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Abstract: In the Qinghai-Tibet Plateau region, operational deficiencies and limited maintenance
capacities often impair automatic air quality monitoring stations. This results in frequent data
omissions, compromising the reliability of environmental assessment data. Therefore, an effective
data imputation method is required to address the gaps in observational records. Utilizing a Sequence-
to-Sequence framework, we introduce a model termed Bidirectional Recurrent Imputation for Time
Series-Attention-based Long Short-Term Memory (BRITS-ALSTM). The encoder of BRITS-ALSTM
applies BRITS to integrate single-station historical characteristics with multi-station correlation
features. Concurrently, the decoder employs LSTM within an attention mechanism to capitalize
on previously observed data, thereby generating hourly imputations for missing air quality data
values. The model was trained using six types of air quality data from 16 stations across Qinghai
Province. Through localized testing and parameter optimization, BRITS-ALSTM achieved a reduction
in mean relative error (MRE) by 74.88% compared to the baseline mean-filling approach. Additionally,
ablation studies demonstrated an improvement in the coefficient of determination R-squared (R2)
from 0.67 to 0.76, outperforming the standalone BRITS. Consequently, BRITS-ALSTM enhances the
accuracy of air quality data evaluations in the Tibetan Plateau and offers an efficacious strategy for
data imputation in elevated terrains.

Keywords: deep learning; missing value imputation; data validity; air quality; Qinghai-Tibet Plateau

1. Introduction

Precision in the prevention and control of air pollution is contingent upon a com-
prehensive grasp of atmospheric pollutant characteristics [1]. An objective assessment
of air pollution is derived from meticulous monitoring and analysis of key air quality
indicators, enabling an accurate exploration of time series data. Such insights are piv-
otal for decision-makers, facilitating the formulation of tailored improvement measures
aimed at mitigating the adverse impacts of air pollution on both human health and the
environment [2–6]. Consequently, the imperative of acquiring precise air quality data is
underscored [7]. Progress is noted in the enhancement of air quality monitoring networks
globally, a response to the burgeoning necessity for refined data, essential in the nuanced
management of air pollution [8–10]. Air quality monitoring stations are integral in this
endeavor, renowned for delivering precise data. However, their efficacy is compromised
in elevated terrains characterized by harsh climatic conditions. Data collection is often
impeded by equipment malfunctions, adverse weather, and delayed maintenance, injecting
a degree of uncertainty into the process [11–14]. The resultant data voids undermine the
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attainment of the minimum requisites stipulated by the Ambient Air Quality Standards
(GB3095-2012), particularly concerning the validity of annual and daily average data statis-
tics for air pollutants [15]. Air quality exhibits a high degree of time sensitivity, necessitating
the monitoring of hourly data to accurately capture rapid changes. This approach enables
real-time broadcasting of the Air Quality Index (AQI). Consequently, the strategic imputa-
tion of missing data at the hourly level becomes crucial. Such intervention significantly
enhances the completeness and precision of air quality monitoring data [16–19].

The primary strategies for addressing missing values encompass direct deletion and
data imputation [20]. Direct deletion serves as a straightforward tactic where data entries
with absent attributes are eliminated, especially when the proportion of such missing values
remains low. However, this approach becomes impractical as the missing rate escalates;
valuable information is discarded, leading to the degradation of experimental outcomes
due to compromised data integrity [21,22]. In contrast, missing value imputation has
gained prominence as an efficient alternative. The judicious selection of an appropriate
imputation method is pivotal, not only for ensuring the integrity of subsequent research
but also for enhancing the precision of the outcomes [23,24].

Imputation methods primarily rely on statistical models, machine learning algorithms,
or deep learning architectures, each possessing distinct merits and limitations [25]. Statisti-
cal models compute missing values using established algorithms, predominantly employ-
ing mean, median, and regression imputation techniques [26]. For instance, Worden et al.
utilized least squares curves to impute datasets under sparse normality conditions [27],
while Noor et al. employed linear, quadratic, and cubic imputation methods for processing
PM10 data [28]. Although effective, statistical methods can introduce errors and perform
suboptimally when dealing with complex variable relationships or substantial missing data
gaps. In contrast, machine learning and deep learning approaches often yield superior
imputation results but typically necessitate extended imputation durations compared to
statistical methods. Concurrently, traditional machine learning approaches, encompassing
K-Nearest Neighbor, fuzzy methods, decision trees, support vectors, and other models,
have been integrated into the repertoire of techniques for addressing missing values [29–31].
A case in point is the work of Honghai et al., where Support Vector Machine (SVM) regres-
sion was employed to estimate missing conditional attribute values, illustrating the efficacy
of machine learning in enhancing data completeness, but not with large datasets [32]. In
a similar vein, Patil et al. innovated a weighted distance-based k-means algorithm. This
method hinges on computing the mean of the center of mass values and center of mass
distances of proximate neighbors to impute missing values, marking a stride in precision
and reliability, but it is less effective for high-dimensional sparse data [33]. Complementing
these, Kornelsen et al. amalgamated Artificial Neural Network (ANN) and Evolutionary
Polynomial Regression (EPR) techniques. They capitalized on the Multilayer Perceptrons
(MLP) algorithm to impute randomly missing values in high-resolution soil water data,
underscoring the versatility and robustness of combined methodologies, but prone to the
problem of local minima [34].

Deep learning models, particularly those founded on neural networks, have become a
cornerstone in endeavors to enhance the precision of missing data imputation [35]. Che
et al. deployed missing mode representation of masks and time intervals, an approach
instrumental in capturing intricate long-term dependencies in time series. They manipu-
lated the decay of hidden states within the Gated Recurrent Unit-Decay (GRU-D) model,
fostering a notable enhancement in accuracy [36]. Similarly, Cao et al. introduced the Bidi-
rectional Recurrent Imputation for Time Series (BRITS) algorithm, an innovation grounded
in Recurrent Neural Network (RNN) technology, adept at managing multiple correlated
missing values within time series [37]. These methodologies, though diverse, share a
common foundation in variations of neural networks derived from RNNs. They adeptly
navigate the challenges of gradient vanishing or explosion, ensuring optimal learning
of the data’s temporal dependencies [36,37]. In another significant development, Yoon
et al. unveiled the Generative Adversarial Imputation Nets (GAIN), a model designed
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for missing value imputation. By feeding additional information to the Discriminator,
they ensured that the model’s Generator mastered the correct expected distribution [38].
Furthermore, Cini et al. pioneered the Graph Recurrent Imputation Network (GRIN), a
novel multivariate time-series imputation framework for graph neural networks. GRIN
excels in reconstructing lost data information transfer across various channels by mastering
spatio–temporal representations [39]. In essence, deep learning underscores a superior
efficacy in imputing large datasets, outperforming conventional padding and statistical
methodologies.

Traditional recurrent neural networks, including RNN and LSTM (Long Short-Term
Memory), are recognized for their adeptness in mining complex temporal features. This
is achieved through the employment of cyclic feedback network structures and the con-
tinuous recursive replacement of temporal information [40–42]. A limitation, however,
is their focus on restricted sequence information, resulting in a compromise in model
performance when processing extensive sequence data [43]. To mitigate this limitation,
the Sequence-to-Sequence (Seq2Seq) structure, a prevalent Encoder–Decoder model, has
been introduced. It operates by encoding an input sequence into a fixed-length vector
and subsequently decoding this vector into an output sequence [44–46]. This architectural
innovation amplifies the model’s capacity to process and memorize extended temporal
sequences, circumventing the constraints inherent in traditional RNN and LSTM networks.

This study introduces the Bidirectional Recurrent Imputation for Time Series-Attention
Long Short-Term Memory (BRITS-ALSTM) model, innovatively designed to grasp the
global dependencies and multivariate local correlations within time series data. With
the Sequence-to-Sequence structure serving as its foundational architecture, the model
integrates the BRITS as the encoder within an Encoder–Decoder configuration, paired with
LSTM acting as the decoder [47]. This structure has proven instrumental in addressing the
imputation of missing air quality values. In the encoding phase, multivariate time series
vectors containing missing values are adeptly encoded utilizing BRITS. Progressing to the
decoding phase, an attention mechanism is employed to adjust the weights associated
with long time series information vectors. This adjustment enhances the model’s ability to
discern the spatio-temporal characteristics of air quality data at pivotal time junctures [48].
Consequently, the model attains a comprehensive understanding of the underlying data
representations and temporal dependencies between sequences. The decoding process
subsequently facilitates high-precision imputation of the missing data values. Key contri-
butions of this study are encapsulated in the introduction of the BRITS-ALSTM model, its
adept handling of global dependencies, and the intricate extraction of multivariate local
correlations within time series data.

• The BRITS-ALSTM model employs a bidirectional encoding scheme complemented
by a decoding architecture that incorporates an attention mechanism. This model
is designed to capture both temporal dependencies and spatial correlations among
adjacent stations at hourly intervals within a specified timeframe. Through the inte-
gration of the attention mechanism, it is possible to discern the significance of various
informational inputs by assigning appropriate weight ratios, thereby fine-tuning the
current state’s dependencies throughout the LSTM’s decoding phase.

• An analysis was conducted on the imputation of missing values in six categories of
air quality data from 16 monitoring stations in Qinghai Province using three meth-
ods: mean-filling, BRITS (Bidirectional Recurrent Imputation for Time Series), and
BRITS-ALSTM. The findings indicate that the BRITS-ALSTM model exhibits superior
imputation accuracy, thereby enhancing the assessment of regional air quality data on
the Tibetan Plateau.

2. Materials and Methods
2.1. Data

This study focuses on Qinghai Province, a strategically significant area for ecolog-
ical preservation and development in China, nestled in the northeastern sector of the
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Qinghai-Tibetan Plateau [49]. Characterized by an altitude exceeding 3000 m and annual
temperatures fluctuating between −1 ◦C and 15 ◦C, this region presents a unique environ-
ment for air quality study. The unique climatic conditions and elevated altitude of the study
area contribute to a sparse population, resulting in an insufficient number of grassroots
environmental protection personnel [50]. Consequently, efforts in air pollution prevention
and control are hampered, and the capacity for station operation and maintenance is limited.
Instances of missing monitoring data often occur due to routine maintenance activities,
such as the calibration of monitoring instruments, and unforeseen challenges, like instru-
ment failures, communication breakdowns, and power outages [51]. The state-controlled
station dataset incorporates air quality readings from eight centrally administered ambient
air automatic stations, offering comprehensive coverage across Qinghai Province’s expanse,
inclusive of two cities and six prefectures. Similarly, the province-controlled station dataset
derives its data from eight regional ambient air automatic stations stationed in Haidong
City, ensuring complete coverage of the entire city, encompassing two districts and four
counties. Figure 1 elucidates the geospatial distribution of these stations.
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shows the distribution of state-controlled stations in Qinghai Province, and the right figure shows
the distribution of province-controlled stations in Haidong City.

The China National Environmental Monitoring Center (CNEMC) plays a pivotal role
in China’s environmental monitoring efforts, providing real-time air quality data from all
provinces and cities. This data, collected through nationwide environmental monitoring
stations, undergoes rigorous testing for accuracy, quality control, and data review before
public dissemination, thereby making it a highly authoritative and frequently utilized
dataset for air quality research in China. The current study acquired hourly observa-
tion data on six ambient air pollutants (PM2.5, PM10, O3, NO2, SO2, and CO) from eight
state-controlled stations in Qinghai Province (2019–2021) and eight provincial-controlled
stations in Haidong City, Qinghai Province (2020–2022). Variability was observed in data
missingness and validity across the 16 stations, with each station’s data evaluated against
national standards. Table 1 shows the minimum requirements for evaluating the validity of
pollutant concentration data in the Ambient Air Quality Standards (GB3095-2012).
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Table 1. Minimum requirements for validity of pollutant concentration data.

Pollutant Average Time Data Validity Requirement

PM2.5, PM10, NO2, SO2 annual average
Condition 1: At least 324 daily average concentration values yearly.
Condition 2: At least 27 daily average concentration values monthly

(with February necessitating at least 25 values).
PM2.5, PM10, NO2, SO2, and CO 24-h average At least 20 h of average concentration values or sampling time daily.

O3 8-h average At least 6 hourly averaged concentration values for every 8 h.

Figures 2 and 3 delineate the disparity between the obtained and missing data, con-
textualized within the annual evaluation timeframe. The average rate of missing data for
state-controlled stations is about 5% (Figure 2a,c), with the phenomenon that the higher
the altitude, the more severe the missing data at the station. When annual averaging was
evaluated for the state-controlled stations, all stations met the requirement of having at
least 89% of the daily averages for each year (Figure 2b,d), but only two stations also met
Condition 2. State-controlled station data are not far from meeting the requirements of
Condition 2. Figure 2e shows that absences were concentrated in February, June, August,
and September. The analysis revealed that data gaps at the state-controlled station predom-
inantly occur between 16:00 and 20:00 (refer to Figure 2f). This pattern suggests a potential
correlation with disruptions in communication signals or power outages during this time
frame. These statistics help to better target the maintenance of state-controlled monitoring
stations and reduce deficiencies in the monitoring process.
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Figure 2. Statistical data related to the occurrence of missing values in the monitoring of six pollutants
at state-controlled stations. (a) Percentage of missing values at stations, (b) frequency of days with
non-attainment of the daily average evaluation at the stations, (c) histogram of the percentage
of missing values for the six pollutants at the stations, (d) frequency of days with daily average
evaluations of compliance for the six pollutants at stations, (e) frequency of days evaluated to meet
the standard for each month for the six pollutants, (f) percentage of missing values by hour for each
of the six pollutants.
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at province-controlled stations. (a) Percentage of missing values at stations, (b) frequency of days
with non-attainment of the daily average evaluation at the stations, (c) histogram of the percentage
of missing values for the six pollutants at the stations, (d) frequency of days with daily average
evaluations of compliance for the six pollutants at stations, (e) frequency of days evaluated to meet
the standard for each month for the six pollutants, (f) percentage of missing values by hour for each
of the six pollutants.

There is a more serious situation of missing data in the province-controlled stations,
with an average missing rate of about 22% (Figure 3a,c), and up to 43.29% in station
07B. When evaluating the annual averages for the state-controlled stations, none of the
stations met the requirement of having at least 89% of daily averages per year (Figure 3b,d),
and none of them met Condition 2. Province-controlled stations had the most serious
deficiencies in the month of January (Figure 3e). Data scarcity at 16:00 was notably evident
at provincially controlled stations during daytime hours (see Figure 3f). This phenomenon
is attributed to the calibration procedures of instruments at newly established stations.
Therefore, it is important to perform hourly imputation of data from provincial control
stations with high missing rates and high randomness to make the data meet the national
evaluation standards.

2.2. Methodology

The BRITS model excels in the imputation of time series data within the realm of deep
learning and has consistently demonstrated superior accuracy in imputing missing values
across a variety of public datasets. Its conceptual framework exhibits broad applicability
and utility. Drawing inspiration from established models, like BRITS [37] and BiLSTM-
I [52], this study introduces the BRITS-ALSTM, a nuanced model engineered for the
intricate task of correlating multivariate time series imputation, with BRITS serving as
its foundational element. The integration of the BRITS structure and the sophisticated
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Encoder–Decoder network intrinsic to the Seq2Seq model facilitates a profound extraction
of both the temporal dependencies characteristic of extensive time series data at individual
stations and the spatial correlations manifesting synchronously across diverse locations.
The incorporation of an attention mechanism amplifies the delineation of pivotal temporal
nodes within the contemporaneous imputed data. In the encoder segment, BRITS takes
precedence, with RITS at its core, functioning as a feature correlation algorithm within
unidirectional recursive recurrent dynamical systems. Conversely, the decoder segment
assimilates attention distribution and employs LSTM to actualize data imputation with
precision and efficiency.

2.2.1. Basic Definition

The air quality data are stored separately in chronological order for each station, and
the time series data are noted as

{
si

t
}

; i represents the station code and t represents the
timestamp. The absence of temporal and quantitative patterns and the presence of various
uncertainties in the absence of air quality data lead to the presence of null values in S. To
explicitly represent the missing cases in the station collection data, introduce a mask vector
{ms

t}, where:

ms
t =

{
0, i f si

t unobserved
1, otherwise

, (1)

Define δs
t as the time gap from the last observing to the current timestamp, where:

δs
t =


st − st−1 + δs

t−1,i f t > 1 and ms
t−1 = 0

st − st−1,i f t > 1 and ms
t−1 = 1

0,i f t = 1

, (2)

In summary, the data set S = {s1, s2, · · · , s8}, mask vector M = {m1, m2, · · · , m8} and
time gap vector δ = {δ1, δ2, · · · , δ8} are obtained for all stations. Taking the data from 1
January 2019 0:00 to 1 January 2019 7:00 as an example, the corresponding mask and time
gap vectors are generated as shown in Table 2.

Table 2. Example of a multivariate time series with missing values.

S1 S2 S3 S4 S5 S6 S7 S8 m1 m2 m3 m4 m5 m6 m7 m8 δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8

1 January 2019 0:00 - 37 28 - - 8 54 98 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1

1 January 2019 1:00 9 40 25 - - 6 66 97 1 1 1 0 0 1 1 1 1 1 1 2 2 1 1 1

1 January 2019 2:00 7 40 25 - - 9 68 90 1 1 1 0 0 1 1 1 1 1 1 3 3 1 1 1

1 January 2019 3:00 16 44 19 - - 6 75 94 1 1 1 0 0 1 1 1 1 1 1 4 4 1 1 1

1 January 2019 4:00 25 46 18 - - 6 77 94 1 1 1 0 0 1 1 1 1 1 1 5 5 1 1 1

1 January 2019 5:00 23 41 20 - - 9 75 85 1 1 1 0 0 1 1 1 1 1 1 6 6 1 1 1

1 January 2019 6:00 20 34 16 - 15 8 74 87 1 1 1 0 1 1 1 1 1 1 1 7 1 1 1 1

1 January 2019 7:00 21 29 17 - 12 7 83 96 1 1 1 0 1 1 1 1 1 1 1 8 1 1 1 1

2.2.2. BRITS-ALSTM Model

The model structure is shown in Figure 4, where the input sequence S is denoted as
x = {x1, x2, · · · , xn}, the mask sequence M is denoted as m = {m1, m2, · · · , mn}, the time
gap sequence δ is denoted as δ = {δ1, δ2, · · · , δn}, and the output sequence generated after
imputation is denoted as y = {y1, y2, · · · , yn}.
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1. Encoder

To construct BRITS, the hidden states are initialized to all-zero vectors, and the model
is updated by the following equation:

x̂t = Wxht−1 + bx, (3)

xc
t = mt ⊙ xt + (1−m)⊙ x̂t, (4)

ẑt = Wzxc
t + bz, (5)

γt = exp{−max(0, Wγδt + bγ)}, (6)

βt = σ(Wβ[γt ◦mt] + bβ), (7)
⌢
c t = βt ⊙

⌢
z t + (1− βt)⊙

⌢
x t, (8)

cc
t = mt ⊙ xt + (1−mt)⊙

⌢
c t, (9)

ht = σ(Wh[ht−1 ⊙ γt] + Uh[cc
t ◦mt] + bh), (10)

ℓt = Le(xt, x̂t) + Le(xt,
⌢
z t) + Le(xt,

⌢
c t), (11)

Equation (3) inputs the historical data of a single station into the model and converts
the hidden states ht−1 into estimated vectors

⌢
x t to obtain the history-based estimates.

Equation (4) replaces the missing values in with the history-based estimates
⌢
x t to obtain

the imputed vector xc
t . Equation (5) inputs the historical estimates of other stations and syn-

thesizes the effects of multivariate correlation on a single station to obtain the estimates
⌢
z t

of the station based on other features. Where Wz and bz are the corresponding parameters,
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the diagonal of the restriction parameter matrix Wz is 0. Thus, the dth element in
⌢
z t is the

estimate of xd
t based on other features. Due to the irregularity of missing time series data,

Equation (6) introduces a time decay factor γt to represent missing patterns in the time
series. In Equation (7), βt ∈ [0, 1]D is used as the mode for combining the history-based
estimation

⌢
x t and the feature-based estimation

⌢
z t. The weights are learned by considering

the time decay factor γt and the mask vector mt. Equation (8) assigns the history-based and
feature-based estimation weights as calculated in Equation (7) to obtain the joint estimate
⌢
c t of the two. Equation (9) replaces the missing values in a using

⌢
c t to obtain the new

imputed vector cc
t . Equation (10) is used to update the decay-based hidden state to realize

the prediction of the next ht, where ◦ denotes the join operation. Equation (11) loss function
uses the sum of the errors of all the estimates (history-based estimates

⌢
x t, feature-based

estimates
⌢
z t, and joint estimates of both

⌢
c t).

BRITS’ bidirectional RITS neural network a reads inputs from the beginning to the end

of a time series that produces a forward hidden state sequence
→
h =

{→
h 1,
→
h 2, · · · ,

→
h n

}
and

unit state sequence
→
c =

{→
c 1,
→
c 2, · · · ,

→
c n

}
; the other reads the input in reverse from the

end to the beginning of the time sequence, producing the backward hidden state sequence
←
h =

{←
h 1,
←
h 2, · · · ,

←
h n

}
and the unit state sequence

←
c =

{←
c 1,
←
c 2, · · · ,

←
c n

}
. The forward

and backward hidden state sequences and unit states are spliced together to form the
coded outputs h = {h1, h2, · · · , hn} and c = {c1, c2, · · · , cn} of the encoding layer, where

hi =

{→
h i,
←
h i

}
and ci =

{→
c i,
←
c i

}
.

Error in BRITS consists of both forward estimation error and backward estimation
error (Equation (12)).

ℓe = ℓ
f
t + ℓb

t , (12)

2. Attention Mechanism

In the encoding process, each input time point of the time series does not contribute
equally to the imputation value at the current moment, so the attention mechanism is
introduced to allocate the probability distribution of attention to extract the input infor-
mation that is more important to the imputation at the current moment and to improve
the accuracy of the imputation. The specific equation of the principle of the attention
mechanism is as follows:

at = so f tmax(vtanh(attn(st−1, H))), (13)

In Equation (13), the encoder compiles the input information to obtain the output
hidden state sequence, for the last moment of the hidden state in the encoder, through a
fully-connected layer attn and tanh activation function, to calculate the correlation between
the last moment of the hidden state and the encoder output hidden state, scoring mapping
to generate the attention weights, and normalized to obtain the final attention weights.

3. Decoder

The decoder processes the output sequence h of the encoder by receiving the attentional
weights and produces the imputed time sequence y. The decoding structure using a
combination of LSTM and linear layers is given in the following equation:

⌢
d t = Wx(at−1ht−1) + bx, (14)

dc
t = mt ⊙ xt + (1−m)⊙

⌢
d t, (15)

ht = LSTM(dc
t , ht−1), (16)

yt = Wyht + by, (17)
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ℓd = Le(xt, yt), (18)

Equations (14)–(16) sum the hidden states of the input information weighted according
to the attention distribution to obtain a feature vector ht that contains both the encoder out-
put state information and the decoder current moment feature timing attention correlation
information. The updated ht is passed to the LSTM, and Equation (16) shows the decoding
process of the LSTM layer. Equation (17) is the linear fully connected layer that outputs the
imputation result sequence y. Equation (18) is the estimation error of decoder imputation.

The error of the whole neural network consists of two parts:

ℓt = ℓe + ℓd, (19)

where ℓe is the estimation error in the model coding layer and ℓd is the estimation error in
the model decoding layer.

2.2.3. Evaluation Metrics

The BRITS-ALSTM is deployed utilizing the PyTorch open-source machine learning
framework, executing the model across two distinct datasets. Air quality data is inherently
characterized by its periodicity and seasonality; thus, data corresponding to March, June,
September, and December from both datasets are allocated as test sets. The remaining
monthly data form the training sets, establishing a 2:1 ratio between training and test data.
The study establishes ‘eval’ and ‘eval_masks’ vectors for evaluation purposes. ‘Eval’ en-
compasses all true observations, while ‘eval_masks’ introduces a random 30% masking in
the dataset where the actual observations are known, simulating missing data. The BRITS-
ALSTM model is then employed to impute these artificially missing locations, yielding the
model’s imputation results. These results, compared with the true monitoring values, are
instrumental in calculating the model’s loss function and assessing its parameters. The
performance of the BRITS-ALSTM model in imputing missing values is meticulously eval-
uated and benchmarked against an array of baseline imputation methods, as enumerated
in Table 3. Each method is subjected to rigorous testing under identical dataset conditions
to ensure a comprehensive and objective comparative analysis.

Table 3. Introduction to baseline imputation methods.

Method Introduction

Mean Use a simple global average to replace missing values [53].

KNN K-nearest neighbor imputes the missing values by finding similar samples and using the weighted
average of their neighbors [53].

MF The Matrix Factorization method decomposes the data matrix into two low-rank matrices and fills in
the missing values by means of matrix completion [54].

MICE Create multiple imputations using chained equations [55].
M-RNN Missing values are imputed based on the hidden states in both directions in a bidirectional RNN [56].

The BRITS-ALSTM imputation model constructed in this study is a kind of regression
model, which can evaluate the imputation results from the deviation between the imputed
value and the true value. Therefore, Mean Absolute Error (MAE) and Mean Relative Error
(MRE) are selected as evaluation indexes. Among them, MAE and MRE characterize the
deviation of the model fitting to the true value, and the smaller the means the more accurate
the result, as follows:

MAE =
∑i|yreal − yim|

N
, (20)

MRE =
∑i|yreal − yim|

∑i yreal
, (21)

In Equations (18) and (19), yreal is the real value, yim is the imputed value, and N is the
total number of samples.
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3. Results

The state-controlled station dataset exhibits an average missing rate of 5%. Table 4
presents the results of a comparative analysis of missing value imputation between the
BRITS-ALSTM model and other baseline imputation methods, utilizing the state-controlled
station dataset. Notably, the BRITS, BRITS-LSTM, and BRITS-ALSTM approaches demon-
strate superior performance over statistical modeling methods, including Mean, KNN, MF,
MICE, and the M-RNN method, particularly in the context of six air pollutants. Each of
these BRITS-based deep learning methods delivers enhanced imputation accuracy and re-
duced relative error, distinguishing themselves from traditional imputation methodologies.
This enhanced performance is attributed to the nonlinear modeling capacity of deep learn-
ing methods, enabling a more nuanced fit to real-world data complexities. The variance
in performance among these methods, contingent on the specific ambient air pollutant
data being imputed, underscores the nuanced advantages and limitations inherent to their
application across diverse data sets.

Table 4. Comparison of imputation results for state-controlled station dataset.

State-Controlled
Station Dataset
(Missing Rate)

PM2.5
(5.70%)

PM10
(5.70%)

O3
(4.96%)

NO2
(4.86%)

SO2
(4.77%)

CO
(5.00%)

Method MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE

Mean 21.4726 0.9944 47.5001 1.0070 74.8322 0.9994 17.7608 0.9966 13.1555 0.9867 0.6231 0.9961
KNN 21.2697 0.9881 46.9564 0.9954 75.9053 1.0137 17.2510 0.9680 12.9697 0.9728 0.6187 0.9893
MF 18.5589 0.9592 28.2112 0.5612 70.3940 0.8156 19.9263 1.0599 9.4305 0.8431 0.8335 0.9737

MICE 22.5469 1.0132 48.2395 1.0171 73.2109 1.0014 19.3482 1.0064 13.5124 1.0135 0.6546 1.0087
M-RNN 6.7744 0.3115 20.7425 0.4352 18.7845 0.2483 5.7384 0.3187 3.7013 0.2772 0.1403 0.2220
BRITS 6.4716 0.3007 16.0573 0.3478 12.5022 0.1653 6.0460 0.3802 3.6611 0.2717 0.1288 0.2038

BRITS-LATM 6.3088 0.2901 15.8079 0.3317 12.8271 0.1696 5.8899 0.3272 3.5000 0.2621 0.1584 0.2507
BRITS-ALSTM 5.9780 0.2739 17.6502 0.3698 12.4189 0.1629 5.0359 0.2805 3.0694 0.2317 0.1030 0.1630

Table 5 delineates the performance metrics of all evaluated models in imputation
air quality data, utilizing the province-controlled station dataset. This particular dataset
has a substantial missing rate of approximately 22%, representing a more pronounced
data insufficiency. The empirical results underscore the pronounced efficacy of the BRITS,
BRITS-LSTM, and BRITS-ALSTM models over both the conventional statistical modeling
techniques and the M-RNN method. Combining the imputation results of air quality data
from state-controlled and provincial-controlled stations, BRITS-ALSTM has the highest
accuracy for PM2.5, O3, NO2, SO2, and CO, and BRITS-LSTM has the highest accuracy
for PM10.

Table 5. Comparison of imputation results for province-controlled station dataset.

Province-Controlled
Station Dataset
(Missing Rate)

PM2.5
(25.35%)

PM10
(23.03%)

O3
(20.67%)

NO2
(21.48%)

SO2
(21.26%)

CO
(20.64%)

Method MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE MAE MRE

Mean 27.8987 0.9913 54.3233 0.9919 73.1636 0.9984 16.0976 0.9956 11.7414 0.9996 0.4681 0.9978
KNN 27.8212 0.9885 54.0408 0.9868 73.7039 1.0058 15.6014 0.9649 11.7324 0.9988 0.4625 0.9859
MF 21.9874 0.9875 27.5499 0.5180 68.3819 1.0563 13.7795 0.6732 10.0977 0.9857 0.4592 1.0061

MICE 28.2986 1.0055 57.9825 1.0094 73.4007 1.0017 15.7524 1.0071 12.4394 1.0206 0.4732 1.008
M-RNN 10.3735 0.3402 24.7701 0.4183 29.6608 0.3754 5.1823 0.2971 3.7853 0.2987 0.1312 0.2593
BRITS 8.3332 0.2735 18.5450 0.3132 18.9782 0.2319 4.1258 0.2365 3.2621 0.2586 0.1179 0.2331

BRITS-LATM 8.2768 0.2714 17.4104 0.2940 19.9559 0.2526 4.8560 0.2784 3.2093 0.2532 0.1301 0.2587
BRITS-ALSTM 8.1505 0.2672 22.7985 0.3648 17.5627 0.2223 3.9949 0.2290 3.1693 0.2501 0.0947 0.1872

To elucidate the distinctions between the imputed values and the observed values,
Figure 5 shows the results of the BRITS-ALSTM model in imputing the missing hourly
PM2.5 data at the state-controlled station 2676A from 1–8 January 2019, compared with
the actual observations. In Figures 5 and 6, the blue line represents the actual PM2.5
observations. The yellow line models data gaps in locations where true observations are
present, simulating missing data scenarios. The red line depicts the outcomes of imputation
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derived from the BRITS-ALSTM model. It can be seen that the imputation values of the
BRITS-ALSTM model are more consistent with the actual observations. Figure 6 shows
the zoomed-in comparison between the imputed values and the actual observations of
the BRITS-ALSTM model in 24 h for the first four days of Figure 5. It can be seen that
the imputed results of the BRITS-ALSTM model have a small numerical difference from
the real values. It can predict the rising or falling trend of pollutant concentration more
accurately when filling the inflection time.
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4. Discussion
4.1. BRITS vs. BRITS-ALSTM

Performance variations are observable among the BRITS, BRITS-LSTM, and BRITS-
ALSTM models in the context of six types of air quality datasets. As depicted in Figure 7,
the BRITS-ALSTM model performs best when imputing PM2.5, O3, NO2, SO2, and CO data
compared to the BRITS and BRITS-LSTM models. During the accuracy validation of the
model using the test set, imputing the CO data from the state-controlled stations had the
highest accuracy compared to imputing the other five types of air quality data. Taking
CO as an example, Figure 8a shows the correlation between the imputation results of the
BRITS model and the CO observations, and Figure 8b shows the correlation between the
imputation results of the BRITS-ALSTM model, the CO observations, and the coefficient of
determination R-squared (R2) of the BRITS and BRITS-ALSTM models are 0.67 and 0.76,
respectively, and the accuracy of the improved model is increased by 13.43%. The BRITS-
ALSTM reduces the MAE metrics by 0.0258 and 0.0554, equivalent to reductions of 20.03%
and 34.97%, when compared with the BRITS and BRITS-LSTM models. The MRE metrics
decline by 0.0408 and 0.0877, marking improvements of 20.01% and 34.98% over the BRITS
and BRITS-LSTM models. These findings underline the superior imputation capability
of the BRITS-ALSTM model, enhanced by the integration of the Seq2Seq structure and
attention mechanism. The BRITS-LSTM model, incorporating only the Seq2Seq structure,
is secondary in performance, while the BRITS model trails as the least effective.
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The datasets from the state-controlled and province-controlled stations are indicative
of the imputation contexts influenced by diverse data omission rates. The three BRITS-based
models’ imputation efficiency manifests distinct trends and dynamics within these separate
contexts. To elucidate the disparities between the BRITS variants, which integrate Seq2Seq
architecture and attention mechanisms, two supplementary parameters are introduced.
The first parameter is denoted as Im(Mean). This metric evaluates the enhancement in the
MRE for each technique compared to the imputation performed using the Mean method,
as quantified by the subsequent equation.

Im(Mean) =

∣∣MRE−MREMean
∣∣

MREMean
, (22)

MRE denotes the average MRE value assessed at diverse missing rates. The second
metric introduced is the Sensitivity to the Missing Rate Sm. This metric quantifies the
impact of varying missing rates on the performance of a given model. It is computed
through the determination of the slope between the Missing Rate and MRE, as expressed
in the subsequent equation.

Sm =

n
∑

i=1
(mri −mr)(MRE−MREi)

n
∑

i=1
(mri −mr)2

, (23)

Table 6 presents a comparative analysis of model performance across varied missing
rate scenarios. It is evident from the data that the integration of the Seq2Seq structure
elevates the Im(Mean) of the standard BRITS model from 72.08% to 72.72% under a 5%
missing rate condition. Further enhancement is observed with the incorporation of the
attention mechanism, pushing Im(Mean) to an impressive 75.22%. Conversely, at a 22%
missing rate, the Seq2Seq structure alone fails to augment Im(Mean). Nevertheless, its
combination with the attention mechanism elevates the metric to 74.54%. This underscores
the pivotal role of the attention mechanism in optimizing MRE for the imputation of
extensive time-series data across diverse missing rate contexts. While the Seq2Seq structure
does not consistently bolster performance across all missing rate conditions, its contribution
to model robustness is unequivocal. This is evidenced by the marked reduction in the
Im(Mean) of the BRITS-ALSTM model by 90.58% and 63.39%, respectively, attesting to its
capacity to stabilize model performance amidst fluctuating data missing rates.

Table 6. Comparison of method performance at different missing data rates.

Method
State-Controlled Station Dataset (5%) Province-Controlled Station Dataset (22%)

MRE Im(Mean) Sm MRE Im(Mean) Sm

Mean 0.9967 0% −0.8763 0.9958 0% 0.1676
BRITS 0.2783 72.08% −6.3038 0.2578 74.11% −1.1276

BRITS-LSTM 0.2719 72.72% −5.9729 0.2681 73.08% −0.4603
BRITS-ALSTM 0.2470 75.22% −12.0141 0.2534 74.54% −1.8424

In conclusion, the BRITS-ALSTM model demonstrates substantial enhancement in
handling long-time series air quality data with varied missing rates, compared to the
original BRITS and BRITS-LSTM models. This underscores the efficacy of incorporating
the Seq2Seq structure and attention mechanism, attesting to their collective contribution in
augmenting the accuracy of imputing missing values in extended time series.
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4.2. Application of BRITS-ALSTM Imputed Dataset

Air pollutant prediction experiments were carried out using the BRITS-ALSTM model
imputed with the complete dataset of state and provincial control stations. The pollutant
concentrations for the next 24 h were predicted using a two-layer LSTM network with units
= 64, batch-size = 32, and epochs = 100, and the performance was compared with that of
the dataset using the mean-filled dataset on the same prediction model. Table 7 shows
the results of air quality prediction accuracy evaluation of the datasets imputed by mean
and BRITS-ALSTM models respectively on the LSTM model. The datasets imputed using
the BRITS-ALSTM model are all better than the datasets imputed using the mean-filling
method. The complete dataset imputed by BRITS-ALSTM contributes to the improvement
of the prediction accuracy.

Table 7. Effect of different imputation method datasets on prediction results.

Pollutant
State-Controlled Station Dataset Province-Controlled Station Dataset

RMSE R2 RMSE R2

Mean BRITS-ALSTM Mean BRITS-ALSTM Mean BRITS-ALSTM Mean BRITS-ALSTM

PM2.5 6.7655 6.7641 0.7579 0.7586 6.1995 5.9208 0.5708 0.5894
PM10 22.6113 22.6090 0.7898 0.7919 15.2148 15.0954 0.6610 0.6721

O3 10.0555 9.8906 0.8782 0.8852 83.3033 66.8887 0.8100 0.8856
NO2 4.2449 4.2350 0.7016 0.7073 1.3809 1.2662 0.9318 0.9450
SO2 18.7112 18.2332 0.4370 0.4671 5.8258 5.3867 0.8078 0.8428
CO 0.0916 0.0890 0.8257 0.8314 0.03608 0.0353 0.9454 0.9604

5. Conclusions

In this research, the BRITS-ALSTM model was developed, augmenting the original
BRITS model with an integration of the Seq2Seq structure and an attention mechanism.
This model achieved high-precision imputation of missing data using the air quality dataset
from state-controlled and provincial-controlled stations in Qinghai Province for the years
2019–2022. It was compared with various methods, including Mean, KNN, MF, MICE, M-
RNN, and BRITS, as well as BRITS-LSTM. The BRITS-ALSTM model effectively addresses
the challenges of high rates of missing data and low validity of evaluated data at the
Qinghai-Tibetan Plateau automated air monitoring stations, demonstrating its suitability
for processing missing air quality values in alpine regions. Future studies on the BRITS-
ALSTM model will consider the influence of meteorological and geographic environments
surrounding the automatic air monitoring stations [57].

Author Contributions: Conceptualization, Y.W., K.L. and Y.H.; methodology, Y.W. and Q.F.; soft-
ware, W.L. (Wei Luo); data curation, Y.W., Q.F. and P.W.; writing—original draft preparation, Y.W.;
writing—review and editing, Y.W., K.L. and Y.H.; visualization, Y.W., W.L. (Wentao Li), X.L. and S.X.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by North China Institute of Aerospace Engineering Doctoral
Fund: Research on Spatio-Temporal Data Fusion Analysis of Beijing-Tianjin-Hebei City Cluster
(BKY-2020-33) and Qinghai Province Air Pollution Status Assessment and Refined Management
Support Project (2023-005).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: State-controlled station data and province-controlled station data
published by the China National Environmental Monitoring Centre: https://quotsoft.net/air/,
accessed on 22 January 2023.

Conflicts of Interest: The authors declare no conflict of interest.

https://quotsoft.net/air/


Atmosphere 2023, 14, 1821 16 of 18

References
1. Zhou, Y.; Luo, B.; Li, J.; Hao, Y.; Yang, W.; Shi, F.; Chen, Y.; Simayi, M.; Xie, S. Characteristics of six criteria air pollutants before,

during, and after a severe air pollution episode caused by biomass burning in the southern Sichuan Basin, China. Atmos. Environ.
2019, 215, 116840. [CrossRef]

2. Ebelt, S.T.; D’Souza, R.R.; Yu, H.; Scovronick, N.; Moss, S.; Chang, H.H. Monitoring vs. modeled exposure data in time-series
studies of ambient air pollution and acute health outcomes. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 377–385. [CrossRef]
[PubMed]

3. Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during
2014–2018. Atmos. Environ. 2020, 220, 117066. [CrossRef]

4. Lee, H.; Lee, J.; Oh, S.; Park, S.; Mayer, H. Air pollution assessment in Seoul, South Korea, using an updated daily air quality
index. Atmos. Pollut. Res. 2023, 14, 101728. [CrossRef]

5. Zou, B.; You, J.; Lin, Y.; Duan, X.; Zhao, X.; Fang, X.; Campen, M.J.; Li, S. Air pollution intervention and life-saving effect in China.
Environ. Int. 2019, 125, 529–541. [CrossRef]

6. Tzanis, C.G.; Alimissis, A.; Koutsogiannis, I. Addressing missing environmental data via a machine learning scheme. Atmosphere
2021, 12, 499. [CrossRef]

7. Kadow, C.; Hall, D.M.; Ulbrich, U. Artificial intelligence reconstructs missing climate information. Nat. Geosci. 2020, 13, 408–413.
[CrossRef]

8. Singh, D.; Dahiya, M.; Kumar, R.; Nanda, C. Sensors and systems for air quality assessment monitoring and management: A
review. J. Environ. Manag. 2021, 289, 112510. [CrossRef]

9. Motlagh, N.H.; Lagerspetz, E.; Nurmi, P.; Li, X.; Varjonen, S.; Mineraud, J.; Siekkinen, M.; Rebeiro-Hargrave, A.; Hussein, T.;
Petaja, T. Toward massive scale air quality monitoring. IEEE Commun. Mag. 2020, 58, 54–59. [CrossRef]

10. Nasir, H.; Goyal, K.; Prabhakar, D. Review of air quality monitoring: Case study of India. Indian J. Sci. Technol. 2016, 9, 105255.
[CrossRef]

11. Feng, Y.; Ning, M.; Lei, Y.; Sun, Y.; Liu, W.; Wang, J. Defending blue sky in China: Effectiveness of the “Air Pollution Prevention
and Control Action Plan” on air quality improvements from 2013 to 2017. J. Environ. Manag. 2019, 252, 109603. [CrossRef]
[PubMed]

12. Feenstra, B.; Papapostolou, V.; Hasheminassab, S.; Zhang, H.; Der Boghossian, B.; Cocker, D.; Polidori, A. Performance evaluation
of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmos. Environ. 2019, 216, 116946. [CrossRef]

13. Zhao, A.; Nie, Y.; Hou, X.; Li, Y.; Li, H. Development of an unmanned 10-factor automatic weather station for cold and arid
regions. Highl. Meteorol. 2003, 2003, 646–649.

14. Wijesekara, L.; Liyanage, L. Mind the Large Gap: Novel Algorithm Using Seasonal Decomposition and Elastic Net Regression to
Impute Large Intervals of Missing Data in Air Quality Data. Atmosphere 2023, 14, 355. [CrossRef]

15. Liu, Y.; Zhou, Y.; Lu, J. Exploring the relationship between air pollution and meteorological conditions in China under environ-
mental governance. Sci. Rep. 2020, 10, 14518. [CrossRef]

16. Zhang, Y.; Thorburn, P.J. Handling missing data in near real-time environmental monitoring: A system and a review of selected
methods. Future Gener. Comput. Syst. 2022, 128, 63–72. [CrossRef]

17. Ottosen, T.-B.; Kumar, P. Outlier detection and gap filling methodologies for low-cost air quality measurements. Environ. Sci.
Process. Impacts 2019, 21, 701–713. [CrossRef]

18. Rashid, W.; Gupta, M.K. A perspective of missing value imputation approaches. In Proceedings of the Advances in Computational
Intelligence and Communication Technology (CICT 2019), Allahabad, India, 6–8 December 2019; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 307–315.

19. Armina, R.; Zain, A.M.; Ali, N.A.; Sallehuddin, R. A review on missing value estimation using imputation algorithm. J. Phys.
Conf. Ser. 2017, 892, 012004. [CrossRef]

20. Egigu, M. Techniques of Filling Missing Values of Daily and Monthly Rain Fall Data: A Review. SF J. Environ. Earth Sci. 2020,
3, 1036.

21. Mao, Y.; Zhang, J.; Qi, H.; Wang, L. DNN-MVL: DNN-multi-view-learning-based recover block missing data in a dam safety
monitoring system. Sensors 2019, 19, 2895. [CrossRef]

22. Samal, K.K.R.; Babu, K.S.; Das, S.K. Multi-directional temporal convolutional artificial neural network for PM2.5 forecasting with
missing values: A deep learning approach. Urban Clim. 2021, 36, 100800. [CrossRef]

23. Marchang, N.; Tripathi, R. KNN-ST: Exploiting spatio-temporal correlation for missing data inference in environmental crowd
sensing. IEEE Sens. J. 2020, 21, 3429–3436. [CrossRef]

24. Ma, J.; Cheng, J.C.; Ding, Y.; Lin, C.; Jiang, F.; Wang, M.; Zhai, C. Transfer learning for long-interval consecutive missing values
imputation without external features in air pollution time series. Adv. Eng. Inform. 2020, 44, 101092. [CrossRef]

25. Tang, J.; Zhang, X.; Yin, W.; Zou, Y.; Wang, Y. Missing data imputation for traffic flow based on combination of fuzzy neural
network and rough set theory. J. Intell. Transp. Syst. 2021, 25, 439–454. [CrossRef]

26. Baloch, M.A.; Wang, B. Analyzing the role of governance in CO2 emissions mitigation: The BRICS experience. Struct. Chang.
Econ. Dyn. 2019, 51, 119–125.

27. Worden, K.; Sohn, H.; Farrar, C.R. Novelty detection in a changing environment: Regression and interpolation approaches. J.
Sound Vib. 2002, 258, 741–761. [CrossRef]

https://doi.org/10.1016/j.atmosenv.2019.116840
https://doi.org/10.1038/s41370-022-00446-5
https://www.ncbi.nlm.nih.gov/pubmed/35595966
https://doi.org/10.1016/j.atmosenv.2019.117066
https://doi.org/10.1016/j.apr.2023.101728
https://doi.org/10.1016/j.envint.2018.10.045
https://doi.org/10.3390/atmos12040499
https://doi.org/10.1038/s41561-020-0582-5
https://doi.org/10.1016/j.jenvman.2021.112510
https://doi.org/10.1109/MCOM.001.1900515
https://doi.org/10.17485/ijst/2016/v9i44/105255
https://doi.org/10.1016/j.jenvman.2019.109603
https://www.ncbi.nlm.nih.gov/pubmed/31586746
https://doi.org/10.1016/j.atmosenv.2019.116946
https://doi.org/10.3390/atmos14020355
https://doi.org/10.1038/s41598-020-71338-7
https://doi.org/10.1016/j.future.2021.09.033
https://doi.org/10.1039/C8EM00593A
https://doi.org/10.1088/1742-6596/892/1/012004
https://doi.org/10.3390/s19132895
https://doi.org/10.1016/j.uclim.2021.100800
https://doi.org/10.1109/JSEN.2020.3024976
https://doi.org/10.1016/j.aei.2020.101092
https://doi.org/10.1080/15472450.2020.1713772
https://doi.org/10.1006/jsvi.2002.5148


Atmosphere 2023, 14, 1821 17 of 18

28. Noor, M.; Yahaya, A.; Ramli, N.A.; Al Bakri, A.M. Filling missing data using interpolation methods: Study on the effect of fitting
distribution. Key Eng. Mater. 2014, 594, 889–895. [CrossRef]

29. Junninen, H.; Niska, H.; Tuppurainen, K.; Ruuskanen, J.; Kolehmainen, M. Methods for imputation of missing values in air
quality data sets. Atmos. Environ. 2004, 38, 2895–2907. [CrossRef]

30. Norazian, M.; Al Bakri, A.M.M.; Shukri, Y.A.; Azam, R.N. Estimation of missing values for air pollution data using interpolation
technique. Simulation 2006, 75, 94.

31. Saeipourdizaj, P.; Sarbakhsh, P.; Gholampour, A. Application of imputation methods for missing values of PM10 and O3 data:
Interpolation, moving average and K-nearest neighbor methods. Environ. Health Eng. Manag. J. 2021, 8, 215–226. [CrossRef]

32. Honghai, F.; Guoshun, C.; Cheng, Y.; Bingru, Y.; Yumei, C. A SVM regression based approach to filling in missing values.
In Proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems,
Melbourne, Australia, 14–16 September 2005; pp. 581–587.

33. Patil, B.M.; Joshi, R.C.; Toshniwal, D. Missing value imputation based on k-mean clustering with weighted distance. In
Proceedings of the Contemporary Computing: Third International Conference (IC3 2010), Noida, India, 9–11 August 2010;
Proceedings Part I3. Springer: Berlin/Heidelberg, Germany, 2010; pp. 600–609.

34. Kornelsen, K.; Coulibaly, P. Comparison of interpolation, statistical, and data-driven methods for imputation of missing values in
a distributed soil moisture dataset. J. Hydrol. Eng. 2014, 19, 26–43. [CrossRef]

35. Ye, Z.; Yang, J.; Zhong, N.; Tu, X.; Jia, J.; Wang, J. Tackling environmental challenges in pollution controls using artificial
intelligence: A review. Sci. Total Environ. 2020, 699, 134279. [CrossRef] [PubMed]

36. Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values.
Sci. Rep. 2018, 8, 6085. [CrossRef]

37. Cao, W.; Wang, D.; Li, J.; Zhou, H.; Li, L.; Li, Y. Brits: Bidirectional recurrent imputation for time series. In Proceedings of the
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018;
Volume 31.

38. Yoon, J.; Jordon, J.; Schaar, M. Gain: Missing data imputation using generative adversarial nets. In Proceedings of the 35th
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5689–5698.

39. Cini, A.; Marisca, I.; Alippi, C. Filling the g_ap_s: Multivariate time series imputation by graph neural networks. arXiv 2021,
arXiv:2108.00298.

40. Ma, J.; Cheng, J.C.; Jiang, F.; Chen, W.; Wang, M.; Zhai, C. A bi-directional missing data imputation scheme based on LSTM and
transfer learning for building energy data. Energy Build. 2020, 216, 109941. [CrossRef]

41. Yin, Y.; Shi, C.; Zou, C.; Liu, X. Fusion of Seq2Seq and temporal attention mechanism for process quality prediction. Mech. Sci.
Technol. 2019, 107, 287–300. [CrossRef]

42. Weerakody, P.B.; Wong, K.W.; Wang, G.; Ela, W. A review of irregular time series data handling with gated recurrent neural
networks. Neurocomputing 2021, 441, 161–178. [CrossRef]

43. Iskandaryan, D.; Ramos, F.; Trilles, S. Air quality prediction in smart cities using machine learning technologies based on sensor
data: A review. Appl. Sci. 2020, 10, 2401. [CrossRef]

44. Chen, H.; Guan, M.; Li, H. Air quality prediction based on integrated dual LSTM model. IEEE Access 2021, 9, 93285–93297.
[CrossRef]

45. Liu, B.; Yan, S.; Li, J.; Qu, G.; Li, Y.; Lang, J.; Gu, R. A sequence-to-sequence air quality predictor based on the n-step recurrent
prediction. IEEE Access 2019, 7, 43331–43345. [CrossRef]

46. Zhu, Z.; Rao, Y.; Wu, Y.; Qi, H.; Zhang, Y. Research Progress of Attentional Mechanisms in Deep Learning. J. Chin. Inf. 2019, 33,
1–11.

47. Utama, I.B.K.Y.; Tran, D.H.; Jang, Y.M. Short-term PM2.5 Prediction using Modified Attention Seq2Seq BiLSTM. In Proceedings of
the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), Barcelona, Spain, 5–8 July 2022; pp.
462–465.

48. Tu, X.-Y.; Zhang, B.; Jin, Y.-P.; Zou, G.-J.; Pan, J.-G.; Li, M.-Z. Longer time span air pollution prediction: The attention and
autoencoder hybrid learning model. Math. Probl. Eng. 2021, 2021, 5515103. [CrossRef]

49. Caiji, Z. Construction and empirical research on differentiated evaluation index system for ecological civilization construction in
Qinghai Province. Ecol. Econ. 2023, 39, 214–220.

50. Sun, H.; Zheng, D.; Yao, T.; Zhang, Y. Protection and construction of national ecological security barriers on the Tibetan Plateau. J.
Geogr. 2012, 67, 3–12.

51. Liang, G. Practical exploration of intelligent operation and maintenance platform construction for ambient air automatic stations.
Sci. Technol. Innov. 2020, 2020, 138–139. [CrossRef]

52. Xie, C.; Huang, C.; Zhang, D.; He, W. BiLSTM-I: A deep learning-based long interval gap-filling method for meteorological
observation data. Int. J. Environ. Res. Public Health 2021, 18, 10321. [CrossRef]

53. Shuai, P.; Li, X.; Zhou, X.; Liu, Y. Research Progress on Statistical Processing Methods for Missing Data. China Health Stat. 2013, 30,
135–139+142.

54. Hwang, W.-S.; Li, S.; Kim, S.-W.; Lee, K. Data imputation using a trust network for recommendation via matrix factorization.
Comput. Sci. Inf. Syst. 2018, 15, 347–368. [CrossRef]

https://doi.org/10.4028/www.scientific.net/KEM.594-595.889
https://doi.org/10.1016/j.atmosenv.2004.02.026
https://doi.org/10.34172/EHEM.2021.25
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000767
https://doi.org/10.1016/j.scitotenv.2019.134279
https://www.ncbi.nlm.nih.gov/pubmed/33736193
https://doi.org/10.1038/s41598-018-24271-9
https://doi.org/10.1016/j.enbuild.2020.109941
https://doi.org/10.13433/j.cnki.1003-8728.20230181
https://doi.org/10.1016/j.neucom.2021.02.046
https://doi.org/10.3390/app10072401
https://doi.org/10.1109/ACCESS.2021.3093430
https://doi.org/10.1109/ACCESS.2019.2908081
https://doi.org/10.1155/2021/5515103
https://doi.org/10.15913/j.cnki.kjycx.2020.14.058
https://doi.org/10.3390/ijerph181910321
https://doi.org/10.2298/CSIS170820003H


Atmosphere 2023, 14, 1821 18 of 18

55. Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67.
[CrossRef]

56. Yoon, J.; Zame, W.R.; van der Schaar, M. Multi-directional recurrent neural networks: A novel method for estimating missing
data. In Proceedings of the Time Series Workshop in International Conference on Machine Learning, New Orleans, LA, USA,
18–21 November 2017.

57. Xing, Y.; Brimblecombe, P. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 2019,
201, 73–83. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.18637/jss.v045.i03
https://doi.org/10.1016/j.atmosenv.2018.12.027

	Introduction 
	Materials and Methods 
	Data 
	Methodology 
	Basic Definition 
	BRITS-ALSTM Model 
	Evaluation Metrics 


	Results 
	Discussion 
	BRITS vs. BRITS-ALSTM 
	Application of BRITS-ALSTM Imputed Dataset 

	Conclusions 
	References

