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Abstract: This paper presents a study conducted in São Paulo, Brazil, where the planetary boundary
layer height (PBLH) was determined using ceilometer data and the wavelet covariance transform
method. The retrieved PBLH values were subsequently compared with the concentrations of CO2 and
CH4 measured at three distinct experimental sites in the city. The period of study was July 2021. This
study also included a comparison between ceilometer data and lidar data, which demonstrated the
favorable applicability of the ceilometer data for PBLH estimation. An examination of the correlation
between changes in average CO2 concentrations and PBLH values revealed stronger correlations for
the IAG and UNICID stations, with correlation coefficients (ρ) of approximately −0.86 and −0.85,
respectively, in contrast to the Pico do Jaraguá station, which exhibited a lower correlation coefficient
of −0.42. When assessing changes in CH4 concentrations against variations in PBL height, the
retrieved correlation coefficients were approximately−0.78 for IAG,−0.66 for UNICID, and−0.38 for
Pico do Jaraguá. The results indicated that CO2/CH4 concentrations are negatively correlated with
PBL heights, with CO2 concentrations showing more significant correlation than CH4. Additionally,
among the three measurement stations, IAG measurements displayed the most substantial correlation.
The results from this study contribute to the understanding of the relationship between PBLH and
greenhouse gas concentrations, emphasizing the potential of remote sensing systems like ceilometers
in monitoring and studying atmospheric processes.

Keywords: planetary boundary layer height; ceilometer; lidar; greenhouse gases

1. Introduction

The atmospheric boundary layer or planetary boundary layer (PBL) is the lowermost
region of the troposphere. Such a region is directly influenced by the Earth’s surface, so
that it is fundamental in the exchange process of momentum, heat, and moisture between
the atmosphere and the surface [1]. The vertical height of the PBL (PBLH) is influenced
by weather conditions and topography, varying in time and space, presenting a daily and
seasonal cycle strongly influenced by the atmospheric stability and surface heat fluxes [1].
The PBLH is a key parameter in pollutant dispersion studies, as well as weather forecasting,
air quality, and climate modeling [2,3]. The PBL dynamics affect the greenhouse gases
(GHG) concentration near the surface [4,5] because the top of this layer acts as a lid, partially
blocking the transport and dispersion process to the free atmosphere (FA). Therefore, the
PBL is often used as a fundamental parameter to estimate the vertical fluxes of pollutants
and greenhouse gases.
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However, it is not possible to measure the PBLH directly; in fact, it can be obtained
by using as a proxy some vertical profiles of atmospheric variables, such as particle con-
centrations, relative humidity, wind speed, and potential temperature. Then, PBLH can be
estimated by many different methodologies, using remote sensing instruments such as lidar
(elastic and/or Doppler [6]), ceilometers, wind-profiling radars [7], microwave radiome-
ters [8], and mainly radiosondes, the most widely applied method. PBLHs measured from
radio soundings are often estimated using methods like the Richardson number [9], which
is based on the wind and temperature profiles. Although these estimates are generally
accurate, unfortunately radiosondes lack the necessary temporal (they are often launched
twice per day) and spatial resolution for effectively detecting the PBLH daily cycle. On the
other hand, lidar systems and ceilometers are powerful tools that can be applied in this kind
of study [10–15]. These kinds of remote sensing systems allow for long-term measurements
with high temporal and spatial resolutions [16–21]. However, due to the high complexity
of the PBL dynamics, the PBLH detection depends on mathematical methods like the
maximum gradient method [22–24], the variance method [24,25], the wavelet covariance
transform method [7,12,16,20,26,27], and ideal profile fitting [28,29].

Although ceilometers are simpler than elastic lidars, they are reasonable tools for
automatic PBLH evolution retrievals. The ceilometers utilize a single wavelength and
typically employ a less intense laser source, thereby offering a smaller instrument range
and producing a signal with more noise. However, they operate continuously and can be
fully automated, making them good alternatives to more powerful lidar systems. Although
their performance is limited when compared to lidar systems, the usual algorithms of
estimation for the PBLH still can be used with ceilometers [30].

When investigating GHG concentrations in the PBL, a knowledge of the PBL height
is a useful tool to learn about sinks and sources of GHGs. For instance, concentrations of
carbon dioxide (CO2), a long-lived anthropogenic GHG, are influenced by the interactions
happening near the surface, such as photosynthesis and evapotranspiration, and by the
PBLH [5,31,32]. Carbon dioxide, in particular, accounts for most of the warming effect
on the climate [33–36], and methane contributes to roughly 20% of the global warming
attributed to all well-mixed GHGs [35–37]. A substantial portion of the longwave radiation
emitted by the surface is absorbed by methane. Therefore, this GHG shows a considerable
trend to affect the radiative forcing [38]. Comprehending the influence of atmospheric CH4
and CO2 on Earth’s climate, including tracking their sources, sinks, global dispersion, and
long-term trends, remains crucial for future climate assessment.

Cities play a substantial role in the emission of GHGs, accounting for approximately
70% of CO2 anthropogenic emissions [39]. The Metropolitan Region of São Paulo (MRSP)
has around 19 million inhabitants and a large number of vehicles, which are the main
source of air pollutants emission in the region and currently number seven million. Com-
prehending the urban impact is essential for the creation of mitigation policies. Nonetheless,
calculating the total amount of pollutants emitted is a complex challenge, since their emis-
sion is influenced not only by human activities but also affected by the interaction between
land and surface. This study aims to investigate the influence of the PBL height on CO2
and CH4 concentrations measured in São Paulo during July 2021. PBLHs were obtained
using a ceilometer and applying the wavelet covariance transform method, and CO2 and
CH4 concentrations were obtained with CRDS instruments.

2. Materials and Methods
2.1. Data and Instrumentation

The ceilometer system used in this study was the CHM 15k Lufft ceilometer (Figure 1a),
which operated uninterruptedly during the period selected for analysis. It utilizes an eye-
safe system equipped with a solid-state Nd:YAG laser that emits radiation at a single
infrared wavelength of 1064 nm, with a maximum range of 15 km. The ceilometer provides
data with a vertical resolution of 15 m and a temporal resolution of 15 s. For more detailed
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information, please refer to the instrument manual, available at (https://www.lufft.com/
download/manual-lufft-chm15k-en/, accessed on 10 October 2023).
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Figure 1. (a) CHM 15k ceilometer and (b) MSP1 lidar.

The lidar system used was the Metropolitan São Paulo Lidar 1 (MSP1) system (Figure 1b).
It uses a pulsed Nd:YAG, operating at a fundamental wavelength of 1064 nm, generating
second and third harmonics at 532 nm and 355 nm, and with a repetition frequency of 10 Hz.
The instrument was run with a temporal resolution of 1 min and a spatial resolution of
7.5 m. The MSP1 is located in a suburban setting at the Center for Lasers and Applications
of the Energy and Nuclear Research Institute (IPEN) building (23◦34′ S, 46◦3′ W, 782 m
above sea level).

The network monitoring greenhouse gases in the São Paulo megacity, part of the Metro-
clima Project, is the first GHG network in South America. This network utilizes wavelength-
scanned cavity ring-down spectroscopy (CRDS) instruments located at multiple sites in the
city. CO2, CH4, and water vapor concentration measurements are carried out at all sites,
while CO concentrations are measured at one of them. Table 1 describes the three monitor-
ing sites from which data were used in this study (http://www.metroclima.iag.usp.br/,
accessed on 4 September 2023).

Table 1. CO2 and CH4 monitoring site details and instrument models at each location.

Site
Name

Inlet
Height
(m agl)

Site
Elevation

(m asl)
Latitude Longitude Analyzer Measuring

IAG 15 731 −23.55947 −46.733533 G2301 II CO2, CH4

UNICID 38 741 −23.53586 −46.559550 G2401 CO, CO2, CH4

Pico do
Jaraguá 3 1079 −23.45631 −46.766094 G2301-m CO2, CH4

The concentrations of CO2 and CH4 were measured using the Picarro Cavity Ring-
Down spectrometer, manufactured by Picarro Inc. (Santa Clara, CA, USA). This high-
precision greenhouse gas (GHG) analyzer enables concurrent measurements of CH4 and
CO2 at parts-per-billion (ppb) levels and water (H2O) at parts-per-million (ppm) levels,
while demonstrating minimal drift. For further details about this instrument, please refer
to the manufacturer’s website at https://www.picarro.com/g2401_gas_concentration_
analyzer (accessed on 10 October 2023).

https://www.lufft.com/download/manual-lufft-chm15k-en/
https://www.lufft.com/download/manual-lufft-chm15k-en/
http://www.metroclima.iag.usp.br/
https://www.picarro.com/g2401_gas_concentration_analyzer
https://www.picarro.com/g2401_gas_concentration_analyzer
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2.2. Locations

The Metropolitan Area of São Paulo (MASP), situated at 23◦33′ S, 46◦38′ W, with an
elevation of 760 m above sea level, is the most densely populated metropolis in Brazil, the
Americas, and the Southern Hemisphere [40]. The MASP major pollutants contribution is
related to the anthropogenic emissions, due to the MASP’s enormous population and its
industrial and vehicular activities. Therefore, it becomes crucial to monitor the presence of
atmospheric pollutants and GHGs, study their transport and dispersion, and continuously
track the development of the planetary boundary layer (PBL) in this polluted region. Such
monitoring efforts yield valuable insights into local air quality. The primary sources of
pollutants in the MASP stem from burning of fossil fuels, primarily due to the presence
of vehicles exceeding 7 million in number [41]. Vehicular traffic serves as the main con-
tributor to pollutant emissions within the city. Additionally, air pollution in São Paulo is
further influenced by biomass burning in nearby regions. Geographically located in the
southeastern part of Brazil, São Paulo experiences a humid subtropical climate (Cwa). The
city’s summers (January–March) are warm and wet, while winters (July–September) are
mild and dry [41].

Planetary boundary layer height data were obtained from ceilometer measurements
located at the CIENTEC site (located at 23◦39′ S, 46◦37′ W). The CHM 15k ceilometer was
positioned on the rooftop of the Museum of Meteorology within the Science and Technology
Park (CIENTEC) of the University of São Paulo. Situated in a suburban environment, the
site is approximately 810 m above sea level.

CO2 and CH4 quantification were measured at three sites in the MASP area using
CRDS Picarro spectrometers. A suburban area called IAG, which has the coordinates of
23◦33′ S, 46◦44′ W and 731 m of elevation above sea level, was one of the places used to
acquire these gasses. At this place, more precisely at the rooftop, the acquisition started. As
mentioned, the coordination data were exactly at the University of São Paulo, near an urban
highway located in close proximity to the site, around 1 km away, experiencing an average
daily traffic volume exceeding 250,000 vehicles. UNICID was another place of acquisition,
at 23◦32′ S, 46◦33′ W, with 741 m of elevation above sea level, which was carried out at an
inlet at the top of the building. An extremely busy highway is located near this site, along
with an elevated subway station. In addition, a domestic wastewater treatment site can
be found about 2.5 km from this site. The site of Pico do Jaraguá (23◦27′ S, 46◦45′ W) was
located in the air quality monitoring station of the Environmental Company of the State of
São Paulo (CETESB) in Pico do Jaraguá (Jaraguá Peak). It is located in the highest places of
the MASP and surrounded by the Atlantic Forest reserve called Jaraguá. This is located at
1079 m above sea level. The locations and distances between the measurement sites are
shown in Figure 2:

2.3. PBLH Retrieval Method

The algorithmic method of wavelet covariance transform (WCT) was used, with
certain modifications to enhance retrieval in different conditions. The selection of this
algorithm was based on its demonstrated effectiveness across diverse meteorological
scenarios and its flexibility for adjustment. The WCT method is usually used to obtain PBL
heights from lidar data by detecting abrupt variations in the range-corrected signal which
correspond to variations in aerosol concentration [16]. For that, the covariance transform
W f (α, ζ) measures the similarity between the Haar function and the RCS. It is defined by
Equation (1):

W f (α, ζ) =
1
α

∫ zα

zζ
RCS(z)h

(
z− ζ

α

)
dz, (1)

where h
(

z−ζ
α

)
corresponds to the Haar function, expressed as:

h
(

z− ζ

α

)
=
{
− 1 : ζ− α

2
≤ z ≤ ζ 1 : ζ ≤ z ≤ ζ+

α

2
0 : Other cases, (2)
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Figure 2. Locations of and distances between the IPEN and CIENTEC stations, IAG, UNICID, and
Pico do Jaraguá stations. Scale 1:200,000. https://geoone.com.br/mapas-qgis/ (accessed on 14
October 2023). Using: QGIS (GIS software). Version 3.28.11. QGIS Geographic Information System.
Open Source Geospatial Foundation Project. http://qgis.osgeo.org, (accessed on 4 September 2023).

RCS is the range-corrected signal P(z)z2 obtained by an instrument such as a lidar
or ceilometer, where P(z) is the measured signal as a function of height, and z is the
distance from the instrument. The lower and upper limits of the signal are giving by zα
and zζ, respectively; α is the dilation of the function and ζ is the vertical translation of the
function [26].

The maximum global value of W f (α, ζ) corresponds to the height where an abrupt
change becomes apparent in the lidar or ceilometer signal. This indicates the location where
the backscatter profile and the Haar wavelet function exhibit the highest similarity. Prior to
applying the method, the initial conditions α and ζ must be defined. The dilation of the
Haar function, α, defines the range within which the algorithm seeks abrupt changes in the
RCS profile. Selecting an appropriate value for α can be crucial for accurately determining
the PBLH, particularly in non-ideal conditions. Small values of α can result in the detection
of aerosol layers due to the small gradients they generate. Low clouds and noise also
generate local maxima, impairing the retrieval of the PBLH, especially for small values of
α. In clear-sky conditions, the value of α is not as critical for an accurate retrieval of the
PBLH, as it is unlikely that multiple maxima will be present in the signal. The center of the
Haar function is given by the value of ζ. As the location where the function is centered is
translated by ζ, the value of α should be greater than the value of ζ. A representation of
the Haar function can be seen in Figure 3.

A few adjustments were implemented to enhance result accuracy. During the diurnal
period and when confronted with a dense or several strata of cloud or aerosol formations,
the CHM15k’s backscattering signal may encounter high noise due to signal attenuation.
To improve the signal-to-noise ratio and facilitate change detection, a 30 min average was
applied to the backscatter profiles. The CHM 15k ceilometer provides cloud base height
estimates for each of its signal profiles. While these results are automatically generated and
may occasionally contain errors, they serve a valuable purpose in screening the profiles
used in the analysis to identify low clouds that could interfere with PBLH retrieval.

The WCT method can be applied in complex cases [12]. Although the method’s
accuracy may be compromised in cases involving multiple aerosol layers [42], it presents
several advantages, such as being less affected by noise, and ease of automation [16], as
the ‘α’ and ‘ζ’ parameters can be fine-tuned for improved PBL height identification in
various circumstances.

https://geoone.com.br/mapas-qgis/
http://qgis.osgeo.org
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3. Results

Throughout July 2021, the CHM 15k ceilometer operated continuously at CIENTEC.
PBL heights were estimated using the WCT method for all days without cloud cover. Con-
currently, instruments deployed at three distinct sites in São Paulo retrieved measurements
of CO2 and CH4 concentrations.

3.1. PBLH Estimation

To explore the possibility of using the same estimated PBLH for all stations, as op-
posed to individual estimations for each location, the results obtained from the CHM 15K
ceilometer and the MSPI lidar on 26 July 2021 were compared. On this specific date, day-
time cloud cover was minimal, and the incoming air masses at all site locations displayed
similar origins, as indicated by HYSPLIT backward trajectories. Additionally, there were
no significant reports of biomass burning events in the area during that period. Figure 4a,b
show the range-corrected signal obtained from both instruments on 26 July, along with the
corresponding PBLH values derived using the WCT method.
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Figure 4. Diurnal evolution of PBLH at (a) CIENTEC and (b) IPEN on 26 July 2021.

The PBL exhibits a customary manifestation during cloudless days, expanding from
the middle of the morning to the early hours of the afternoon (local time, UTC-3), with the
PBL top reaching its peak height during mid-afternoon. This behavior in PBLH is associated
with the rise in temperature attributed to increasing solar radiation during morning and
afternoon. At around 20:00 UTC, data from both instruments show the development of
the residual layer, which can introduce challenges when identifying the PBLH. As can be
seen in Figure 4a,b, while the PBL top is visible within the signal, it could potentially be
misinterpreted as the residual layer situated above it.

A comparison of PBLH values at both sites revealed a similar development of the PBL
throughout the day at both locations, even though they were separated by approximately
15 km. A previous study conducted by Moreira et al. (2022) [43] used two elastic lidars
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10 km apart, demonstrating that the PBLH in São Paulo municipality has a homogeneous
horizontal distribution, only influenced by the topography, which does not vary a lot since
São Paulo city is situated on a plateau. In this study, the difference in values obtained at
the two locations remained below 300 m for the majority of the day, indicating a relatively
low variation in PBLHs between the two measurement locations. This suggests that the
estimated PBLH value obtained at one location could be applicable to other locations within
the city for the selected data period. Figure 5 illustrates the difference between the PBLHs
acquired by the two remote sensing tools.
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Despite not being collocated, the consistency in the results between the lidar and
ceilometer data suggests that the ceilometer, which is capable of measuring the aerosol
layer up to a few kilometers, can be considered a viable alternative to more powerful lidar
systems for PBL height estimation. Considering the comparable outcomes obtained from
the two instruments, it was decided to treat the PBL height as homogeneous across the
entire study region.

3.2. Case Study: CO2 and CH4 Concentrations in the Planetary Boundary Layer during 24–26
July 2021

Between 24 July and 26 July 2021, the weather conditions were devoid of substantial
cloud cover. The absence of precipitation and cloud cover facilitated the acquisition of
accurate PBL height retrievals for these specific days. Thus, this time frame was selected as
a study case to investigate the observed alterations in PBLH during these three days and
their correlation with changes in carbon dioxide and methane concentration values. PBLH
data was obtained from the CIENTEC site, while CO2 and CH4 data were collected from
the IAG, UNICID, and Pico do Jaraguá stations.

The range-corrected signal measured with the ceilometer on both 24 and 25 July, as
well as the PBLH values retrieved using the WCT method for this period, are shown
in Figure 6a,b.

The Single-Particle Lagrangian Integrated Trajectory Hybrid (HYSPLIT) model was
developed by the NOAA Air Resources Laboratory; it is a system for calculating air
mass trajectories as well as transport, dispersion, chemical transformation, and deposition
simulations. The method of calculation of this model is a hybrid between the Lagrangian
approach, using mobile reference data for advection and diffusion calculations as the
trajectories of air masses move, and the Eulerian methodology which is based on calculating
pollutant concentrations with a reference frame that uses a fixed three-dimensional grid
method. It was used to verify the origin of the air masses that arrived in São Paulo during
the analyzed period. The model was performed in backward trajectories of 24 h, due to the
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fact that the PBLH changes within this interval, and the selected hours were 9, 12, 15, 18,
and 21 UTC in the locations of the three stations measuring the concentrations of CO2 and
CH4. Analyzing the backward trajectories of air masses, as shown in Figure 7, it was noted
that they come from the same region. One of the factors that would cause a high variation
in the concentrations of CH4 and CO2 in the study area would be the transport of GHGs
from regions with high methane production due to agriculture or plumes from fires. Both
sources are mostly located further east, and such sources possibly were not located in the
study region [44,45].
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Figure 7. Back trajectories from HYSPLIT at inlet heights on 24th to 26th July are displayed for three
locations: IAG at 15 m (a–c), UNICID at 38 m (d–f), and Pico do Jaraguá at 3 m (g–i). Trajectories are
color-coded by arrival time: pink curves depict trajectories arriving at 9 UTC, cyan curves at 12 UTC,
green curves at 15 UTC, blue curves at 18 UTC, and orange curves at 21 UTC.

3.2.1. CO2 and CH4 Concentration Variations across Measuring Stations

Figure 8 presents the average PBLH obtained for the period spanning from 24 to 26
July 2021, as well as the average CO2 concentrations measured across the three stations.
PBLHs and CH4 concentrations were also compared. Figure 9 shows the average PBLH
heights obtained at CIENTEC and CH4 concentrations obtained at each site location. The
shaded regions in Figures 8 and 9 represent the standard deviations of values included in
the averages.

An apparent inverse relationship or anticorrelation between PBLH and CO2 and CH4
concentrations can be seen in Figures 8 and 9. This suggests that as the PBLH increases, CO2
and CH4 concentrations tend to decrease, indicating that lower PBL heights correspond to
limited vertical mixing and the accumulation of these gases near the surface.
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As can be seen in Figures 8 and 9, there was a noticeable trend where both CO2 and
CH4 concentrations at IAG and UNICID decrease as the PBLH increases. Generally, CO2
concentrations in urban areas are closely linked to local emissions and sinks. In the case
of São Paulo, the primary sources of emissions are often associated with the large flow
of vehicles. These concentrations can be affected by air mass transport and variations in
the PBL [46]. GHGs emitted at ground level up to a certain height are well mixed in the
planetary boundary layer [47]. The decrease in CO2 concentrations and increase in PBLH
indicates that the height of the layer influences the dilution of the gas in question.

CH4 concentrations are predominantly regulated by sinks, with hydroxyl radical (OH)
being the largest sink present in the atmosphere [48]. However, a similar behavior to that
seen for CO2 can be observed concerning the relationship between the evolution of the
boundary layer and methane concentrations. As the height of the PBL increases, there is a
corresponding decrease in methane values. Even though methane is not categorized as a
pollutant, previous studies such as Metya et al. (2021) [47] demonstrate that, throughout the
day, the gases present in the lower troposphere are diluted as the boundary layer expands.
CO2 and CH4 concentrations measured at the Pico do Jaraguá station did not follow the
same pattern as seen at IAG and UNICID, due to the station’s location being the most
distant from the city’s main emission sources.

3.2.2. Day-to-Day Variations

There were observed variations in the behavior of the PBLH throughout the three-day
period, as seen in Figure 10. The maximum PBLH was similar across these three days,
estimated at approximately 1290 m for 24 July, 1350 m for 25 July, and 1470 m for 26 July.
PBL expansion occurred earlier each subsequent day, with PBL heights on 24 July being
the most distinct, featuring an ascent that persisted until late afternoon. Changes in PBL
heights during the afternoon were smaller on July 24, indicating a gradual but continuous
increase in PBL heights and suggesting that, while PBL heights climbed more slowly on
the 24th, the PBL continued to develop later into the afternoon than on the other days.
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by the shaded regions.

A similar trend was observed for the CO2 data, as shown in Figure 11a,b, as con-
centrations had a more pronounced decrease on 25 and 26 July than on 24 July. At the
IAG station, CO2 concentrations reached minimum values of 410–415 ppm, while they
remained above 420 ppm on 24 July. At the UNICID station, minimum CO2 concentrations
of around 410 ppm were measured in the afternoons of 25 and 26 July, while on 24 July
concentrations measured in the afternoon were roughly 10 ppm higher. The decrease in
CH4 concentrations, as seen in the afternoon in Figure 11c,d, also shows a substantial
difference in the values measured on July 24 when compared with those measured on 25
and 26 July: CH4 concentrations remained higher than the values measured on the 25th and
26th throughout most of the afternoon. While CH4 concentrations on the 25th and the 26th
remained at around 2 ppm and 1.9 ppm at the IAG and UNICID sites, respectively, from
15:00 UTC until approximately 20:00 UTC, they gradually decreased during the afternoon
on the 24th, eventually reaching values similar to those measured on the other two days.

The percentage changes in planetary boundary layer heights and in CO2 and CH4
concentrations at each measuring interval, that is, how much these values increased or
decreased between successive 30 min data points, were derived from the data collected on
24–26 July 2021. Changes in PBL heights and CO2 and CH4 concentrations were compared
and are shown in Figures 12 and 13. The results revealed a pattern where negative changes
(decreasing values) in PBL height were consistently associated with positive changes
(increasing values) in CO2 and CH4 concentrations during the interval under investigation.
Additionally, the results indicated that the majority of positive changes in PBL height were
accompanied by negative changes in CO2 concentrations, with a few instances showing
positive values near 0. To further understand the relationship between these variables,
regression lines were fitted to the data. These regression lines demonstrated a negative
correlation between CO2 and CH4 concentrations and PBL heights, passing near the origin
point (0, 0). The correlation coefficient ρ was also obtained for each of the regression lines,
with changes in PBL heights showing a correlation coefficient of −0.76 and −0.62 with
CO2 concentrations at IAG and UNICID, respectively, and of −0.71 and −0.43 with CH4
concentrations at IAG and UNICID, respectively.
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without significant cloud cover were included. During July 2021, a total of 9 days dis-

played substantial cloud cover and were consequently excluded from the analysis. The 

Figure 12. Scatter plots of percentage differences in CO2 concentrations at IAG and UNICID, and in
PBL heights. Each data point corresponds to CO2 and PBLH values obtained every 30 min from 10:30
to 20:00 UTC on 24 July 2021 (in blue), 25 July 2021 (in red), and 25 July 2021 (in black). The dashed
black lines show the regression lines fit to these data points. The correlation coefficient ρ calculated
for each station is also shown.
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Figure 13. Scatter plots of percentage differences in CH4 concentrations at IAG and UNICID, and in
PBL heights. Each data point corresponds to CH4 and PBLH values obtained every 30 min from 10:30
to 20:00 UTC on 24 July 2021 (in blue), 25 July 2021 (in red), and 25 July 2021 (in black). The dashed
black lines show the regression lines fit to these data points. The correlation coefficient ρ calculated
for each station is also shown.

3.3. Monthly Averages

CO2 and CH4 concentrations exhibit variation between stations owing to the impact
of local emissions and transport dynamics. Daily averages might not entirely capture the
typical patterns observed at these monitoring stations, and distinctions in the average CO2
and CH4 concentrations among stations become more evident in longer-term measurements.
In Figure 14, the monthly average PBL heights for July 2021 are presented, along with
the average CO2 concentrations measured at the three stations. Only data from days
without significant cloud cover were included. During July 2021, a total of 9 days displayed
substantial cloud cover and were consequently excluded from the analysis. The average
values for July 2021 were computed based on the data from the remaining 22 days.
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The monthly averages provide a more distinct perspective regarding the contrast in
CO2 concentrations across the three measurement stations. CO2 concentrations are highest
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at the IAG station and lowest at the Pico do Jaraguá station. At Pico do Jaraguá, average
CO2 concentrations exhibit minimal diurnal variation, primarily due to its greater distance
from local emission sources. IAG and UNICID display similar patterns in CO2 concentra-
tions throughout the day. Peak average CO2 concentrations are reached at approximately
10:00–10:30 UTC, followed by a decline extending into mid-afternoon. A corresponding
trend is observed in PBL heights, with the lowest average heights recorded in the early
morning, followed by a swift rise from late morning until mid-afternoon.

Figure 15 shows the monthly average PBL heights and CH4 concentrations for July 2021.
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Average CH4 concentrations exhibit a distinct pattern compared to average CO2
concentrations. At the IAG station, average CH4 concentrations peak at approximately
11:00–11:30 UTC and then decline rapidly until mid-afternoon. UNICID station shows
higher values during the early morning and nighttime, with concentrations decreasing in
the afternoon. The pattern for average CH4 concentrations measured at the Pico do Jaraguá
station is less pronounced, with less variation in comparison to the other stations. However,
average concentrations display more fluctuations during the morning and early afternoon,
instead of a consistent decline.

The percentage change in PBL heights, as well as CO2 and CH4 concentrations at
each measurement interval, were calculated for the data collected in the month of July and
are shown in Figures 16 and 17. Values were restricted to the timeframe spanning from
12:00 to 21:00 UTC, because during the late night and early morning hours PBLH values
tend to decrease into the CHM 15k’s overlap range. Additionally, during nighttime, São
Paulo experiences the influence of the sea breeze, which affects the city most days of the
year [49,50], tending to trap aerosols within a lower layer of the PBL, which can lead to the
WCT method falsely indicating a reduction in the PBLH.

Negative changes in CO2 and CH4 concentrations accompanied by concurrent positive
changes in PBLH values indicate greater negative correlation between these variables. In
Figure 16, we see more significant correlation between changes in CO2 concentrations
and changes in PBLH values at the IAG station, with a ρ of approximately −0.86, and at
the UNICID station, with a ρ of approximately −0.85, and less correlation at the Pico do
Jaraguá station, with a ρ of approximately −0.42. The negative correlation between CH4
concentrations at IAG and PBLH values can be seen in Figure 17. This correlation is more
significant for average values obtained from data measured at the IAG station, with a ρ

of approximately −0.78, while the other stations show lower values with a ρ of −0.66 at
UNICID and −0.38 at Pico do Jaraguá.
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Figure 16. Scatter plots of percentage differences in CO2 concentrations at IAG, UNICID, and Pico
do Jaraguá, and in PBL heights. Each data point corresponds to the average CO2 and PBLH values
obtained every 30 min from 12:00 to 21:00 UTC in July 2021. The dashed black lines show the
regression lines fit to these data points. The correlation coefficients ρ are also shown.
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Figure 17. Scatter plots of percentage differences in CH4 concentrations at IAG, UNICID, and Pico
do Jaraguá, and in PBL heights. Each data point corresponds to the average CH4 and PBLH values
obtained every 30 min from 12:00 to 21:00 UTC in July 2021. The dashed black lines show the
regression lines fit to these data points. The correlation coefficient ρ are also shown.

4. Conclusions

This work presented the results derived from the operation of a ceilometer during the
month of July 2021. These ceilometer measurements were used to obtain the PBLHs with
the wavelet covariance transform method. A lidar system also operated on 26 July 2021,
and the PBLHs obtained with the WCT method using data from both instruments were
subsequently compared. The comparison showed similar PBLHs at both locations, even
though the instruments were positioned at two different locations in São Paulo roughly
15 km apart. Signal noise and attenuation may occur in the ceilometer’s data, but in clear
sky conditions the instrument can still deliver accurate results. The PBLHs retrieved on
24–26 July 2021 were compared to the concentrations of CO2 and CH4 obtained in different
locations in São Paulo in order to follow changes in the PBL related to the CO2 and CH4
concentrations. The ceilometer-retrieved PBL heights were also compared to the CO2 and
CH4 concentrations at all the three MASP sites, as the PBL heights followed the changes
in CO2 and CH4 with an opposite sign, i.e., increasing PBL heights corresponded to a
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decrease in CO2 and CH4 concentrations, showing a negative correlation between PBL
heights versus concentrations (CO2 and CH4) throughout the day. The carbon dioxide and
methane data also showed a correlation with PBL growth timing changes, with the highest
PBL growth accompanied by decreased concentrations of carbon dioxide and methane.

Monthly average PBL heights and CO2 and CH4 concentrations were also obtained and
compared for the month of July 2021. The average CO2 daily cycle for the month showed
higher CH4 concentrations in the morning, which decreased rapidly in the late morning
to early afternoon and then changed little until increasing again in the late afternoon and
early evening. The average CH4 daily cycle for July 2021 showed a less clear pattern. CH4
concentrations were higher in the morning and decreased in the afternoon at all stations,
but there was a significant difference in behavior between the stations for most of the day.
Despite their different daily cycles, all stations showed similar average CH4 concentrations
in mid-afternoon. The correlation between changes in average CO2 concentrations and
PBLH values was also analyzed, showing higher correlation for the IAG and UNICID
stations, with ρ correlation coefficients of approximately −0.86 and −0.85, respectively,
and lower for Pico do Jaraguá, with a ρ of −0.42. When comparing changes in CH4
concentrations and changes in PBL height, these also showed negative correlation, with a
correlation coefficient of approximately −0.78 for IAG, −0.66 for UNICID, and −0.38 for
Pico do Jaraguá.

The results demonstrated that CO2 concentrations exhibited a more pronounced
correlation with PBL heights than CH4 concentrations, as their behavior differed due
to distinct sources and sinks. The results from this study contribute to advancing our
understanding of the relationship between PBLH and greenhouse gas concentrations, and
of the role of local emissions in shaping this relationship, as evidenced by the varying
outcomes across the three measurement stations and by the daily variations in CO2/CH4
concentrations and PBLH values, while additionally highlighting the value of remote
sensing instruments like ceilometers for tracking and studying atmospheric processes.
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