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Abstract: Appropriate greening design can enhance the microclimate of residential areas. This study
investigated different greening cases for residential buildings in hot summer–cold winter zones. Four
sorts of greening layouts were tested in a residential area in Chongqing, China. Arbor–grass mix and
arbor–shrub–grass mix showed effective cooling and humidifying effects, and were chosen for further
study using the ENVI-met model. The simulations were conducted in Chongqing, comparing sixteen
greening cases for determinant and enclosed building forms. Results indicate that the greening design
for determinant layout should give priority to ensuring the greening area and shortening the distance
from the sidewalk. While enclosed layout should concentrate greening in dense populations, using
arbor–shrub–grass mix to improve the wind environment. In cases where the distribution of arbors
and shrubs covers a ratio of 7:4, constituting 30% of the overall green space, there is a reduction in
environmental temperature by 1.4 ◦C and in PET by 4.8 ◦C. This study provides the optimal greening
layout for two types of residential areas in China’s hot summer–cold winter zones, guiding landscape
construction in these residential areas to optimize the microclimate.

Keywords: outdoor thermal environment; residential buildings; building layout; cooling effects of
greening; urban microclimate

1. Introduction

Rising urbanization and population growth have brought about numerous serious
thermal environmental issues in urban residential areas. It is crucial to examine the current
thermal environment problems in urban residential areas to guarantee residents’ living
quality and mental well-being [1,2]. To improve the outdoor thermal environment, domes-
tic and international scholars have summarized key influential urban design factors and
conducted studies on various types of cool pavements [3], exterior walls [4,5], the form of
architecture [6,7], land height [8], greening [9,10], and water bodies [11]. Greening is one of
the important factors that can easily improve and affect the outdoor thermal environment.
The leaf transpiration and shielding effects of canopy leaves can effectively cool and hu-
midify the surrounding air [12], even improving the urban microclimate, reducing building
energy consumption, and mitigating the heat island effect [13,14]. Existing research has
mainly focused on three types of greening layouts in the outdoor thermal environment,
including roof greening [15], facade greening [16,17], and regional greening [18]. However,
roof greening has been proven to be ineffective for human thermal comfort at 1.5 m above
the ground [19], and facade greening has many restrictions and is challenging to maintain.
For urban outdoor living spaces, regional greening becomes the prior solution for current
environmental demand due to its rich functions and diverse forms.

Research findings confirm that the cooling and humidifying capacity of regional green-
ing is related to several factors, including quantity [20,21], variety [22,23], and planting
method [24]. A study by Huizhe Liu [18] of tropical residential areas in Singapore found
that larger crown diameters or heights can effectively improve thermal comfort by creating
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a larger “urban green island”. The larger the crown diameter, the greater the leaf area
index (LAI), leading to a more noticeable improvement in the outdoor thermal environ-
ment [5]. In addition to LAI, thermal comfort from trees also depends on the leaf area
density (LAD) at different heights. Tobi Eniolu Morakinyo [25] found that the trunk height
of arbor has the weakest impact on human thermal sensation. In addition to the study of
single greening species, Sodoudi and Zhang [26] found a correlation between the spatial
patterns of greening and the cooling effect. Green vegetation arranged with less clustering
or fragmentation is more effective in reducing surface temperature than a scattered ar-
rangement [27]. Yujun Yang [28] examined the influences of three green spaces on thermal
comfort in three residential areas with varying planting patterns. For the green space used
for activities, the green space surrounded by trees will generate the most favorable thermal
environment. For green space used for landscape, shrubs surrounded by trees provide
optimal thermal comfort. Therefore, a comprehensive analysis of the impact of greening on
the thermal comfort of residential areas should not only consider the greening types but
also the combination of residential area layout.

Proper greening layout designs have a substantial impact on the thermal environment,
affecting both wind speed and direction, and ultimately improving the quality of the
outdoor environment [29]. The appropriate type of regional greening varies based on the
diversity of climatic characteristics. For instance, in hot and dry climates, a simulation
study by Zhao et al. [30] found that arranging two trees at equal intervals near residential
areas provides the best thermal comfort, followed by cluster trees without overlapping
crowns. In cold regions like Beijing, Bo Hong et al. [31] discovered that trees surrounding
buildings, hinged by buildings, and facing the prevailing wind can create a comfortable
wind environment for pedestrians. However, not all plants have a positive impact on the
thermal environment [32]. Li et al. [33] studied high-rise residential areas in Singapore with
a tropical rainforest climate and found that shrubs make people feel uncomfortable. It is
confirmed that increasing urban vegetation coverage will reduce the Universal Thermal
Climate Index (UTCI) of the tropical city of Singapore to below 3 ◦C at noon [33]. The
increase in humidity not only reduces thermal comfort but also increases the energy
consumption of dehumidification air conditioning [34]. Due to the combined influences on
outdoor temperature, humidity, and wind speed, the urban greening design can be a multi-
objective optimization problem with optimal planting layout differing across different
climate zones.

Research methods to explore the impact of greening layout on the outdoor thermal en-
vironment include field tests, remote sensing [35], and numerical simulation. Early research
relied primarily on field tests to evaluate the impact of various factors on urban microcli-
mate [36,37]. However, due to limitations in terms of time, space, and cost, it is difficult to
obtain universal rules through on-site testing. Remote sensing technology is mainly used to
derive the surface temperature of the top canopy and identify extreme temperature areas,
but it cannot directly analyze the thermal feeling of urban residents [30] and is rarely used
in relevant research on greening. Numerical simulation methods have become increasingly
prevalent in recent years. They overcome the limitations of remote sensing and can simulate
outdoor microclimate and human thermal comfort. ENVI-met is well-used to evaluate the
effects of green infrastructure on urban microclimates by providing microclimatic condi-
tion simulations and custom evaluation indicators, as highlighted by Zhixin Liu [38] in
his review of urban green infrastructure systems. The research process with ENVI-met
typically involves modeling, validation, and scenario simulation. Yupeng Wang [39] also
confirmed the effectiveness of ENVI-met in exploring the cooling effect of vegetation. By
using the ENVI-met microclimate fluid dynamic model to measure the impact of a greater
green landscape area, the median air temperature could be reduced by about 0.5 ◦C [39].
Pingying Lin [40] used a combination of field tests and ENVI-met simulation to explore the
outdoor greening design strategy in an old residential area in downtown Shanghai, and
conducted a regression analysis to quantify the impact of different greening on thermal
conditions. The conclusion is that the air temperature decreases by 0.05 ◦C, 0.28 ◦C, and
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0.88 ◦C for every 10% increase in lawn, shrub, or arbor. Helge Simon [41] used ENVI-met
simulation and empirical data comparison to study the interaction between vegetation and
the urban thermal environment under four weather conditions. In existing research, there
is a lack of the impact of greening layout on the outdoor thermal environment of different
types of buildings, such as the impact of single greening and various mixed greening on
the outdoor thermal environment of determinant and closed buildings. Especially in the
hot summer and cold winter areas in China, there is a lack of case studies using ENVI-met
tools to evaluate the best greening design.

Current research mainly focuses on the impact of ground green space coverage [30,42]
and the number of arbors [5,20,21] on the outdoor thermal environment. Although greening
is very effective in improving the outdoor thermal environment, there are still challenges
in optimizing greening at a regional scale based on climate response. First, research on
the effects of varying green combinations and layout at the same level of greening rate
(the proportion of green space area in the land area) remains limited. Moreover, the
building layout in residential areas can affect residents’ habits and life quality, including
microclimate, safety, and social interaction, thus also bringing challenges to greening
solutions. Lastly, due to the impact of local climate on greening effectiveness, it is essential
to incorporate regional climate factors into the entire process of greening case design
and evaluation.

This study improves the study of the outdoor thermal environment in China’s hot
summer–cold winter climate zones. By observing the impact of single greening and various
mixed greenings on the outdoor thermal environment in residential areas, the advantages of
mixed greening were quantified. Compared to the cooling effect obtained by discussing the
addition of single greening in existing studies, this study provides more spatial suggestions
for greening layout design. Using a simplified physical model of experimental residential
areas, the physical model is representative of common residential areas. Under the same
greening rate, the impact indicators that combine greening layout and patch quantity were
selected, and 16 greening cases with different arbor proportions, landscape fragmentation,
and greening types were established. In addition, the effect of greening on outdoor thermal
parameters was analyzed to provide the optimal greening design for the determinant and
enclosed layout.

2. Methodology
2.1. Field Measurement Sites and Method

The experimental research was carried out at a community scale, focusing on a high-
end residential area in Yubei District, Chongqing, that is rich in diverse greening types and
layouts. The residential area covers 76,590 m2, with a 35% greening rate, a plot ratio of
3.67%, and 1037 households. Considering the specific geographical environment of the
whole experimental site, the test points of different greening types are arranged as shown
in Figure 1 to minimize the effects of shading and wind speed caused by surrounding
buildings. Four types of greening layouts, including arbor–grass mix, shrub–grass mix,
single lawn, and arbor–shrub–grass mix, were selected, with a control group (asphalt
ground). For the five measuring points, self-made vertical instrument racks were used, and
the louver boxes were placed at a height of 0.1 m/0.5 m/1.0 m/1.5 m above the ground.
The ApresysTM temperature and humidity self-recording label were placed in a louver box,
and the temperature and humidity at different heights were recorded every five minutes.
The WFWZY-1 universal wind speed and temperature recorder and HQZY-1 black bulb
thermometer were both arranged at a height of 1.5 m on the shelf, recording at five-minute
intervals. The introduction and functions of the main instruments used in this study were
listed in Table 1. After collecting microclimate data, the mean radiant temperature (Tmrt)
for evaluating outdoor thermal sensitivity is calculated with Equation (1) based on ISO
7726 [43]:
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Tmrt =

{(
Tg + 273

)4
+

[
1.1 × 108 × v0.6

a
εg × D0.4

]
×

(
Tg − Ta

)} 1
4

− 273 (1)

Tg—Black globe temperature (◦C); Ta—Air temperature (◦C); va—Wind speed (m/s);
εg—Globe emissivity (0.95); D—Globe diameter (0.15 m).
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Table 1. Instruments for field measurement.

Test Parameter Instrument Model [46] Range Accuracy

Temperature/Relative
humidity

ApresysTM temperature and
humidity self-recording label
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The experimental testing was conducted continuously from 21 July to 15 August
2018. According to the hourly meteorological data provided by the Xihe Energy Big Data
Platform, the average air temperature during that period was estimated at 30.0 ◦C, with an
average relative humidity of 71.5%. To analyze the microclimatic conditions of different
greening layouts on a typical summer day, we selected the hourly average meteorological
parameters on 22 July 2018 as the experimental days, as shown in Figure 2.
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Figure 2. Meteorological parameters.

2.2. Model Setup

Accurate simulation of the outdoor thermal environment is crucial for quantifying the
impact of different greening layout on outdoor thermal comfort enhancement. The paper
conducts greening research at the community scale through outdoor thermal environment
simulation models. Figure 3 shows the flowchart for simulation model development.

2.2.1. Model Framework and Parameter Setting

The scope of the simulation model was expanded beyond the experimental site to
include adjacent villas, increasing simulation accuracy and incorporating a greater diversity
of architectural forms. The model scope covers an area of 450 m in length and 260 m in
width, consisting of two parts: one is an enclosed residential area surrounded by 11 high-
rise buildings (building height: 102.4 m), and the other is a determinant residential area
composed of villa buildings. There are 32 low-rise villas in a row layout with a height
of 10.2 m. The simulation database was set up based on relevant literature [45,47,48] and
field-measurement results.
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1. Soil and ground;

The ground in the experiment plot consists of natural soil, concrete, and granite
materials, along with a landscape fountain. To ensure maximum simulation accuracy, the
initial parameters are set, as outlined in Table 2.

Table 2. Parameter settings of soil.

Material Unit Natural Soil

Water content at saturation m3 (Water)/m3 (Soil) 0.45
Water content at field capacity m3 (Water)/m3 (Soil) 0.24
Water content at wilting point m3 (Water)/m3 (Soil) 0.155

Matrix potential m −0.478
Hydraulic conductivity m/s·10−6 7

Volumetric heat capacity J/(m3·K)·106 1.88
Clapp & Hornberger constant / 5.39

Heat conductivity W/m·K 0.7838

The specific parameter settings are shown in Table 3.

Table 3. Initial parameter settings of ground.

Ground Type Thickness
(m)

Thermal
Conductivity

(W/m·K)

Roughness
(mm) Reflectivity Emissivity

Natural soil 4.5 0.7838 1 0.17 0.94
Concrete 0.1 1.05 1 0.04 0.94
Granite 0.1 3.49 1 0.4 0.85
Wave 1 0.599 1 0 0.95

2. Vegetation;

Plants in ENVI-met are divided into simple plants and 3D plants, mainly defined by
tree and crown geometry, leaf properties, and root geometry [38]. Considering the leaf
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area index of different plant types in Chongqing, as described in Ref. [47], the original
vegetation data are amended to reflect actual conditions. Specific parameter settings are
detailed in Table 4.

Table 4. Parameter settings of vegetation.

Lawn Shrub Arbor

Transmissivity 0.35 0.2 0.1
Emissivity 0.25 0.15 0.15
Height (m) 0.5 1 7

LAD = 1/10 0.4 2.8 0.159
LAD = 2/10 0.4 2.8 0.23
LAD = 3/10 0.4 2.8 0.334
LAD = 4/10 0.4 2.8 0.482
LAD = 5/10 0.4 2.8 0.671
LAD = 6/10 0.4 2.8 0.848
LAD = 7/10 0.4 2.8 0.878
LAD = 8/10 0.4 2.8 0.827
LAD = 9/10 0.4 2.8 0.626

LAD = 10/10 0.4 2.8 0.075

3. Wall and roof;

Based on specific building parameters in residential areas of Chongqing and in combi-
nation with previous research by the research group [44], the setting parameters for walls
and roofs are shown in Table 5.

Table 5. Parameter settings of roof and wall.

Type Roof Wall

Thickness (m) 0.3 0.3
Absorptivity 0.5 0.7

Transmittance 0 0
Reflectivity 0.5 0.5
Emissivity 0.9 0.9

Specific heat capacity (J/kg·K) 1300 1050
Thermal conductivity (W/m·K) 0.84 0.81

Density (kg/m3) 1900 1800
Roughness (m) 0.02 0.02

2.2.2. Model Initialization

Based on the processing methods for boundary conditions in relevant literature and
drawing on previous experience [39,49], we used simple forcing to set the boundary
conditions in the software. The real-time meteorological data shown in Figure 2 were also
applied to the boundary setting and validation of subsequent models. Based on previous
research by the research group [44], the ENVI-met model of the residential area established
has been proven to be a suitable tool for simulating the outdoor thermal environment of
residential areas in Chongqing during the summer, and it is effective and reliable. Therefore,
this study continued to use this ENVI-met model.

The study focused on two common types of building layouts in residential areas,
namely, the determinant layout and the enclosed layout. To save simulation time, the
physical model of the experimental site was simplified, and reference points were set up
(Figure 4). This makes both determinant and enclosed residential areas more organized
and representative. The parameter settings for the simplified model are shown in Table 6.
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Table 6. Initial settings of the ENVI-met model.

The Simplified ENVI-Met Model

Location 29.72 N 106.63 E
Climate Hot summer-cold winter
Grid cell dx = 2 m, dy = 2 m, dz = 3 m

Grid north 22.5
Grid space for determinant layout 102 × 129 × 30

Grid space for enclosed layout 106 × 131 × 30
Distance between buildings 18 m

Buildings height 12 m
Reference points height 1.5 m

Due to limitations in the duration of experimental testing, the 2022 annual meteoro-
logical data of Chongqing was selected to calculate the typical summer days (data source:
XIHE-ENERGY.COM). 29 July 2022 was selected as a typical summer day for simulated
boundary conditions (Table 7).

Table 7. Weather conditions on the typical summer day.

City
Air Temperature

(◦C)
Relative Humidity

(%)
Wind Speed

(m/s)
Solar Radiation Intensity

(W/m2)
Average Range Average Range Average Range Average Max. (Time)

Chongqing 31.1 25.9–37.0 67.5 41.4–91.4 1.35 0.3–2.7 362.5 13:00

2.3. Simulation Scenarios

To quantitatively evaluate various greening cases, landscape fragmentation Di is
selected as the most suitable metric to describe the patch layout characteristics of plants,
as it remains unaffected by the plant landscaping layout and can better represent the
relationship between the number and area of landscape patches. Its calculation formula is
as follows:

Di =
N
S

(2)

N—Number of landscape patches; S—Total landscape area.
In Figure 5, eight cases were simulated in determinant layout and enclosed layout,

respectively, using different landscape patch fragmentation Di and arbor proportion (the
proportion of arbors in green space area). The simulation results were analyzed at the most
uncomfortable time of 15:00.
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3. Results and Discussion
3.1. Changes of Thermal Parameters for Various Greening Layouts

Figure 6 shows that at a pedestrian height of 1.5 m, the outdoor temperature and
humidity changes in the four sorts of greening layouts are inversely proportional. The
arbor–grass mix and arbor–shrub–grass mix demonstrate stronger cooling advantages,
with the former maintaining lower temperatures throughout the day, particularly during
8:00–15:00. Additionally, the arbor–grass mix has the most pronounced humidifying effect,
as evidenced by the highest relative humidity during this period. Overall, arbors have
a significant impact on the cooling and humidification capacity, contributing to a stable
outdoor environment with minimal temperature and humidity fluctuations.
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Environmental factors, such as distances from the main road and surrounding build-
ings, can inevitably influence the comparability of findings. The single lawn has the highest
wind speed due to its proximity to the main road and lack of tall arbors around it. The
shrub–grass mix had higher wind speeds than the arbor–shrub–grass mix at similar mea-
suring points, indicating that greater complexity in greening can reduce wind speed. The
arbor–grass mix had the lowest wind speed with the smallest fluctuation range, attributed
to the presence of tall, dense foliage that provides strong shelter.

The most uncomfortable period in summer with high solar radiation occurs between
10:00 and 15:00. The moment of peak temperature under each greening layout differed
and greatly related to the plant characteristics and surrounding buildings. Notably, at 9:00,
affected by the sun’s altitude angle causing significant shelter, there is a drop in black globe
temperature under the arbor–shrub–grass mix greening layout. At 10:00, the solar altitude
angle changed, and the black globe temperature increased obviously. Among all greening
layouts, the outdoor black globe temperature fluctuation under the arbor–grass mix is
relatively gentle and at a low level.

According to Table 8, the ranking of temperature and black globe temperature for the
five greenings is: arbor–grass mix < arbor–shrub–grass mix < shrub–grass mix < single lawn
< asphalt ground. The temperature difference between asphalt ground and arbor–grass mix
is 3.0 ◦C, indicating a significant cooling effect due to greening on the outdoor environment.
The changing trend of relative humidity is inversely proportional to the temperature.
The ranking of wind speed is: arbor–grass mix < asphalt ground < arbor–shrub–grass
mix < shrub–grass mix < single lawn.
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Table 8. Mean values and variances of tested parameters under different greening layouts.

Greening
Layout

Air Temperature Relative Humidity Wind Speed Black Globe Temperature
Mean Value

(◦C) Variance Mean Value
(%) Variance Mean Value

(m/s) Variance Mean Value
(◦C) Variance

Single lawn 35.6 23.66 49.3 181.31 0.62 0.16 36.9 45.67
Arbor-grass mix 33.4 8.65 53.0 68.32 0.41 0.10 34.8 20.55
Shrub-grass mix 34.7 15.48 47.7 234.21 0.58 0.22 36.4 40.86

Arbor-shrub-grass mix 33.5 10.74 52.6 167.60 0.49 0.16 35.3 28.14
Asphalt ground 36.5 47.68 47.9 234.29 0.45 0.17 37.8 64.79

To sum up, greening has the ability to optimize the outdoor thermal environment.
Among them, arbor–grass mix and arbor–shrub–grass mix have better thermal comfort
effects, but the specific effect is difficult to reflect through actual measurements, requiring
further simulation research.

3.2. Effect of Greening Design under Different Building Layouts

The simulation results analyzed the improvement effect of 16 greening cases on the
outdoor pedestrian height thermal environment at the most uncomfortable time of 15:00,
and proposed suitable greening layout suggestions under the two most common types of
building layouts (determinant layout and enclosed layout).

3.2.1. Determinant Layout

As shown in Figure 7, the fragmentation of arbor patches in cases A1, A2, and A3
increases while the green coverage and arbor proportion remain constant, leading to a
decreasing trend in temperature. However, changing the characteristics of greenery does
not significantly improve the thermal environment due to the small area of green patches.
The temperature in the southwest of the residential area is relatively low. This is due to the
combined effects of the position of the sun, building shading, and wind direction, resulting
in a more comfortable thermal environment in the southwest of the residential area around
15:00. In contrast to the pattern of temperature changes, when the fragmentation of arbor
patches increases from A1 to A3, the surrounding humidity shows an upward trend. In
addition, when shrubs are added in B series cases, the humidity increases. A4 and B4 are
more significantly humidified around buildings and crosswalks, while the center is still in a
poor humidity condition. For wind speed, the wind speed of the B series case is higher than
that of the corresponding A series case. This shows that the increase in shrub proportion
has increased the wind speed. Moreover, although the layout of street trees reduces the
temperature of sidewalks and lanes, it also makes the wind speed drop, as shown in A4
and B4 cases.

As shown in Figure 8, point O2 on the pedestrian walkway is about 0.5 ◦C cooler than
point O1 on the roadway, indicating that greening has a weaker cooling and humidifying
effect as distance increases. In the comparison of different green cases, case B4, with arbors
on both sides of the street and increased shrub proportion, achieved the lowest temperature.
However, this design may hinder the recreational functionality of the lawn space due to
the impact on entrances and exits.

Therefore, for residential areas in a determinant layout, there is a significant limitation
on the area of greening. The greening layout of street trees, such as case B4, was selected
with a small advantage. This is consistent with the research result in Ref. [28] on residential
areas, which states that shrubs surrounded by arbors can achieve the best thermal comfort
layout in residential areas, preferably with active boundaries. However, its cooling advan-
tage is relatively weak, consistent with Ref. [50], which also mentions the shading effect of
high-rise buildings. The shading effect of a row layout building has a greater impact on the
outdoor thermal environment than greening. Meanwhile, the row layout itself has a better
cooling effect than other layouts [51], avoiding the impact of obstructing airflow caused
by the complexity of greening. The greening layout design of a row-style residential area
should comprehensively consider the solar angle and building height.
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3.2.2. Enclosed Layout

In the enclosed layout, the green area is large and concentrated, resulting in a relatively
significant improvement in the thermal environment (Figure 9). From C1, C2 to C3, as
the fragmentation of arbor patches increases, the proportion of areas with temperatures
below 37 ◦C gradually decreases, and the central temperature first rises and then falls.
Correspondingly, the surrounding humidity decreases, especially in the central point of
the enclosed residential zone, and the proportion of areas with relative humidity over
39% gradually decreases. This indicates a weakening of the cooling and humidifying
ability of arbors in the surrounding environment, and the cooling and humidifying effect
of arbors decreases with distance. Comparing the C and D series cases, with the arbor
ratio decreasing and the shrub ratio increasing, no significant temperature changes were
observed. However, increasing the number of shrubs led to a higher diversity of green
plants and a significant increase in humidity.
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For the wind environment, in C1, C2, and C3 cases, the area where the wind speed
decreases is related to the location of the arbor patch, that is, the arbor patch will weaken
the outdoor wind speed of the residential area. After replacing some arbors with shrub
patches, the wind speed under condition D increased slightly. In C4 and D4, the street tree
type layout is not suitable for enclosed layout.

As shown in Figure 10, closed residential areas in hot summer–cold winter climates
should choose the D1 case to achieve the best level of cooling and humidifying. The best
cooling effect in the D1 case was 1.4 ◦C, while in the C4 case, it was only 0.8 ◦C. The wind
speed is more affected by orientation compared to greening layout. It is worth mentioning
that under the condition of a high degree of arbor fragmentation, the arbor patch is closer
to the sidewalk, which has a more significant impact on the wind speed of the sidewalk.
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As shown in Table 9, the fragmentation of arbor patches gradually increased, and both
Tmrt and PET increase rapidly and then decrease slightly. This is enough to indicate that
the smaller the degree of fragmentation of tree patches, the better their comfort effect. The
slight decrease in cases 2 and 3, combined with Figure 9, is due to the better circulation of
wind in case 3. This shows that the fragmentation degree of arbor patches and the distance
between arbor patches are the factors that affect the PET value at a certain point in the
residential area. In the D series case, with the addition of shrub patches, Tmrt and PET are
reduced, and comfort is improved. In general, according to the PET evaluation indicator
and Figure 9, the diversity of greening types, low fragmentation of arbor patches, and the
small spacing between arbors and sidewalks are most conducive to improving the outdoor
thermal environment of enclosed residential areas.

Table 9. Mean Radiant Temperature (Tmrt) and Physiological Equivalent Temperature (PET) of
different greening cases under enclosed layout.

Case
Tmrt PET

Center Asphalt Center Asphalt

C1 51.1 62.5 44.5 49.2
C2 64.4 65.4 52.7 49.2
C3 64.1 65.5 52.3 49.2
C4 61.0 62.2 48.6 49.2
D1 51.0 62.6 44.4 49.2
D2 61.4 62.6 49.4 49.2
D3 61.3 62.6 49.2 49.2
D4 61.0 62.3 48.6 49.2

Overall, for residential areas in an enclosed layout, the most suitable greening layout
is to centrally arrange greening in densely populated areas with arbor–shrub–grass mix.
Its optimality is consistent with the fact pointed out in Ref. [28] that green spaces are
concentrated in the center of residential areas. Compared with the temperature of asphalt,
the overall cooling and humidifying effect of the D1 case is the most significant, with a
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decrease of 1.4 ◦C in the center air temperature, 11.6 ◦C in Tmrt, and 4.8 ◦C in PET. This
represents a decrease of 0.6 ◦C compared to the worst case C4. Compared to studies using
ENVI-met for simulation, such as the 0.88 ◦C temperature reduction caused by adding
10% arbors [40] and the median temperature reduction caused by directly expanding the
landscape area by 0.5 ◦C [39], this study found that the cooling effect of greening design
was significant without changing the greening rate.

4. Conclusions

Based on summer measurements of outdoor thermal environments in a residential
area in Chongqing, the cooling and humidifying capacity of four different greening layouts
were compared. Results showed that the arbor–grass mix layout had the greatest cooling
and humidifying capacity, followed by the arbor–shrub–grass mix, shrub–grass mix, and
single lawn. The proportion of arbors in the greening layout had the most significant
impact on cooling and humidifying capacity, while greening weakened wind speed, and
the proportion of arbor area had a greater impact on wind speed at a height of 1.5 m
above ground.

After verifying the developed ENVI-met model’s feasibility in studying outdoor
thermal environments in Chongqing’s residential areas, the initial model was simplified
to include two types of residential areas: determinant and enclosed. Considering the
influencing factors of greening species, arbor proportion, and landscape fragmentation in
the experimental test, the outdoor thermal environment improvement effects in Chongqing,
representative cities of hot summer–cold winter, were analyzed. The major conclusions are
as follows:

Firstly, regardless of the building layout, the case study indicates that the closer the
greenery is to the point, the more pronounced the cooling and humidifying effects become.
Furthermore, the thermal environment at the selected point is affected by the presence or
absence of building shelters, the wind direction on the given day, and the altitude angle of
the sun.

Secondly, in the determinant layout, increasing greening diversity and reducing the
distance between green areas and sidewalks are effective for improving cooling and hu-
midification. Arbors have a greater impact on pedestrian-level wind speeds compared to
shrubs. Therefore, prioritizing green areas near sidewalks is crucial in determinant layout
greening design. However, limited green space and increased fragmentation may not be
cost-effective for temperature reduction and may negatively affect the wind environment.
Street tree layout that maximizes shaded areas on sidewalks and incorporates shrubs are
the most suitable greening design approach.

Thirdly, in the enclosed layout, increasing the fragmentation of greening patches raises
temperatures and reduces cooling capacity. The wind speed within residential areas rises,
but overall wind speed decreases. Changing the proportion of arbors and shrubs affects
local temperature variation but has little impact on overall temperature change while
improving the wind environment. When the area of trees and shrubs is concentrated at 7:4,
occupying a total of 30% of the green space, the environmental temperature decreases by
1.4 ◦C, Tmrt decreases by 11.6 ◦C, and PET decreases by 4.8 ◦C. Centralized arrangement of
greening is recommended for better cooling effects. When selecting arbor patch locations,
consider areas with higher people density.

5. Limitations and Future Work

The study focused on three main influencing factors: proportion of arbors, landscape
fragmentation, and greening types, evaluating indicators such as temperature, humidity,
wind speed, and shading effect. In this paper, air temperature is the main metric used in the
comparison of the thermal environment. Now, the globe temperature value is the average
value of the air temperature and the mean radiant temperature. This means that the surface
temperature is close to the air temperature. This is due to the systematic inertia exhibited
by 150 mm globes, which cannot effectively measure the average radiation temperature
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outside [52,53]. In addition, the globe receives heat from solar direct and diffuse radiation,
so higher values are expected. At higher temperatures, there will be more different thermal
environmental effects, which will be taken into account in future work.

While considering common research methods and parameters of the outdoor thermal
environment, this study has several limitations, such as not combining the objective comfort
of the green layout with subjective personnel evaluation. The study also lacked quantitative
calculation on the economy of greening layout, and no economic considerations were given
for the actual greening design of the project. The actual residential terrain was not taken
into account, and an idealized equal distribution layout was adopted. Future work can
include subjective experiments through questionnaires to obtain feedback under different
green layouts and quantitatively calculate their economic efficiency. The study can also
consider changes in thermal environment parameters under different climate types, plant
heights, house orientations, and height differences to carry out comparative studies and
draw more detailed and accurate conclusions.
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