,b shows that there was a significant increasing
trend in the northern part of the UMRB, as well as in some areas of the LMRB. Even though
these trends existed, they were not captured in the mean of the yearly precipitation over
the basins.
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Figure 8. Results of the spatial trend analysis of extreme indices over the UMRB: (a) SDII, (b) CDD,
and (c) CWD. Results of the spatial trend analysis of extreme indices over the LMRB: (d) SDII,
(e) R10mm, and (f) R10mmTOT. Only the indices for which spatial trends were found are shown.

Figure 9. (a) Spatial trend analysis of the mean annual precipitation from 1983 to 2020 over the UMRB.
(b) Spatial trend analysis of the mean annual precipitation from 1983 to 2020 over the LMRB.

4. Discussion and Conclusions

The first goal of this study was to assess which CHRS near-real-time satellite precipi-
tation product performed best over the MRB when evaluated against IMERG Final. We
met this goal by using daily data from PERSIANN-CCS, PDIR-Now, and IMERG Final
from 2015 to 2020 to calculate the CC, RMSE, bias, POD, FAR, and CSI, as well as by
analyzing the mean yearly precipitation patterns and amounts. From the first part of
the study, we concluded that PDIR-Now performed better than PERSIANN-CCS, as it
outperformed PERSIANN-CCS in four out of the six indices and captured the patterns of
precipitation more accurately. Furthermore, PDIR-Now and PERSIANN-CCS have also
been evaluated by researchers from the CHRS over the Russian River Basin in California,
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USA [34]. In this study, PDIR-Now also outperformed PERSIANN-CCS [37]. This showed
that PDIR-Now is an improvement by the CHRS from the older near-real-time precipitation
product PERSIANN-CCS. PERSIANN-CDR was included in the evaluation to assess its
performance, and it showed satisfactory results by meeting the set thresholds and closely
capturing the mean yearly precipitation patterns over the study area.

The second goal of the study was to separately analyze trends in extreme indices over the
LMRB and UMRB. This trend analysis was performed using the CHRS climate data records
(PERSIANN-CDR) from 1983 to 2020 to perform a Mann–Kendall test with a significance level
of 0.05. The extreme indices selected were SDII, R10mm, R10mmTOT, CDD, CWD, R95pTOT,
R99pTOT, and PRCPTOT. The findings from this trend analysis included the following:

- Decreasing trends over the UMRB in the mean of the precipitation above the 95th and
99th percentiles (R95pTOT and R99pTOT).

- A decreasing trend in R95pTOT over the southern part of the UMRB.
- A decrease in R99pTOT over the northern part of the UMRB during the study period.
- An increasing trend in the mean of the length of wet spells (CWD) over the LMRB, as

well as in several areas of the UMRB, during the study period.
- An increasing trend in yearly precipitation in areas of the UMRB and LMRB but not in

the yearly mean.
- An increasing trend in the intensity of rainfall (SDII) over the southern part of the

LMRB and a decreasing trend over the north of the UMRB.
- Positive trends in the number of days with precipitation greater than or equal to

10 mm, as well as the amount of precipitation on these days (R10mm and R10mmTOT)
in areas of the LMRB.

- An increasing length of dry spells (CDD) over the southern part of the UMRB and
increasing length of wet spells (CWD) over the northern part of the UMRB.

The results of the trend analysis of the extreme precipitation indices matched those
of [12], where a decreasing trend in extreme precipitation over the 95th and 99th percentiles
over the UMRB was found. Ref. [13] found decreasing trends in extreme precipitation
over the 95th percentile and in the CWD over the UMRB. They also found an increasing
trend in the CWD over the LMRB, as our study did [13]. The main explanation for the
disparity in some results could be the difference in the datasets used. The two studies
mentioned above used APHRODITE, a gridded gauge measurement dataset, whereas this
study used a satellite precipitation dataset. The differences in the nature of these datasets
could have caused the trends found to differ. Furthermore, the time periods of the two
studies mentioned were different from that in this study. Specifically, the authors of [12,13]
studied trends in extremes from 1952 to 2015, which was the period that APHRODITE
spanned, whereas the study period of this work was from 1983 to 2020. Ref. [14] found
that the annual precipitation significantly decreased over the UMRB from 2000 to 2013,
with a significance level of 0.05 [14]. Ref. [15] found that the CDD decreased from 1960
to 2012 in the Yunnan Province in China, which is close to the UMRB. They also found
a decreasing trend in the CWD [15]. These results were obtained using gauge data and
during a different time period, which can explain the differences in the findings. Ref. [16]
used 12 gauge stations around the delta to check for trends in extreme indices. Even though
none of these indices matched those in this study, they found downward trends in days
with precipitation of over 20 and 100 mm of rainfall [16]. Moreover, no trends were found
over the delta in this study when using PERSIANN-CDR. Overall, the results of this study
agree with those of past studies and can be used to understand how trends have changed
since the earlier findings provided by past studies.

Finally, this study found PDIR-Now to be the best-suited near-real-time PERSIANN
precipitation product for the MRB. This product performed the best in the study area
when evaluated against IMERG Final for four out of the six extreme indices. Furthermore,
PDIR-Now captured the yearly precipitation patterns in the study area more accurately
than PERSIANN-CCS did. The long-term dataset, PERSIANN-CDR, also performed well in
the study area and was deemed suitable for studies such as trend analyses. Moreover, the
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results of the trend analysis exhibited a decreasing trend in the 95th and 99th percentiles
over the UMRB and an increasing trend in the length of wet spells over the LMRB. Accurate
precipitation estimates in this area are crucial due to the significant impact that changes in
precipitation can have.
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