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Abstract: The Angstrom—Prescott formula is commonly used in climatological calculation methods
of solar radiation simulation. Aiming at the characteristics of a vast area, few meteorological stations,
and uneven distribution in the tropical regions of China, in order to obtain the optimal parameters
of the global solar radiation calculation model, this study proposes a suitable monthly global solar
radiation model based on the single-station approach and the between-groups linkage of the A-P
model, which utilizes monthly measured meteorological data from 80 meteorological stations span-
ning the period from 1996 to 2016 in the tropical zone of China, considering the similarity in changes
of monthly sunshine percentage between stations. The applicability and accuracy of the correction
parameters (2 and b coefficients) were tested and evaluated, and then the modified parameters were
extended to conventional meteorological stations through Thiessen polygons. Finally, the spatial
distribution of solar radiation in the tropical region of China was simulated by kriging, IDW, and
spline interpolation techniques. The results show the following: (1) The single-station model exhib-
ited the highest accuracy in simulating the average annual global solar radiation, followed by the
model based on the between-groups linkage. After optimizing the 2 and b coefficients, the simulation
accuracy of the average annual global solar radiation increased by 5.3%, 8.1%, and 4.4% for the whole
year, dry season, and wet season, respectively. (2) Through cross-validation, the most suitable spatial
interpolation methods for the whole year, dry season, and wet season in the tropical zone of China
were IDW, Kriging, and Spline, respectively. This research has positive implications for improving
the accuracy of solar radiation prediction and guiding regional agricultural production.

Keywords: Angstrom—Prescott; the between-groups linkage; Thiessen polygons; dry-wet season;
the tropical zone of China

1. Introduction

As the primary energy source for the Earth, global solar radiation (Rs) plays a crucial
role in the radiation balance, energy exchange, hydrological cycle, photosynthesis, weather,
and climate formation on land but also has direct connections to the physical, biological,
and chemical processes occurring on Earth [1,2]. Due to the high cost of instruments and
maintenance, the distribution of the Rs observing stations is limited in most regions of the
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world. Research on the accuracy estimation of Rs is important for agricultural industry
development and clean energy utilization [3,4].

In order to meet the needs of effective solar radiation utilization and carrying out
relevant scientific research, experts have developed many Rs simulation models. The
models include empirical models [5-7], mechanism models [8,9], remote sensing inversion
models [10], and machine learning models [11,12]. The Angstrém—Prescott (A-P) model is
recommended by the United Nations Food and Agriculture Organization for calculating
solar radiation [13] and also widely used in the world under different climates [14].

Researchers have conducted a large amount of studies on the modification of the A-P
model. For example, meteorological parameters except sunshine duration were added to
the A-P model, such as the temperature, cloud amounts, or other meteorological parame-
ters [15]. Alternatively, the linear A—P model has been transformed into non-linear forms
such as multiple [16], exponential [17], logarithmic [18], and power function forms [19]. It
is noteworthy that researchers have significantly enhanced the prediction accuracy of solar
radiation by employing machine learning algorithms, such as support vector machines
(SVMs) [20], artificial neural networks (ANNSs) [21], or deep learning models [22,23]. This
integrated approach aims to more accurately capture the intricate non-linear relationships
between solar radiation and meteorological parameters, which require a greater amount of
data. Nevertheless, despite the existence of various improvement strategies, a substantial
body of research findings indicates that the original Angstrom-Prescott (A-P) model based
on sunshine hours retains advantages, including fewer parameters, ease of acquisition,
and a high simulation accuracy. Consequently, it continues to be widely adopted in solar
radiation estimation [24-26].

The accuracy of parameters a and b directly influences the A-P model for estimating
Rs. Most studies on parameters 2 and b utilize single-station data to calculate the regression
coefficients [27]. However, this approach has specific requirements for the length of the
time series data, and a shorter time series can directly impact the accuracy of the regression
coefficients. For instance, He et al. [28] employed datasets from 1961 to 2000 from 54 solar
radiation stations in China to establish various models, yielding high accuracy, which was
closely linked to the use of long time series data. Liu et al. [29] conducted a comparative
analysis of the performance of models based on different sites using data from 15 radiation
stations in the Tibetan Plateau and its surrounding regions from 1993 to 2010. However,
due to the conservative response of the sum of the a and b coefficients to the time scale,
the significant impact of the time scale on the a and b coefficients did not notably affect
the accuracy of Rs estimation [30]. Another simulation method is the zoning method,
which involves dividing each station into different zones based on common characteristics.
This method enhances the number of regression samples and the accuracy of empirical
coefficients, thereby obtaining the calculation formula for each region. For example, Xiong
and Zhou [31] employed the between-groups linkage to divide 152 meteorological stations
into four zones and compared the simulation accuracy with the average annual solar
radiation of a single station, considering the varied terrain and complex climate in Sichuan.
The results demonstrated a significant improvement in simulation accuracy after the zoning
process. Xia et al. [32], utilizing the least squares regression method, calculated the monthly
a and b coefficients for 38 agricultural regions in China based on meteorological observations
from 121 sites, which compared and validated the relative accuracy of the calculated Rs
with the values suggested by the Food and Agriculture Organization (FAO). The results
indicated that the relative accuracy of Rs calculated using the regression values of 2 and b
coefficients was superior to that of Rs calculated using the values suggested by the FAO.
However, within each agricultural sub-region, the former did not outperform the latter in
all months.

In summary, due to the large geographical latitude range and significant differences
in dry and wet seasons, there are only 11 solar radiation meteorological stations in the
tropical zone of China, which covers an area of 500,000 km?. In response to the char-
acteristics of large area, sparse meteorological stations, and uneven distribution in the
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tropical regions of China, and aiming to obtain optimal parameters for global solar radia-
tion calculation models, this study proposes a monthly global solar radiation model based
on a single-station method and between-groups linkage of the Angstrom—Prescott (A—P)
model. Utilizing monthly meteorological data from 80 meteorological stations in the tropi-
cal regions of China from 1996 to 2016, the study considers the similarity in inter-station
monthly sunshine percentage variations. The applicability and accuracy of the adjusted
parameters (2 and b coefficients) were tested and evaluated, and the corrected parameters
were extended to conventional meteorological stations through Thiessen polygons. Finally,
the spatial distribution of solar radiation in the tropical regions of China was simulated
using Kriging, inverse distance weighting (IDW), and Spline interpolation techniques.
This research not only enriches the calibration cases of the Angstrom—Prescott formula
coefficients but also enhances the accuracy of solar radiation simulation, providing valuable
references for exploring the spatial distribution characteristics during the entire year and
dry-wet seasons.

2. Materials and Methods
2.1. Study Area

The tropical zone in China is approximately 500,000 km?, mainly distributed in
provinces such as Hainan, Guangdong, Guangxi, and Taiwan (approximately between
18° N and 24° N), as well as the dry and hot valley regions of Yunnan, Guizhou, and
Sichuan [33]. Those provinces and regions have diverse natural and climatic resources
and rich varieties of animals and plants and are suitable for studying and protecting bio-
diversity. Those are important production areas of winter fruits and vegetables in China,
which are important parts of agriculture. Affected by seasonal differences in monsoon
and atmospheric circulation, the dry and wet seasons are distinct, and the climate change
pattern is unique. The variation pattern of global solar radiation will change accordingly,
which can lead to a transformation in the regional water and heat conditions, as well as the
agricultural production potential.

2.2. Dataset

In this study, the monthly datasets of 80 meteorological stations from 1996 to 2016
in the tropical zone of China (Figure 1) were adopted (the basic information is shown in
Table A1), mainly including monthly sunshine hours and Rs observation data. Among
them, 11 meteorological stations covered solar radiation observation data, and the data
were integral and reliable (Table 1). Linear interpolation produced very good results for
short gaps similar to those found in the case studies [32]. In many cases it outperformed
machine learning and deep learning techniques. Thus, for handling outliers and missing
values, we employed elimination and linear interpolation methods to ensure the reliability
and completeness of the data. Linear interpolation was performed using SPSS 22.0 software,
with the additional constraint of ensuring that the atmospheric transmissivity coefficient
(clearness index) remained consistently below 0.85. Following a thorough inspection, the
data integrity was confirmed to be intact. The data were divided into two parts by time,
with data from 1996 to 2010 as the training data and data from 2011 to 2016 as the validation
data. Referring to Li et al. [15], the dry—wet seasons in the tropical zone of China were
divided, with the period from November to April as the dry season and the period from
May to October as the wet season. The flowchart representing the steps taken for modeling
the global solar irradiation of the tropical zone of China is shown in Figure 2.
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Figure 2. Flowchart representing the steps taken for modeling the global solar irradiation of the

tropical zone of China.
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Table 1. Basic information of solar radiation meteorological stations.
Province Station Abbrev Latitude (°N) Longitude (°E)  Altitude (m)
Tengchong Tch 24.98 98.50 1695.90
Yunnan Jinghong Jh 22.00 100.78 582.00
Mengzi Mz 23.45 103.33 1313.60
Sichuan Panzhihua Pzh 26.57 101.72 1224.80
Guanexi Nanning Nn 22.63 108.22 121.60
& Beihai Bh 21.45 109.13 12.80
Guanedon Guangzhou Gzh 23.22 113.48 70.70
8918 Shantou Sht 23.38 116.68 2.30
Fujian Fuzhou Fzh 26.08 119.28 84.00
Hai Haikou Hk 20.00 110.25 63.50
aman Sanya Sy 18.22 109.58 419.40
2.3. Methods

2.3.1. Estimation of the Global Solar Radiation under the A-P Model

We used the Angstrsm-Prescott model to estimate the monthly global solar radiation.
The formula is as follows: S
Hs = H, <a+b) (1)
So
where H; is the monthly global solar radiation on horizontal surface, MJ-m~2; H, is the
astronomical radiation, MJ-m~2; S/Sy is the fraction of sunlight received, dimensionless,
with S being the number of hours of daylight and Sy being the total number of hours; and a
and b are empirical coefficients, dimensionless.
H, can be calculated by the following formula [34]:

Ho = nHm 2)
TI, L

Hn = - (wosingsind + cos@cosdcoswy) 3)

o
wo = acos(—tangtand) 4)
& = (0.3723 4 23.2567sin x + 0.1149sin 2x — 0.1712sin 3x — 0.758c0s x 5)

+0.3656c0s 2x + 0.0201cos 3x)18
_ . (N—No)

o)) ©)
No = 79.6764 + 0.2422(y — 1985) — INT(0.25(y — 1985)) 7)

where Hy, is the month for daily astronomical radiation MJ-m~2-d~1); n indicates the
number of days in the current month (d); T indicates the time of a day, the value of which is
1440 (min-d—1); I, is the solar constant, the value of which is 0.082 (MJ-m~2-min~1); 1/p, is
the mean distance between the earth and the sun, dimensionless; w,, is the solar hour angle
(rad); ¢ is the geographical latitude (rad); 5 is the declination of the sun (rad); x indicates
the calculation parameter, dimensionless; N is in day order, the value of which is 365 or 366,
dimensionless; Ng indicates the calculation parameter, dimensionless; and y represents the
calculation year, dimensionless.

2.3.2. The Between-Groups Linkage

The between-groups linkage is a commonly used clustering method in system clus-
tering analysis. It calculates the Euclidean distance between multiple groups of data and
compares them based on this distance. The closest data points are grouped into one cate-
gory, and this process is repeated until all the data is categorized [31]. Taking the sunshine
percentage of 80 meteorological stations of China from 1996 to 2010 as a classification factor,
all meteorological stations in the study area were divided using SPSS 22.0 software to
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ensure that each subdivision contained at least one solar radiation station. Finally, the data
of solar radiation stations in the same zone were involved in the calculation of regression
coefficients a and b of the A-P model, so as to obtain the partition general formula.

2.3.3. Thiessen Polygons

The results of the between-groups linkage were used for model establishment and error
analysis. After 2 and b were preferred by error analysis, a and b of the general formula were
not suitable for conventional meteorological stations. Therefore, the Thiessen polygons
centered around 11 solar radiation stations were created, with each polygon containing only
one solar radiation station. Meteorological stations within the same polygon used the same
empirical coefficients [35]. Then, solar radiation simulation data from 80 meteorological
stations were used for spatial interpolation.

2.3.4. Spatial Interpolation

In order to study the spatial distribution characteristics of the average annual global
solar radiation in China, three widely used spatial interpolation methods were adopted to
simulate the spatial distribution of global solar radiation, namely, Kriging, inverse distance
weighting (IDW), and Spline. Spatial interpolation was conducted using the Spatial Analyst
Tools in ArcGIS 10.2.

2.3.5. Statistical Evaluation

The mean absolute percentage error (MAPE) was used to calculate the error between
each model and the measured values, and the a and b values of the A—P model with the
smallest error were selected as the optimal ones. For the interpolation results, the mean
absolute percentage error (MAPE), root mean squared error (RMSE), mean absolute error
(MAE), mean bias error (MBE), and coefficient of determination (R?) were used to evaluate
the error between the estimated and measured values of solar radiation spatial distribution.
The formulas were as follows:

100

MAPE = —=3 7' |

0~ E
O;

(8)

RMSE = \/ |:1112?—1(Oi _ Ei)z} )

1 n
MAE = HDoi —Ei (10)
i=1
1 n
MBE = HZoi —E; (11)
i=1
2

| s e-o)E-E
VI (0-0)’1L, (B -E)

where O; is the observed value of solar radiation, MJ-m~2; O; is the mean of observed
values, MJ-m~2; E; is the estimated value of solar radiation, MJ-m~2; and E; is the mean of
estimated value, MJ-m 2. n is the corresponding number of observations.

R? (12)

3. Results and Discussion
3.1. Result of the Between-Groups Linkage

T; is a single site model without cluster partitioning, and only 11 solar radiation sites
are applied. The T, and T3 models are two clustering partition models for the tropical
region of China, taking the sunshine percentage of 80 meteorological stations of China from
1996 to 2010 as a classification factor, based on the between-groups linkage (Figures 3 and 4).
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As shown in Figure 3, the first clustering result of T, grouped Tengchong, Panzhihua,
Jinghong, and Mengzi stations as one zone, while Nanning, Beihai, Guangzhou, Shantou,
Fuzhou, Haikou, and Sanya stations were grouped into another zone. The second clustering
result of T3 divided the stations into three zones (Figure 4), with the first region being the
same as the previous result. Nanning, Beihai, Guangzhou, Shantou, and Fuzhou stations
were grouped into the second zone, while Haikou and Sanya stations were grouped into
the third zone. All the solar radiation stations in the same zone were used to calculate a
and b of the A-P model, and the results were applied to all the solar radiation stations in
the region. The results of the between-groups linkage and the single-station model of T;
were validated using solar radiation observation values from 2011 to 2016. Then monthly a
and b for each solar radiation station were selected.
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Figure 4. Station zoning map of model T3 based on the between-groups linkage.

3.2. Error Analysis and Coefficient a and b Optimization of the A—P Model

Through the MAPE, under different models and times, the values of each station
showed significant errors (Figure 5).
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Figure 5. Comparison with the estimated values based on the Ty, T,, and T3 models’ measured values.

Figure 5 shows the monthly measured and estimated solar radiation from 2011 to 2016.
It can be seen that the estimation accuracy of T; was the highest, whose R? was 0.931 and
MAPE was 6.452%, followed by Ty, and T3 had the worst estimation accuracy.

In order to further study the simulation of 11 solar radiation stations in each model,
Figure 6 presents the number of preferred months of T1, T, and Ts.

1 1 1] [
2
4
5 5
6 6 4 6
5 5] 5
4
2
1 1 1
1
2
3 3 3
4 4
5 5] 3 5
4 2
3 1
2
r B B N
Pzh Tch Jh Mz Fzh Gzh Sht Nn Bh Hk Sy
T1 T2 T3 Wet season Dry season

Figure 6. Errors in simulation of solar radiation stations.

3.2.1. The Whole Year (January—December)

Based on the error of each station, the MAPE values of each model on most stations
were less than 10%. Only the error of Sanya station was large, where the MAPE values of
T, and T3 were more than 10%, and that of T was 9.8%. Through the error analysis of each
station, the 4 and b optimal rate of T; in the tropical zone of China was 47.7%, which was
higher than those of T, (40.2%) and T3 (12.1%). There were five stations with higher annual
average global solar radiation simulation accuracies of T1, namely, Panzhihua, Tengchong,
Mengzi, Beihai, and Sanya. There were five stations with higher simulation accuracies of T»,
namely, Jinghong, Fuzhou, Shantou, Nanning, and Haikou. Only Guangzhou station had
the highest simulation accuracy of T3. After the preferred combination of error analysis,
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the simulation accuracy of each station was increased by 0.1-5.3% relative to the simulation
accuracy of one single model.

3.2.2. The Dry Season (November—April)

The a and b optimization rate of T, (50.0%) was higher than those of T; (47.0%) and
T3 (3.0%) through the error analysis. There were six stations with higher annual average
solar global radiation simulation accuracies of T, namely, Jinghong, Fuzhong, Guangzhou,
Shantou, Nanning, and Haikou, among which Jinghong was the highest. There were five
stations with higher simulation accuracies of T1, namely, Panzhihua, Tengchong, Mengzi,
Beihai, and Sanya, among which Tengchong and Sanya were the highest. The simulation
accuracy of T3 during the dry season was significantly lower than that of the other two
models. After optimizing the combination of models for each station, the overall accuracy
can be increased by up to 8.1%.

3.2.3. The Wet Season (May—-October)

By the error analysis, the 2 and b optimization rate of T (48.5%) was higher than those
of T (30.3%) and T3 (21.2%). There were six stations with higher annual average global
solar radiation simulation accuracy of T1, namely, Jinghong, Mengzi, Fuzhou, Nanning,
Beihai, and Sanya. Shantou had the highest simulation accuracy of Tp. Guangzhou had the
highest simulation accuracy of T3. After optimizing the combination of models for each
station, the overall accuracy can be increased by up to 4.4%.

From the monthly error statistics of each station, it could be seen that there were
differences in the accuracy of the annual average global solar radiation simulation at each
station. No single station is exclusively suitable for a specific model. Therefore, the optimal
values of a and b for each month were selected based on the simulation error (Table 2),
which effectively improved the simulation accuracy of the annual average solar radiation
at each station.

As can be seen from Figure 7, after MAPE optimization to determine the correction
coefficients a and b, the optimal model obtained the highest estimation accuracy, with a
MAPE value of 5.416% and R? value of 0.940.

R?=0.940
MAPE=5.416%

Optimal model

300
700
600
500 r
400
300
200

100

Measured Radiation ( MJ-m2)

— Fit
0 1 1 1 J
0 200 400 600 800

Estimated Radiation ( MJ-m=2)

Figure 7. Comparison with the estimated values based on the optimal model’s measured value.
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Table 2. Optimal a and b for A-P model of solar radiation stations in tropical zone of China.
Station Pzh Tch Jh Mz Fzh Gzh Sht Nn Bh Hk Sy
Abbrev a b a b a b a b a b a b a b a b a b a b a b
Jan 0282 0363 —0.033 0.841 0214 0495 0.164 0618 015 0628 015 0628 015 0628 015 0628 015 0628 015 0628 0224 0.52
Feb 0.195 0506 0206 0513 0.195 0506 0.074 0736 015 0613 015 0613 0.162 0567 0145 063 0175 0563 015 0613 024 0467
Mar —0.008 0.738 0227 043 0.25 039 0306 0332 0143 0626 0.143 0626 0.163 0562 0.143 0.626 0.188 0476 0.19 0512 0372 0.156
Apr 0.188 0482 0282 032 0276 0352 0287 037 0212 0423 0.156 0.612 0.171 0562 0.171 0562 0.18 054 0225 0456 0.316 0.304
May 0231 0451 0231 0451 0.248 0424 0225 0513 0194 0529 018 0564 021 0479 0.194 0529 0131 0671 0317 0303 0424 0.136
Jun 0.285 0.327 0.3 0.19 0324 0257 0285 0327 0226 0457 0.197 0505 0204 0496 0204 0496 0213 0493 0204 0496 0319 0.293
Jul 0261 0389 0261 0389 0261 0389 0.252 0.5 0263 0408 0.194 0507 0.195 0509 0234 0442 0.181 0553 0.195 0509 0271 0.373
Aug 0.2 0.5 0309 0253 0284 0357 031 0302 0261 0412 0201 0499 0199 0505 0242 0448 0.146 0.624 0.199 0505 0.199 0.505
Sep 0.187 0532 0278 0376 0326 0.283 0276 0416 0236 043 021 048 021 048 021 0517 0172 0579 0243 0401 0.263 0.356
Oct 0253 0432 0261 0435 0259 0432 0274 0419 0213 049 0213 049 0213 049 0229 0487 0213 049 0214 0474 0213 0487
Nov 0.154 0544 0239 048 0213 0505 0.08 0793 0202 0511 0202 0511 0202 0511 0202 0511 0.214 0508 0.202 0511 0.287 0.389
Dec 0.0004410.759 0.129 0.642 0224 0488 0224 0488 0.191 0526 0191 0526 0191 0526 0.191 0526 0.191 0526 0.191 0526 0.209 0.538
R2 0.953 0.864 0.897 0.857 0.951 0.971 0.98 0.981 0.938 0.934 0.839

Notes: All coefficients a and b have been tested at a significance level of 0.05; R? represents the coefficients of determination for the calibrated equations at each station.



Atmosphere 2023, 14, 1825

11 0f 18

100°0'E

To verify the reliability of 2 and b, comparisons were made with the research results of
Xia et al. [32], who studied the A-P model under the agricultural comprehensive area of
China. They obtained the a and b values for each station using the least squares method
and extracted the average values of stations within each zone as the a4 and b values for
that whole zone. And they compared the simulation errors of solar radiation using the
fixed a and b values recommended by FAO, in order to combine and obtain the optimal
coefficients. The errors between the simulation values calculated by Xia et al. [32] and the
simulation values obtained in this study are compared in Table 3.

Table 3. Simulation accuracy comparison and verification.

Agricultural Comprehensive

Area of China [32] The Tropical Zone of China

Error Analysis

R? 0.71 0.94
MAPE (%) 8.64 5.42
RMSE (MJ-m~2) 79.99 33.20
MAE (MJ-m—2) 38.12 24.33
MBE (MJ-m~2) —10.67 14.15

In the tropical region of China, R? was 0.94, MAPE was 5.42%, RMSE was 33.20 MJ-m 2,
MAE was 24.33 MJ-m~2, and MBE was 14.15 MJ-m 2. In the comprehensive agricultural
area of China, R? was 0.71, MAPE was 8.64%, RMSE was 79.99 MJ-m 2, MAE was 38.12
MJ-m~2, and MBE was —10.67 MJ-m 2. However, the absolute difference in MBE values
between the two regions was small. Based on the single-station model, Xia et al. [32]
calculated the average values, and the results met the regional consistency, at the expense
of the accuracy of some stations (ignoring the differences within the zone). Therefore,
considering the comprehensive metrics including MAE, MAPE, MBE, and R?, the values
of “a” and “b” in this study were determined through multi-station regression within the
region, increasing the sample size for regression and simultaneously optimizing the values
for each station within the same region.

3.3. Result of Global Solar Radiation Zoning by the Thiessen Polygons

According to solar radiation and meteorological data, the Thiessen polygon was
established for the stations, and a and b of the A-P model were applied to conventional
meteorological stations within the same zone (Figure 8).
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3.4. Verification of Spatial Interpolation Accuracy

Kriging, IDW, and Spline were used for spatial interpolation of the global solar ra-
diation during the whole year and the dry-wet seasons in the tropical zone of China.
Then the interpolation results were verified by cross-validation, that is, 11 solar radiation
stations were removed, and the remaining 69 meteorological stations were used to simulate
the results of the above three interpolation methods. The errors of the simulation results
were analyzed.

The positive value of the mean bias error (MBE) indicated an overestimation of the
global solar radiation by the model, while a negative value indicated underestimation,
which was a reference indicator of the optimal spatial interpolation. It could be seen that
three interpolation methods achieved excellent results during the dry season, with R2 all
above 0.85, and the highest interpolation accuracy of average annual global solar radiation
was achieved by Kriging, with the lowest RMSE and MAE. In the spatial interpolation
of the average annual global solar radiation during the whole year, the accuracy of IDW
was the highest. During the wet season, the accuracy of Spline was the highest, but the
interpolation results were inferior to those for the whole year and the dry season (Table 4).

Table 4. Error analysis of spatial interpolation method.

Interpolation .
Method Error Analysis =~ The Whole Year The Dry Season = The Wet Season
RMSE (MJ-m—2) 407.90 187.11 202.94
Kriei MAE (MJ-m~—2) 309.61 132.61 150.97
riging 2
MBE (MJ-m~2) 203.52 87.89 93.45
R? 0.72 0.92 0.44
RMSE (MJ-m—2) 377.71 234.62 196.29
DW MAE (MJ-m~2) 293.42 169.51 143.98
MBE (MJ-m~2) 189.13 111.77 77.36
R2 0.77 0.87 0.43
RMSE (MJ-m~2) 413.57 189.50 173.09
. MAE (MJ-m~2) 334.77 142.17 133.80
Spline )
MBE (MJ-m~2) 61.60 19.27 42.35
R? 0.63 0.89 0.53

Therefore, the error analysis results showed that IDW should be used during the
whole year, Kriging should be used during the dry season, and Spline should be used
during the wet season. The results are presented in Figures 9-11 below.
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Figure 9. The average annual global solar radiation during the whole year.
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Figure 11. The average annual global solar radiation during the wet season.

3.4.1. The Average Annual Global Solar Radiation during the Whole Year
(January—-December)

As Figure 9 shows, the average annual global solar radiation range from 2011 to
2016 was 4053.4-6148.2 MJ-m 2, and the mean value was 5045.3 MJ-m~2. The spatial
distribution results showed that the average annual solar global radiation during in the
whole year in the tropical zone of China decreased from west to east in Yunnan, from
southwest to northeast in Hainan Island, from the coast to inland in Guangdong and Fujian.
The maximum value was located in the western part of Hainan Island, and the minimum
value was located in Guizhou. According to QX/T 89-2018 standard [34], the areas with
highly abundant solar radiation were mainly distributed in most parts of Yunnan and
Hainan Island, followed by some coastal areas of Guangdong and Fujian. The average
annual global solar radiation in these areas were more than 5000 M]-m’z, accounting for
45.2% of the total area of the tropical zone in China. The remaining areas were all classified
as abundant areas, with the majority of Guangxi having relatively lower average annual
global solar radiation. The range of the average annual global solar radiation in Guangdong
and Fujian was mainly between 4500 and 5000 MJ-m~2.

3.4.2. The Average Annual Global Solar Radiation during the Dry Season
(November—April)

The spatial distribution of the average annual global solar radiation during the dry
season was similar to that of the whole year, with a range of 1402.2-3004.7 MJ-m~2 and
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an average value of 2093.9 MJ-m 2. The average annual global solar radiation in most
parts of Yunnan and the southwest of Hainan Island was above 2300 M]-m’z, with the
highest value appearing in Yunnan. The average annual global solar radiation in the central
and northern parts of Guangxi was relatively lower, with most values below 1600 MJ-m 2
(Figure 10).

3.4.3. The Average Annual Global Solar Radiation during the Wet Season (May—-October)

The value range of average annual global solar radiation in the wet season was gener-
ally higher than that in the dry season, with a range of 2433.4-3451.3 MJ-m~2 and an average
value of 2941.5 MJ-m 2. The spatial distribution of the average annual solar radiation was
different from the whole year and the dry season. The high-value areas of the average
annual solar radiation in the wet season were mainly distributed on Hainan Island, the
coastal areas of Guangxi, Guangdong, Fujian, and the border area of Yunnan and Sichuan,
with an average annual solar radiation above 3000 MJ-m~2. The distribution pattern was
gradually decreasing from coastal areas to inland areas. In addition, the average annual
solar radiation in most areas was mainly distributed in the range of 2800-3000 MJ-m~2,
accounting for 56.5% of the tropical zone (Figure 11).

In summary, there were certain differences in the spatial and temporal distributions
of the average annual solar radiation in the tropical zone of China at different time scales.
Overall, the average annual global solar radiation was relatively high in Yunnan, Hainan
Island, and coastal areas during the same period, while the annual average solar radiation
was relatively low in the central and northern parts of Guangxi and Guizhou.

From the perspective of latitude distribution, the annual average global solar radiation
in Yunnan was higher than that in Guangdong and Fujian at the same latitude, while that
in Guangxi was relatively low. Compared with other areas at the same latitude, Yunnan
was at a higher elevation, resulting in a shorter transmission path for solar radiation and
better atmospheric transparency, hence receiving stronger solar radiation.

Judging from the coastal distribution, the coastal areas of Guangdong, Guangxi, and
Fujian had higher average annual global solar radiation than that in the inland areas.

As to the dry and wet season distribution, the average annual global solar radiation in
the wet season was higher than that in the dry season, and the internal differences in solar
radiation values were also more obvious.

4. Conclusions

This study used the between-groups linkage of sunshine percentage based on the
A-P model to divide 11 solar radiation stations into zones and carried out monthly error
analyses for each station in terms of Tq, T, and T3 models. The regression coefficients
with the smallest estimation error were preferably selected by comparing the errors of
each model. Through analyzing the spatial interpolation error, the appropriate spatial
interpolation method was determined. The main conclusions are as follows:

(1) Based on the between-groups linkage of sunshine percentage, this study divided the
meteorological stations into zones. Stations within the same zone were used for the
regression coefficient calculation, which effectively increased the amount of regression
sample data. This method could effectively compensate for the simulation accuracy
of the regression coefficients in most months when the simulation accuracy of a single
station was poor. After parameter optimization, the accuracy of the average annual
global solar radiation simulation for each station during the dry and wet seasons
and the whole year could be improved by 8.1%, 4.4%, and 5.3%, respectively. In
addition, due to the increase in the sample number at specific stations, the multi-
station simulation accuracy was lower than that of the single station.

(2) To effectively apply the regression coefficients to non-solar radiation meteorological
stations, this study used the property of the Thiessen polygons in which the distance
between any point inside the polygon and the control point is the shortest. Based
on this, the tropical zone of China was divided into 11 zones, and the stations in the
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same zone used the same 4 and b of the A-P model. Through validating the spatial

interpolation results of solar radiation for the whole year, the dry season, and the

wet season, the optimal methods for the spatial interpolation of solar radiation for
the whole year were IDW, and those for the dry and wet seasons were Kriging and

Spline, respectively.

Above all, this paper studied an improved A-P model based on the between-groups
linkage and selected a suitable model of the average annual global solar radiation for
each station at a monthly scale. The characteristics of the dry—wet seasons in the tropical
zone of China were discussed in terms of the average annual global solar radiation sim-
ulation and spatial distribution. The conclusion showed the improved A-P model based
on the between-groups linkage could effectively improve the accuracy of average annual
global solar radiation simulation. This study not only enriched the correction cases of
Angstrom-Prescott formula coefficients but also improved the accuracy of solar radiation
simulation, providing valuable references for exploring the spatial distribution characteris-
tics during the entire year and dry—wet seasons in the tropical regions of China. However,
the A-P model still had some limitations in calculating the empirical coefficients a and b,
which warrant further exploration: (1) This study exclusively applied the least squares
regression method, utilizing meteorological station data spanning from 1996 to 2016 at
a monthly scale to discuss the localized determination of a and b coefficients. Future re-
search should integrate time series prediction algorithms to enhance the predictive accuracy.
(2) The study employed Thiessen polygons solely for zoning, without conducting a com-
prehensive comparison with alternative clustering methods. (3) The research exclusively
undertook a comparison of traditional spatial interpolation techniques. Future endeavors
will involve the implementation of advanced machine learning algorithms such as support
vector machine (SVM), artificial neural network (ANN), or deep learning models to more
precisely capture the intricate nonlinear relationships between solar radiation and meteo-
rological parameters, thereby further elevating the predictive precision of solar radiation.
Subsequent investigations can then be conducted based on this foundational work.
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Appendix A

Table A1l. Basic information of 80 meteorological stations.

Province Station Latitude (°N) Longitude (°E) Altitude (m)
Fujian Shanghang 25.05 116.42 198.00
Fujian Longyan 25.05 117.02 376.00

Fujian Pingtan 25.52 119.78 32.40
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Table Al. Cont.

Province Station Latitude (°N) Longitude (°E) Altitude (m)
Fujian Zhangzhou 24.50 117.65 28.90
Fujian Dongshan 23.78 117.50 53.30
Fujian Xiamen 24.48 118.07 139.40
Fujian Chongwu 24.90 118.92 21.80
Fujian Fuzhou 26.08 119.28 84.00

Guangdong Xuwen 20.33 110.18 56.20
Guangdong Shaoguan 24.67 113.60 121.30
Guangdong Fogang 23.88 113.52 97.20
Guangdong Lianping 24.37 114.48 215.20
Guangdong Meixian 24.28 116.07 116.00
Guangdong Guangning 23.63 112.42 92.70
Guangdong Gaoyao 22.98 112.48 60.00
Guangdong Heyuan 23.80 114.73 71.10
Guangdong Zengcheng 23.33 113.83 30.80
Guangdong Huiyang 23.07 114.37 108.50
Guangdong Wuhua 23.92 115.75 135.90
Guangdong Huilai 22.98 116.30 42.00
Guangdong Nanao 23.43 117.03 8.00

Guangdong Xinyi 22.35 110.93 141.40
Guangdong Luoding 22.72 111.60 60.00
Guangdong Taishan 22.25 112.78 33.10
Guangdong Shenzhen 22.53 114.00 63.00
Guangdong Shanwei 22.80 115.37 17.30
Guangdong Zhanjiang 21.15 110.30 53.40
Guangdong Yangjiang 21.85 111.98 90.30
Guangdong Dianbai 21.55 110.98 31.80

Shangchuan

Guangdong Island 21.73 112.77 21.90
Guangdong Shantou 23.38 116.68 2.30

Guangdong Guangzhou 23.22 113.48 70.70

Guangxi Fengshan 24.55 107.03 509.40

Guangxi Hechi 24.70 108.03 260.20

Guangxi Duan 23.93 108.10 170.80

Guangxi Liuzhou 24.35 109.40 96.80

Guangxi Napo 23.42 105.83 794.10

Guangxi Baise 23.90 106.60 174.70

Guangxi Jingxi 23.13 106.42 739.90

Guangxi Pingguo 23.32 107.58 108.80

Guangxi Laibin 23.45 109.08 96.70

Guangxi Guiping 23.40 110.08 42.50

Guangxi Wuzhou 23.48 111.30 114.80

Guangxi Longzhou 22.33 106.85 128.80

Guangxi Lingshan 22.42 109.30 66.60

Guangxi Yulin 22.67 110.12 121.60

Guangxi Fangcheng 21.78 108.35 32.40

Guangxi Qinzhou 21.98 108.60 49.20

Guangxi Dongxing 21.57 107.95 56.80

Guangxi Beihai 21.45 109.13 12.80

Guangxi Nanning 22.63 108.22 121.60

Guizhou Wangmo 25.18 106.08 566.80

Guizhou Luodian 25.43 106.77 440.30

Hainan Dongfang 19.10 108.62 7.60
Hainan Danzhou 19.52 109.58 169.00
Hainan Qiongzhong 19.03 109.83 250.90
Hainan Qionghai 19.23 110.47 24.00
Hainan Lingshui 18.55 110.03 35.20
Hainan Sanya 18.22 109.58 419.40
Hainan Haikou 20.00 110.25 63.50
Sichuan Panzhihua 26.57 101.72 1224.80
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Province Station Latitude (°N) Longitude (°E) Altitude (m)
Yunnan Huaping 26.63 101.27 1230.80
Yunnan Baoshan 25.12 99.18 1652.20
Yunnan Yuanmou 25.73 101.87 1120.60
Yunnan Chuxiong 25.03 101.55 1824.10
Yunnan Ruili 24.00 97.85 762.90
Yunnan Jingdong 24.47 100.87 1162.30
Yunnan Yuxi 24.33 102.55 1716.90
Yunnan Gengma 23.55 99.40 1104.90
Yunnan Lincang 23.88 100.08 1502.40
Yunnan Lancang 22.57 99.93 1054.80
Yunnan Simao 22.78 100.97 1302.10
Yunnan Yuanjiang 23.60 101.98 400.90
Yunnan Mengla 21.47 101.57 633.40
Yunnan Jiangcheng 22.58 101.85 1120.50
Yunnan Yanshan 23.62 104.33 1561.10
Yunnan Pingbian 22.98 103.68 1414.10
Yunnan Mengzi 23.45 103.33 1313.60
Yunnan Jinghong 22.00 100.78 582.00
Yunnan Tengchong 24.98 98.50 1695.90
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