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Abstract: To effectively address air pollution and enhance air quality, governments must be able to
predict the air quality index with high accuracy and reliability. However, air quality prediction is
subject to ambiguity and instability because of the atmosphere’s fluidity, making it challenging to
identify the temporal and spatial correlations using a single model. Therefore, a new hybrid model is
proposed based on an interpretable neural network and a graph neural network (INNGNN), which
simulates the temporal and spatial dependence of air quality and achieves accurate multi-step air
quality prediction. A time series is first interpreted using interpretable neural networks (INN) to
extract the potentially important aspects that are easily overlooked in the data; second, a self-attention
mechanism catches the local and global dependencies and associations in the time series. Lastly, a city
map is created using a graph neural network (GNN) to determine the relationships between cities in
order to extract the spatially dependent features. In the experimental evaluation, the results show
that the INNGNN model performs better than comparable algorithms. Therefore, it is confirmed that
the INNGNN model can effectively capture the temporal and spatial relationships and better predict
air quality.

Keywords: air quality forecasting model; temporal feature interpretation; spatial dependency
detection; INN-GNN model; urban air quality modeling

1. Introduction

Human health and ecosystems depend heavily on the air quality, and air pollution
is becoming a major global issue [1]. The term “air quality” refers to the quantity and
make-up of several pollutants found in the atmosphere, including carbon monoxide, sulfur
dioxide, nitrogen dioxide, PM2.5, PM10, and others. It is calculated based on the level of
pollutant concentration and the degree of health impact, and is used to measure the air
quality index (AQI). In addition to causing respiratory illnesses, air pollution has a negative
impact on human health [2]; moreover, it also damages the environment and leads to an
imbalance in the ecosystem [3]. The higher the AQI value, the worse the air quality. The air
quality index (AQI) is a crucial metric that can help people understand that day’s air quality
and take the appropriate precautions to safeguard their health. Additionally, pollutants
can lower the AQI value and preserve the ecosystem’s equilibrium.

Air quality forecasting is a technique for predicting future air quality. This technology
uses professional monitoring equipment and technology to collect and analyze atmospheric
parameters (such as temperature, humidity, wind speed, air pressure, precipitation, etc.),
geographical location, the air quality index, and other data, to predict and warn about air
quality in the future [4]. The accurate prediction of AQI is crucial for safeguarding public
health and maintaining ecosystem balance. However, air quality prediction (AQP) remains
a challenging task due to complex temporal and spatial dependencies:
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1. Temporal dependence. Periodicity and trend are the primary ways in which dynamic
changes in air quality over time are expressed. Periodicity is the occurrence of similar
patterns or regular changes over a certain span of time. As shown in Figure 1a, the
air quality index changes periodically over a week ( 1© indicates a period of change).
Trend is when a certain data pattern shows a continuous directional development
over a certain period of time. Figure 1a shows a downward trend on certain days
and for a certain period of time with cyclical changes. As shown in Figure 1b, the air
quality index over a day changes with time ( 2© indicates a shift in the trend over a
certain amount of time); for instance, air pollutants from a prior or longer period of
time have an impact on the current AQI.

2. Complex spatiotemporal correlations. In addition to changing dynamically over time,
the spatial location also has an impact on air quality. As illustrated in Figure 2, city
B’s air quality will be impacted by the atmospheric conditions in city A. Even when
taking time into account, the spatial relationship is still challenging.
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Figure 2. Geographical location of 209 cities.

There are many existing AQP methods, some of which consider the correlation with
time, including the autoregressive integrated moving average model [5], the recurrent
neural networks model [6], and the long short-term memory model (LSTM) [7]. It is
challenging for us to estimate the level of air quality with accuracy, since the aforementioned
approaches take into account the dynamic changes in air quality, but do not consider
the spatial relationship between air quality and geographic location. Some researchers
have used convolution neural networks (CNNs) [8], which are often used in Euclidean
space. So, in order to make up for these shortcomings, researchers could use graph
convolutional neural networks (GCNs) [9], which can model non-Euclidean spaces well,
but are unable to accurately represent the dependency of air quality between cities. Some
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researchers have used CNNs to analyze and model air quality in order to express its
spatial characteristics. In order to improve the defects of GCNs, the group aware graph
neural network (GAGNN) [10] constructs the dependencies between cities. Although these
models can represent the spatial relationship of air quality between cities, they ignore the
temporal relationship. The graph convolutional neural network–long short-term memory
model (GCN-LSTM) [11] incorporates time and space relationships to fully consider time
and space dependencies; nonetheless, it still has flaws in handling non-stationary data
problems. The ability of researchers to identify patterns and trends across various time
ranges is still lacking.

Time series forecasting challenges have been the focus of research when using in-
terpretable neural network (INN) models. A number of strategies and techniques have
been applied to enhance the model’s interpretability. The proposed NA-BEMD [12] model
interprets the model by analyzing the weights of each stage of the time series through an
attention mechanism. The N-BEATS [13] model makes the model interpretable through
the use of specific functions in order to solve the problem of time series point prediction.
In order to improve the estimation accuracy of time series forecasting, the MLP-M [14]
model makes the middle layer of the neural network model adjustable and, thus, improves
the interpretability of the model. The above model improves the accuracy of time series
prediction by enhancing the interpretability of the neural network model, and allowing for
a better understanding of the process of feature learning and prediction in the model.

The key to AQP is to effectively capture the patterns and trends in various time frames.
A hybrid prediction model for multistage, spatiotemporal air quality prediction is provided
based on interpretable neural networks and graph neural networks (INNGNN) in order to
address the issues raised by this problem, and to enhance prediction stability and accuracy.
The contributions of this paper are summarized as follows:

1. An advanced AQP module is constructed, which introduces the extraction of in-
terpretable trends and periodic time series features. In order to thoroughly extract
the properties from the data, the interpretation module uses residual connections in
conjunction with the trend and periodicity of the time series, to extract the features
that are easily missed and are challenging to extract at random moments.

2. The INNGNN hybrid model is proposed to perform a spatiotemporal prediction
of AQP from time and space dimensions. Graph neural networks (GNN) are used
to extract the spatial dependency between different cities, and interpretable neural
networks (INN) are used to capture the temporal dependence between the observa-
tions made on multiple time scales, and allows for self-attention to acquire the local
and global dependence of time. The prediction accuracy of the INNGNN model is
enhanced, as shown by its more accurate prediction outcomes in the evaluation we
conducted on a Chinese urban air quality dataset.

2. Related Work

Deep learning models and non-deep learning models are the two broad groups into
which existing AQP techniques can be separated. Deterministic models and statistical
models are the two types of non-deep learning models. The most representative and
latest deterministic models for predicting air quality include the community multi-scale
air quality (CMAQ) model [15–17] and the comprehensive air-quality model with exten-
sion (CAMx) [18,19]. These models make it simple to see how pollutants that have an
impact on air quality are produced, transformed, and transported, but they have significant
limitations when it comes to the incomplete previous knowledge of complex chemicals
and their diffusion processes. The statistical models highlight the non-linear correlations
among all the factors that may affect air quality, thereby overcoming the shortcomings of
the deterministic models. Classic statistical methods, such as the auto regression integrated
moving average (ARIMA) [5,20–22] and geographically weighted regression (GWR) [23],
have been used with statistical models for predicting small datasets and univariate time
series of air quality. In addition, traditional machine learning methods along with statistical
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models have also been applied to AQP, such as random forest (RF) [24], SVM [22,25–27],
improved SVM (LSSVM) [28], LR [29,30], ANNs [31,32], and the improved neural network
models BPNN [33], GRNN [32], RBFNN [31], and other models for processing. Based on
restricted datasets, the typical machine learning approach can only capture limited non-
linear temporal and spatial correlation aspects affecting air quality. It is more appropriate
for shallow hidden features, as the results demonstrate. Very complex dynamic nonlinear
spatiotemporal connection features are still not amenable for the efficient acquisition of
huge datasets.

In recent years, deep learning has been applied extensively to AQP, and this has
significantly increased prediction accuracy. Among them, a recurrent neural network
(RNN) [34] has been used to capture temporal dependence. RNN’s enhanced models—long
short-term memory (LSTM) [35–37] and gated recurrent units (GRUs) [38,39]—provide
an improved long-term dependency model for AQP. Some researchers have proposed
improved LSTM-related models, including read-first LSTM (RLSTM) [40] and vanilla
LSTM with multichannel input and multi-route output (IVLSTM-MCMR) [41], which have
enhanced the function of the multidimensional feature extraction of air quality. An auto-
encoder with Bi-LSTM neural networks (AE-Bi-LSTM) [42] has been used to analyze the
correlation between air quality and climate variables. Some hybrid models have been used
to improve the temporal dependence; for example, the use of LSTM-LSTM [43] improves
the nonlinear capability of air quality data. For AQP, the hybrid model attention-LSTM [44]
is used to automatically train and focus on significant time steps in the time series data.
While the temporal correlation of AQP can be extracted efficiently using the deep learning
RNN correlation model, the patterns and trends for various time scales in the time series
remain ineffectively captured. In addition, a number of variables that impact air quality
must be taken into account, and that information is intricate. Temporal and spatial linkages
must be taken into account while modeling, yet these models still have issues with handling
these relationships.

Some academics have suggested using different deep learning algorithms for time and
space modeling in order to make up for the drawbacks of the RNN-related models. Strong
feature extraction is a capability of convolutional neural networks (CNNs) [45–48], which
may also be used to extract the spatial correlations between several sites and regions. When
used in AQP, they produce better prediction outcomes than the RNN correlation models.
The primary use of CNN is in Euclidean space. AQP’s multiregional space is typically
non-Euclidean in nature. Graph convolutional neural networks (GCNs) [9,11] are capable of
performing undirected graph data creation. The model is a good representation of the non-
Euclidean space of the network of air quality monitoring points. In order to better represent
the city dependence of AQP, the group-aware graph neural network (GAGNN) [10] has
been proposed, and its results are better than those of the GCNs. These models have
demonstrated clear advantages for the extraction of spatial features. Several hybrid deep
learning models have been developed to address the spatial–temporal dependence of AQP.
These models, which include CNN-LSTM [47,49,50], GC-LSTM [11], and CNN-biLSTM [51],
are able to extract spatiotemporal correlations from historical air quality data.

Combined with the hybrid model, which combines a residual neural network (ResNet),
bidirectional long short-term memory (BiLSTM), and GCN, the adaptive monitoring net-
work topology can adapt to the characteristics of pollutants and improve the prediction
accuracy [52]. The GCN and CNN hybrid model, incorporating a spatiotemporal attention
mechanism module, enhances the features of critical information collected from across the
different dimensions [53]. Even though these models have performed well in AQP, they still
struggle to handle non-stationary data issues. The fusion of multiple CNNs and backprop-
agation neural networks (BPNN) has good denoising capabilities [54]. The fusion of CNN
with a spatiotemporal attention mechanism and residual learning enhances the temporal
and spatial dimension feature extraction [55]. The fusion of LSTM and wavelet transform
can handle unstable time series signals very well [56], but these models still cannot handle
the correlation between multiple sites well. The fusion of a time convolutional network and
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a graph convolutional network can deal with multi-site dependency and time dependency
well, but it ignores the characteristics of repeated time series changes within a certain time
interval [57]. The AAGCN model integrates the transformer and GCN, which can capture
multivariable dynamic dependencies, but cannot fully capture the time dependencies of
time series [58]. Therefore, more research is necessary to identify the patterns and trends
across a range of time scales.

3. Methodology
3.1. Problem Definition

In this study, the goal of air quality forecasting is to predict the air quality for a certain
period of time based on the AQI, weather data, and geographic location. We will first
define some concepts to describe the AQP problem.

Definition 1: cities and city groups. We use a set S = {si}Ns
i=1 to represent the collection of

cities, where Ns represents the number of cities, and the location of a city is represented by its
longitude and latitude, and the location matrix of the city is expressed as L ∈ RNs×2. In addition,
a set U = {ui}Nu

i=1 is used to represent the set of city groups, where Nu represents the number of
city groups.

Definition 2: city group graph. We will consider city groups as cities that have strong dependencies,
and construct the city group graph as a fully connected graph. We use an undirected graph
g(v, ε) to represent the topological structure of a city group graph, as shown in Figure 3, where
v = {v1, v2, . . . . . . , vn} represents the set of all city group nodes, and for any node vi, we use Ri to
represent its attribute value, and the attribute values of all nodes in v can be expressed as the matrix
R. ε = {ε1, ε2, . . . . . . , εn} represents the set of edges of all city groups. For any edge εi, we use Mi
to represent its attribute value, and the attribute values of all the edges in ε can be expressed as the
matrix M.
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Definition 3: city graph. We use an undirected graph G(V, E) to represent the topology of a city
graph, as shown in Figure 3, where V = {v1, v2, . . . . . . , vn} represents the set of all city nodes,
and for any node Vi, we use Xi to represent its attribute value, and the attribute values of all nodes
in V can be expressed as the matrix X. E = {e1, e2, . . . . . . , en} represents the set of all city edges.
For any edge Ei, we use Yi to represent its attribute value, and the attribute values of all the edges
in E can be expressed as the matrix Y. The city graph is constructed as follows:

Yi,j =
1√

(ai − aj)
2 + (bi − bj)

2
, (1)

di,j =
√
(ai − aj)

2 + (bi − bj)
2, 0 < di,j < rn, (2)

where Yi,j represents the edge attribute of the edge between city Si and city Sj, [ai, bi] represents
the location of city Si, and [aj, bj] represents the location of city Sj. di,j represents the Euclidean
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distance between city Si and city Sj, and rn represents the distance threshold. When the distance
between the two cities is very large, the cities are hardly affected by each other. The strategy we chose
is that when the distance is less than rn, city Si and city Sj can be connected on the city map.

Definition 4: urban AQP. This paper mainly predicts the future AQI of a city by giving the
historical observation sequence of the city’s location, time, AQI, and weather data. That is, for
city Si, given the city’s location L, the time vector Tt, and the historical observation sequence
H = (ht1

i , ht2
i , . . . . . . , htm

i ) of m time steps at time t, we can predict the AQI observation sequence
Ĥ = (ĥtm+1

i , ĥtm+2
i , . . . . . . , ĥtm+n

i ) of the city’s n time steps.

3.2. Framework

Figure 4 displays the INNGNN framework structure. The temporal dependency
module and the spatial dependency module make up the INNGNN. The temporal depen-
dency module extracts the local and global time series features using self-attention and
the interpretable trend, and the periodic time series features using INN. The geographical
dependence of the geographic location is extracted with the spatial dependency module
using GNN. First, the historical observation sequence feature matrix of the 209 cities is in-
put, and the time series features of the different cities are extracted through multiple INNs.
Then, the features extracted from the different cities are spliced together. Self-attention is
added to the time series in order to capture the local and global dependencies of the various
time steps. The input for self-attention is the feature matrix output obtained from splicing
several city characteristics that were retrieved using multiple INNs. Natural language
processing frequently uses encode–decode to manage mapping relationships and to map
one sequence onto another more effectively [59,60]. The GNN module receives its input
from the self-attention output. The GNN module uses the encode–decode structure and, to
implement the message transmission mechanism, two layers of GNN are layered in the
encode–decode, respectively. The decoder uses the output from the encoder to update the
city and implement the mapping relationship between the individual cities and city groups.
Ultimately, the fully connected layer outputs the prediction findings.
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3.3. Temporal Dependency Modeling
3.3.1. Interpretable Neural Networks

Given its periodic and trend properties, we suggest using interpretable neural net-
works (INN) to explain the periodicity and trend of the AQI time series. The two stacks
comprising the interpretable neural networks, as depicted in Figure 5, are utilized to eluci-
date the trend and periodicity of the time series. Each stack consists of three blocks, and
each block in a stack comprises two parts: the first portion comprises four layers of fully
connected layers, and the second component is used to generate the expansion coefficients
for the trend and periodic functions. A residual connection is introduced, meaning that each
stack completes its own information aggregation procedure, and the input of the current
block, less the output of the current block, is used as the input of the next block in order to
capture the features of different levels in the input data. Input the historical observation
sequence Hi of the i-th city, and the first part is described by Formula (3) as follows:

hl,1 = FCl,1(xl), hl,2 = FCl,2(hl,1), hl,3 = FCl,3(hl,2), hl,4 = FCl,4(hl,3), (3)

where hl,n represents the nth layer of the lth block in each stack, xl represents the residual
of the previous block as the input of the current block, and FC represents the standard fully
connected layer of the RELU nonlinear function, that is, hl,1 = RELU(Wl,1Hl + bl,1). The
second part is determined using Formula (4), and is described as follows:

φa
l = LINEARa

l (hl,4), φb
l = LINEARb

l (hl,4)

ŷl = f b
l (φ

b
l ), x̂l = f a

l (φ
a
l )

, (4)

where LINEAR is a simple linear projection layer, such as φb
l = Wb

l hl,4. ŷl and x̂l represent
the output function of the current block of each stack and the residual calculation function
of the next block, and φa

l and φb
l are the expansion coefficients of ŷl and x̂l , respectively. The

periodicity and trend of the time series’ interpretability are specifically described as follows.

Trend: The time series of air quality has a certain trend, as shown in Figure 1b. One of the
trend characteristics is that it exhibits an upward or downward trend over time. Either
a slowly changing function or a monotone function can simulate the trend. A slowly
changing function is used here. The formula is described as follows:

ŷtrend
l = Tφb

l , x̂trend
l = Tφa

l , (5)

where T = [1, t, . . . , tp] is a power exponent matrix of t. When the p value is small, such as 3
or 4, it will force ŷtrend

l , x̂trend
l to simulate the trend. t is a discrete grid from 0 to (N − 1)/N,

and t is expressed as [0, 1, 2, . . . , N − 2, N − 1]T/N, N is the number of steps, the first stack
is used as the trend model, the historical sequence Hi is used as the input, and the process
formulae for the input and output are described as follows:

x̂1 = Hi − x̂trend
1 , x̂2 = x̂1 − x̂trend

2 , x̂3 = x̂2 − x̂trend
3

y = ∑
l

ŷtrend
l +x̂3

, (6)

where x̂1, x̂2, x̂3 represent the residuals of each block in the first stack and y represents the
final output of the first stack, which is used as the input for the periodicity of the next stack.

Periodicity: As seen in Figure 1, there is a certain periodicity to the air quality time series
(a). Periodic functions can be chosen to mimic the periodicity. Periodicity is defined as
recurring or cyclical patterns within a specific time span. The Fourier series is chosen here,
and the formula is described as follows:

ŷper
l = Pφb

l , x̂per
l = Pφa

l , (7)

where P = [1, cos(2πt), . . . , cos(2πbN/2− 1ct), sin(2πt), . . . , sin(2πbN/2− 1ct)] is the
matrix of the sine and cosine waveforms, and the meanings of t and N are the same as those
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for the trend. The second stack has periodicity characteristics, and the process formulae for
the input and output are described as follows:

x̃1 = y− x̂per
1 , x̃2 = x̃1 − x̂per

2 , x̃3 = x̃2 − x̂per
3

Y′i = ∑
l

ŷper
l +x̃3

, (8)

where x̃1, x̃2, x̃3 represent the residuals of each block in the second stack, respectively, and
Y′i represents the final output of the second stack, which is the feature extraction of the i-th
city. Then, the features of each city are merged and completed using the stacking approach.
The formula is described as follows:

Yi =
[
Y′1; Y′2; Y′3; . . . ; Y′4

]
, (9)

where Yi represents the feature merging of all the cities as the input for the next part of
the model.
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3.3.2. Time Step Local and Global Dependency Capturing

A self-attention method is introduced in order to be able to capture the correlation
between the distinct time steps of the time series, as well as the global dependent features
and local dependent features. As shown in Figure 6, the self-attention mechanism is
designed by referring to transformer [61] architecture, in which a multi-head attention can
consider local and global dependencies at the same time. Each head can pay attention to
the dependencies between the various time steps by computing the correlation weights
between the items. The computation procedure is represented by the following formula:

Q = f (Yi, WQ), K = f (Yi, WK), V = f (Yi, WV), (10)

Attention(Q, K, V) = so f t max
(

QKT
√

dK

)
V, (11)

where Q is the query matrix, K is the key matrix, and V is the value matrix. WQ, WK, WV are
all learnable parameters, KT represents the transpose of K, and dK represents the dimension
of the K vector. Through matrix multiplication, the degree of association between each
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element’s query vector and key vector in the matrix is realized, a weight calculation is
performed, a normalization operation is realized through so f tmax and, then, a weighted
summation is performed. Finally, all the dimensions are flattened using skip connection.
The output is obtained through a fully connected (FC) layer.
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3.4. Spatial Dependency Modeling

The spatial relationship of the location data for each city can be shown as a graph. The
spatial interdependence between cities must be taken into account in order to forecast the air
quality of each city. A graph neural network (GNN) is used to construct the dependencies
between cities. A detailed description of the composition process is as follows.

City grouping: The cities with strong dependencies are assigned to a city group, and each
city is mapped onto a city group one by one; this grouping method allows us to identify
any potential spatial dependencies between the cities. We use the Ω ∈ RNs×Nu matrix
to represent the mapping relationship between the cities and city groups. Cities can be
assigned to multiple city groups. In order to illustrate the correlation between cities and
city groups, Ω is randomly initialized during training and optimized at the same time. For
the case given, and shown in Figure 7, there are 10 cities divided into 3 city groups, among
which the probability of city s6 being assigned to city group u1 is 0.1, the probability it of
being assigned to city group u2 is 0.8, and the probability it of being assigned to city group
u3 is 0.1. This shows that city s6 has a stronger correlation with city group u2. In order to
capture the spatial dependence between the cities, the geographic location L of the city is
added, and the process definition for city grouping is as follows:

X̂i = FC(gv(Xi, Li)), (12)

Rj =
Ns

∑
i=1

ΩT
j,iX̂i, (13)

where Xi is the output of the temporal dependent module, Li represents the geographic
coordinates of city si, X̂i represents city si and contains location information, gv(·) repre-
sents the function implemented by using a FC layer, and Ωj, i represents city si assigned to

the city probabilities for groups uj. We then have ∑Nu
j=1 Ωi,j = 1, where Rj represents the
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city group representation of the cities assigned to the city group, and ΩT represents the
transpose of the matrix Ω.
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Dependencies between city groups: In a city group, the nodes of each city group are
fully connected to generate a fully connected undirected graph g, and the dependency
relationship between the city groups is modeled through the mechanism of message passing.
The modeling process is as follows:

Mi,j = fg(Ri, Rj, Tt), (14)

Mi =
{
(Ri, Rj, Mi,j)

}
i 6=j

M̂i ← µg(Mi), R̂i ← ϕg(M̂i, Ri)
, (15)

where Mi,j represents the city group ui, the city group uj contains the edge attributes of the
time vector Tt, and the time vector Tt is composed of months, weeks, and days. Ri and Rj
are the attribute values of the city groups ui and uj, respectively, Mi is all the information
collected and is passed on to city group ui through message passing, and is converted into
vector M̂i after the message passing is completed. R̂i is the city group representation after
the city group ui is updated. fg, µg, and ϕg are all implemented using a FC layer.

Dependencies between cities: During city representation, the cities are updated through
the process of assigning cities to city groups, and the dependency relationship between the
cities is completed through the transmission of messages in city graph G, and the message
transmission mechanism is similar to that of the city groups. The difference is that the cities
incorporate time series features from the temporal dependency module output, geographic
location information, and city group information assigned to the city. The specific process
is as follows:

X̃i =
Nu

∑
j=1

Ωi,jR̂j, (16)

X′i = concat(Xi, X̃i), (17)

Yi =
{
(X̃i, X̃k, Yk,i)

}
k∈k(i)

Ŷi ← µ(Yi), X′′i ← ϕ(X′i , Ŷi)
, (18)

where R̂j represents the updated city group uj; X̃i represents the city group containing city
si; X′i represents city si and integrates information from the time series features and city
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group information, which contains geographic location information; and Yi represents all
the information collected through message transmissions that were passed to city si. The
neighbor information is aggregated, and is then converted into vector Ŷi, X′′i , which is the
updated city representation of city si. The connection functions concat,µ, and ϕ are also
implemented using a FC layer.

4. Experiments
4.1. Data Description

The INNGNN model was evaluated using the AQI dataset of some cities in China.
With an hourly sampling frequency from 1 January 2017 to 30 April 2019, 209 cities were
gathered as the dataset. The dataset includes geographic location, weather, and AQI data.
The details of the data are as follows:

1. AQI dataset: The data come from the national urban air quality real-time release
platform, downloaded from the public platform https://drive.google.com/file/d/1I_
vpbLJhOJpNh-TpLdSWsaG3xCpzMVSQ/ (accessed on 15 June 2023.).

2. Weather data: Weather data include the humidity, wind direction, rainfall, wind speed,
air pressure, temperature, and visibility. The data come from the open platform for
environmental big data http://www.envicloud.cn/ (accessed on 15 June 2023).

3. Geographic location data: The geographic location of each city is shown in Figure 2.
The geographic locations of all the cities are marked on the map with red dots.

The time step in this study is 1 h, the time step for a day is 24, and samples with a step
of one were generated using a sliding window. We sorted all of the generated samples into
training, test, and validation sets, and arranged them chronologically.

4.2. Experimental Settings

Experiments on the GPU were conducted, and all model constructions were completed
within the open-source pytorch framework. The training epoch for all the models was set
to 300, the batch size was set to 64, and the learning rate was set to 0.001. In addition, the
power index p of matrix T was set to 4, the size of the city group was 15, the hidden unit of
the GNN was 32, the distance threshold rn was 250 km, and the GNN was set to 2 layers.
We used the Adam [62] optimizer to optimize the training of the model.

In addition, AQP is a multiple linear regression problem. In order to effectively
evaluate the model, the deviation between the predicted value and the observed value was
calculated, using the mean absolute error (MAE) and the root mean square error (RMSE) as
the indicators for the model’s evaluation. The calculation process is as follows:

MAE =
1

NS × τ

NS

∑
i=1

τ

∑
t=1

∣∣∣Ot
i − Õt

i

∣∣∣, (19)

RMSE =

√√√√ 1
NS × τ

NS

∑
i=1

τ

∑
t=1

∣∣∣Ot
i − Õt

i

∣∣∣2, (20)

where τ represents the number of time samples, and Oj
i and Õj

i represent the observed value
and predicted value for city i at time t, respectively. The same experimental parameters
were used for five verifications for each of our tests, and the average result was used to
determine the final outcome.

4.3. Experimental Results
4.3.1. Comparative Prediction Results

In this section, the INNGNN model is compared to the following baseline models:
DeeperGCN [63]: An extended form of GCN, DeeperGCN uses a deeper network

structure that enhances its capacity to model complicated graph data. Eight layers were
used in the experimental comparison.

https://drive.google.com/file/d/1I_vpbLJhOJpNh-TpLdSWsaG3xCpzMVSQ/
https://drive.google.com/file/d/1I_vpbLJhOJpNh-TpLdSWsaG3xCpzMVSQ/
http://www.envicloud.cn/
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LSTM [35]: LSTM (long short-term memory) is a variant of a recurrent neural network
(RNN), which solves the problems of traditional RNNs regarding gradient disappearance
and gradient explosion. The experiment’s hidden unit was set to 32, the predicted value of
the AQI was the output, and the features from the historical observation sequence were
the input.

GC-LSTM [11]: The GC-LSTM model combines a graph convolutional neural network
(GCN) with a long short-term memory network (LSTM). In the experimental settings, the
optimal setting of LSTM hidden units was 64.

GAGNN [10]: GAGNN is a neural network model designed to analyze graph data
with intra- and inter-group links. It is specifically designed for graph-structured data. The
hidden layer unit was set to 32 in the experiment.

SHARE [64]: With numerous hierarchical recursive layers and graph attention layers,
SHARE is a semi-supervised hierarchical recursive graph neural network model for graph-
structured data. The shared semi-supervised portion of the experimental settings was
removed, while the other parameters stayed the same.

ST-UNet [65]: ST-UNet is a neural network model for processing graph-structured
time series data. To improve the time series modeling ability of the graph-structured time
series data, the model presented an the extended GRU. The hidden unit of the expanded
GRU wad 32 in the experiment.

XGBoost [66]: XGBoost is based on the decision tree model and introduces feature par-
allel computing. For parameter optimization of the experiments, network search methods
were used.

HighAir [67]: A neural network model, HighAir uses graph structural information
to optimize the graphs. It creates connections between the graph data by simulating the
dynamic elements and creating the graphs from a hierarchical viewpoint.

The prediction task results for the baseline model and the INNGNN model, which
were run on the dataset for one to six hours per day, are displayed in Table 1. The INNGNN
model’s assessment metrics, MAE and RMSE, showed the best prediction results across all
the prediction ranges, demonstrating the model’s efficacy in the task of spatiotemporal air
quality prediction.

Table 1. Prediction results of the INNGNN model and baseline model.

Model Metric 1 h 2 h 3 h 4 h 5 h 6 h

INNGNN
MAE 5.48 8.49 10.67 12.34 13.72 14.91
RMSE 10.70 16.03 19.66 22.29 24.37 26.11

DeeperGCN MAE 6.54 9.74 11.77 13.40 15.29 16.41
RMSE 13.67 18.93 21.14 23.83 26.25 28.02

LSTM
MAE 6.50 10.26 13.18 15.52 17.40 18.91
RMSE 13.85 19.26 23.52 26.83 29.46 31.55

GC-LSTM
MAE 5.95 9.16 11.58 13.46 15.00 16.31
RMSE 11.91 16.98 20.82 23.69 25.97 27.82

GAGNN
MAE 5.56 8.59 10.80 12.52 13.91 15.10
RMSE 10.81 16.17 19.84 22.51 24.63 26.37

SHARE
MAE 5.84 9.07 11.49 13.35 14.74 15.79
RMSE 11.27 16.84 20.77 23.60 25.80 27.38

ST-UNet
MAE 5.95 9.30 11.58 13.38 14.82 16.02
RMSE 11.74 18.01 21.34 23.90 25.94 27.64

XGBoost
MAE 6.85 10.89 13.99 16.27 18.14 19.56
RMSE 14.25 19.80 24.72 28.14 30.63 33.44

HighAir MAE 5.50 8.52 10.81 12.50 14.00 15.09
RMSE 10.80 16.10 19.85 22.70 24.91 26.40

In terms of performance, the hybrid INNGNN model is still superior to the graph
neural network. As shown in Table 1, for the 1 h and 6 h prediction tasks, the MAE error
of the INNGNN model was reduced by 19% and 10%, respectively, and the RMSE error



Atmosphere 2023, 14, 1807 13 of 18

was reduced by 27% and 7%, compared to the DeeperGCN model. In the 6 h prediction
task, the RMSE error of the INNGNN model was reduced by 4% and 5.8%, compared to
the SHARE model and the ST-UNet model, respectively. When compared to the enhanced
graph neural network models, GAGNN and HighAir, the INNGNN model improved the
MAE and RMSE errors for short-term, medium-term, and long-term predictions during the
1 h to 6 h prediction tasks. For the 1 h prediction task, the MAE error was reduced by 6.6%
and 8.6%, respectively. Our model’s MAE and RMSE errors are still significantly better
than those of the HighAir model, which has a better prediction effect. From this thorough
comparison, the INNGNN model improves upon the graph neural network foundation by
incorporating the extraction of temporal data. This allows for a more accurate capture of
the temporal and spatial connections, particularly for long-term predictions, demonstrating
its superior benefits.

Regarding the time series feature extraction process, the INNGNN model adds trend
and periodic feature extraction, as compared to the GC-LSTM hybrid model. This greatly
enhances the feature capture of burst points. In order to better extract the spatiotemporal
aspects of air quality prediction, the feature extraction for the correlation between cities
is integrated into the spatial feature extraction process concurrently. As demonstrated in
Table 1, the INNGNN model’s prediction accuracy outperformed that of the GC-LSTM
model over the 1–6 h prediction test.

4.3.2. Comparative Analysis: Individual Module vs. Hybrid Model

A few of the model’s modules were investigated to confirm that the suggested hybrid
INNGNN model is accurate in its forecasting performance. Figure 8 illustrates how we com-
pared the RMSE and MAE values of the prediction outcomes of the GNN module, INNGNN
model, and INN module from one hour to six hours, without including self-attention. The
results displayed in the figure demonstrate the greater predictive performance of the hybrid
model, with the INNGNN model outperforming each separate module.
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4.3.3. Ablation Studies

Ablation investigations were carried out to confirm the prediction performance of
our proposed INNGNN model. The model for prediction used in the experiment was
renamed INNGNN-INN after the INN part was removed, and INNGNN-GNN after
the GNN part was removed for making predictions. This model compares the linear
correlation between the INNGNN model and its corresponding predicted values. Among
these three models, it can be observed from Figure 9 that the INNGNN model has the best
fitting effect on the predicted value and the observed value, and the correlation coefficient
R2 is 0.91, which is higher than that of the INNGNN-INN model (the correlation coefficient
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R2 is 0.88), indicating that the temporal correlation results in a significant improvement
of the prediction results. At the same time, it is higher than the INNGNN-GNN model
(the correlation coefficient R2 is 0.88), indicating that the spatial correlation significantly
improved the prediction results.
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Figure 9. Correlations between observations and predictions on the test dataset for different com-
ponents of the model: (a) INNGNN model; (b) INNGNN-INN model; and (c) INNGNN-GNN
model. The red dashed line and black solid line are the regression lines, and y = x is the reference
line, respectively.

4.3.4. Display and Analysis

This section shows the AQP results for two cities from 1 April to 8 April using the
INNGNN model. In Figure 10, the blue line represents the real value, and the red line
represents the predicted value. Figure 10a represents the prediction effect for cities with
low-scale fluctuations in air quality, and Figure 10b represents the prediction effect for
cities with high-scale fluctuations in air quality. Our INNGNN model reacted promptly
to time series fluctuations in both scenarios. The AQI increased significantly between
2 April and 3 April, as shown in Figure 10a, but the INNGNN model was still able to
react promptly to the time series changes, demonstrating the model’s strong accuracy and
efficient performance.
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5. Conclusions

This study proposes a hybrid model, INNGNN, to forecast air quality by combining
GNN and self-attention. The INN module is used to fully extract the time series character-
istics in order to obtain the temporal dependence, and to give the periodicity and trend the
interpretability needed for forecasting. These issues with periodicity and trend are often ig-
nored in time series forecasting. Furthermore, the self-attention mechanism is incorporated
in order to capture the time series’ local and global dependencies, as well as the varying
relevance of each input feature at different times. In order to achieve the expected spatial
dependencies, the combination of GNN models can determine the connection relationship
between cities in order to capture the dependencies between them. When the INNGNN
model was compared to previous models and assessed using real air quality datasets, it
performed better over a range of prediction ranges. To further validate its performance,
ablation experiments were conducted by comparing different modules of the model, and
the INNGNN consistently exhibited superior performance.

In conclusion, the spatiotemporal aspects of urban air quality data are effectively
captured by the INNGNN model, and this model can be expanded and used for other
multivariate timeseries spatiotemporal applications. Environmental factors or specific
dataset characteristics that were not considered in this study may influence the model’s
performance. Additionally, the possibility of further investigating and improving the
comprehensibility of the model’s forecasts exists. In subsequent studies, we want to
investigate further how graph neural networks could be integrated with other time series
models in order to increase the predictability and versatility of these models. We will also
concentrate on enhancing the interpretability of the model and resolving any biases or
limitations present in the dataset.
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