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Abstract: The Brazilian population grew approximately 9% from 2006 to 2016, and the number of
deaths caused by air pollution increased by 14% in Brazil in the same period. Facing the lack of studies
on air quality in the Metropolitan Area of Belo Horizonte (MABH)—the third most populous Brazilian
metropolitan area—this study aimed to investigate the air quality and the trends of air pollutant
concentrations in the MABH between 1995 and 2022, using data from the air quality monitoring
network. The methodology consisted of checking MABHs air quality trends following the WHO
air quality guidelines. The Mann–Kendall test was used to check statistically for the possibility of
tendencies. The results showed a trend of stability in the concentrations of air pollutants in the MABH
without any trend of improvement or worsening. However, the time series of the MABH exposed
the challenge of ensuring better air quality that protects human health. Furthermore, the results
reinforced the importance of focusing on pollutant sources and exposed the need for improvements
in air quality management. Thus, it is essential to reverse the current dismantling scenario of the
public environmental agencies in Brazil.

Keywords: air quality assessment; air quality monitoring; air quality characterization; air quality
trend analysis; air pollution in a Brazilian urban center; Metropolitan Area of Belo Horizonte

1. Introduction

Human activities have significantly impacted the planet’s environment and lifestyle,
resulting in air quality issues that pose risks to both human health and the ecosystem [1,2].
A substantial amount of evidence has pointed out the effects of air pollution on human
health, particularly in urban centers [2,3]. According to the Global Health Observatory of
the World Health Organization, 6.7 million deaths worldwide are attributed to exposure
to airborne pollutants [4]. As a result, directing efforts, technological advancements, and
financial resources toward air quality research is paramount to comprehending the origin,
composition, behavior, interactions, and control mechanisms of air pollution, ultimately
safeguarding public health.

Currently, more than 6000 cities across 117 countries employ air quality monitoring
programs, showing that approximately 99% of the global population is exposed to dan-
gerously high concentrations of pollutants that exceed the air quality guidelines set forth
by the World Health Organization (WHO), thus presenting a grave threat to populations
worldwide [5,6]. The worldwide air quality monitoring network is expanding, yielding
increasing evidence regarding the consequences of human exposure to air pollutants.
According to WHO reports, low- and middle-income countries exhibit higher levels of
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particulate matter [6]. However, some authors highlighted the challenge of insufficient data
for managing air quality and highlighted the importance of identifying the highest local air
pollution levels, which is crucial information for assessing global human exposure to air
pollution and planning efforts to mitigate its impacts [7].

Implementing efficient instruments and guidelines for controlling and managing
local air quality is the initial step to assessing the true state of air quality and identifying
external factors influencing it. To establish an effective air quality management program,
the following actions are necessary: (i) emission control programs; (ii) installation and
operation of air pollution monitoring systems; (iii) assurance of public data accessibility;
(iv) dispersion modeling; (v) implementation of more stringent and globally harmonized
air quality standards; (vi) local management systems; and (vii) policies encouraging the
assessment of air pollution risks to human health [4,7]. Galvão, Feroni, and Orlando [8]
clarify how these tools and actions have pros and cons when applied individually, not
being able to describe an ideal and complete representation of reality on their own, being
such tools mutually complementary.

In Brazil, the population witnessed a growth of approximately 9% from 2006 to 2016,
and air pollution-related deaths increased by 14% in the same period [9]. In Brazil, fine
particulate concentrations exceeding WHO guidelines [annual concentration of 10 µg/m3]
were responsible for an increase of 48,700 ± 7570 deaths due to all causes between 2014
and 2018, highlighting the urgent need to improve air quality policies in Brazil [10].

In 2021, a new edition of the WHO global air quality guidelines was published [11],
offering updated recommendations for safeguarding public health from the adverse effects
of air pollutants. Additionally, the fact that the final Brazilian standard is outdated, coupled
with the country still adhering to the first interim standard with no migration deadline for
the subsequent stages, underscores the nation’s challenges in effectively monitoring and
improving air pollutant concentrations throughout the Brazilian territory.

The air quality monitoring network (AQMN) in Brazil consists of 286 stations, incor-
porating automatic and manual monitoring, which is insufficient for an appropriate air
quality monitoring program. Brazil has approximately 203 million inhabitants and a rate
of only 1.4 monitors (one per criteria pollutant) per million inhabitants. As a comparison,
for PM2.5 monitoring, most European countries and the USA have a rate above 3 monitors
per million inhabitants [7]. However, this network is present in only 11 out of the 26 states
and the Federal District, with no stations in northern Brazil, despite the region’s significant
environmental impact due to biomass burning emissions. Furthermore, only 16% of these
stations are located outside Brazil’s southeastern region, 5.5% in the northeast, 7.5% in the
south, and 3% in the center-west region. The southeast of Brazil represents approximately
84% of the national network, with stations in all four states: Rio de Janeiro, São Paulo,
Minas Gerais, and Espírito Santo [12]. Consequently, the Brazilian air quality monitoring
network lacks representativeness of the national territory, and not all states that monitor air
quality can ensure the quantity and quality of the data. According to the Institute of Energy
and Environment of São Paulo (IEMA-SP) [12], the main causes are (i) lack of policies and
clarity of purpose in the use of air quality data; (ii) scarce human resources; (iii) absence of
perennial funding; (iv) lack of strategic planning for the monitoring network; (v) lack of
standardization of the data; and (vi) difficulty in publishing data and elaborating reports.

Regarding air quality monitoring in Minas Gerais, the state government adopted
the “network and operation by polluting companies” monitoring management model. In
this approach, companies that perform potentially polluting activities are responsible for
installing and operating monitoring stations based on environmental licensing conditions
or terms of conduct adjustments. The environmental agency conducts audits, validates, and
publishes the data. The automatic AQMN in the state of Minas Gerais currently comprises
53 automatic stations operating since 1995 [12–14].

The Metropolitan Area of Belo Horizonte (MABH) is the third-most populous Brazilian
metropolitan region. Currently, 17 automatic monitoring stations, managed by the State
Environmental Foundation of Minas Gerais (FEAM) and funded by polluting industries,
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continuously operate in the MABH [13]. Some authors have pointed out the existing
fragility of the MABHs air quality network, citing limited data availability and a lack
of transparency in station data [15–17]. These studies reinforce the need to improve the
monitoring network in Minas Gerais and the adoption of more restrictive air quality
standards in force in Brazil since current levels do not satisfactorily protect the lives of
the population.

Some studies have focused on analyzing air pollution in the MABH, investigating
aspects such as (a) evaluation of air quality model results [18,19], (b) evaluation of the influ-
ence of meteorology on fine particle concentration [20], (c) identification of some pollutants’
behavior and their relation with atmospheric conditions [20], (d) health effects of inhaling
fine particulate matter [18,21], and (e) emission inventories and control strategies [19,21–24].
All these studies highlight the need for reliable air quality data for assessment and air
quality management. Despite the rapid growth of MABH and the strong influence of
industrial and road traffic emissions [18], none of the studies focused on MABH, seeking
to know the actual situation regarding air quality and understand the evolution of air
pollution in this metropolitan area.

The primary objective of this research is to assess the air quality status in the MABH
based on the guidelines set by the WHO. Additionally, this study aims to investigate the
temporal trends in atmospheric pollutant concentrations from the inception of automatic air
quality monitoring in 1995 to 2022, highlighting noteworthy patterns observed throughout
the time series.

2. Materials and Methods
2.1. Study Area

The MABH has approximately six million inhabitants and an area of 9468 km2 [25],
across 34 municipalities, and serves as a prominent commercial, industrial, cultural, and
tourist hub within the state of Minas Gerais. The area experiences significant heavy traffic
and hosts an industrial complex with considerable potential for emitting air pollutants.
In particular, the 2015 state emissions inventory for MABH [26] identified road traffic
sources (dust resuspension + exhaust) and industrial sources as the main contributors to
particulate matter, sulfur, and nitrogen oxide emissions. Biomass burning was identified as
the third-largest contributor in the region.

For this study, data from 17 air quality monitoring stations (Figure 1) in MABH
were evaluated from the period spanning 1995 to 2022. This study considered hourly
concentration data of particulate matter for particles equal to 10 µm in diameter and
smaller (PM10) and particles equal to 2.5 µm in diameter and smaller (PM2.5), nitrogen
dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and carbon monoxide (CO) from 2009 to
2022, which were obtained from [13]. Data from the years 1995 to 2008 were acquired from
the annual reports [27,28] when available. From 2008 onwards, all data were provided in.xls
files by the local environmental agency (FEAM), except for PM2.5, in which the monitoring
only started in the early of 2015. The network covers six of the thirty-four municipalities
composing the MABH, including Belo Horizonte (BH01, BH02, BH03, and BH04), Betim
(BT01, BT02, BT03), Contagem, Ibirité, São José da Lapa, and Brumadinho (Figure 1). A
flow chart of the method used in this work is shown in Figure 2.
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Figure 1. Locations of the MABHs air quality network.

2.2. Assessment of Air Quality Trends

The scope of this study encompassed an assessment of the MABH in relation to the
WHO recommendations, taking into account both the interim targets (M1, M2, M3, and
M4) and the final air quality guidelines (AQG). The interim targets are indicative stages
that facilitate a gradual reduction of air pollution, ultimately leading to the attainment of
air quality levels specified in the AQG. These AQG levels are established based on scientific
evidence suggesting that adverse health effects either do not occur or are minimal below
the specified concentration thresholds. These guidelines are presented in the latest issue of
the WHO series of publications [11]. This paper focuses only on the long-term exposures
(Table 1).

Table 1. Recommended AQG levels and interim targets for long-term exposures.

Pollutant Averaging Time

Levels

Interim Targets
AQG

1 2 3 4

PM2.5 µg/m3 Annual a 35 25 15 10 5

PM10 µg/m3 Annual a 70 50 30 20 15

O3 µg/m3 Peak season b 100 70 - - 60

NO2 µg/m3 Annual a 40 30 20 - 10
a Approximately 99th percentile (i.e., 3–4 exceedance days per year). b Average of daily maximum 8 h mean
O3 concentration in the six consecutive months with the highest six-month running-average O3 concentration.
Reference: Adapted from OMS (2021) [11].

Furthermore, the air quality trends over the past 26 years were subjected to analysis
using the Mann–Kendall test, which provides a statistical assessment of the probability
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of positive or negative tendencies (α = 0.05). In this analysis, two key indicators were
considered: (i) if the p-value is below 0.05, it suggests a significant tendency; and (ii) if S is
positive, so is the tendency, which means the concentrations are increasing over the years.
The average representativeness of the data was assessed following the Brazilian Environ-
mental Ministry (MMA) recommendations by the MMA’s guide [29]. The MMA’s guide
is the national guide that establishes guidelines for air quality monitoring in Brazil. Air
pollutant local emissions data from the official state inventory [26] were also analyzed and
used as support for discussions. It is important to highlight that, despite MABH consisting
of 34 municipalities, the official inventory includes data from only three municipalities
(Belo Horizonte, Contagem, and Betim), which together account for approximately 66%
of the MABH population [25]. Thus, there is a lack of representativeness among the other
31 municipalities that account for 34% of the total emissions.

Atmosphere 2023, 14, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Locations of the MABHs air quality network. 

 
Figure 2. Flow chart of the methods used in the analysis of the trends and quality of the air pollution 
monitoring data.  

2.2. Assessment of Air Quality Trends 
The scope of this study encompassed an assessment of the MABH in relation to the 

WHO recommendations, taking into account both the interim targets (M1, M2, M3, and 

Figure 2. Flow chart of the methods used in the analysis of the trends and quality of the air pollution
monitoring data.

3. Results and Discussion
3.1. Sources and Emissions

The current state of the MABH is characterized by emissions from road traffic and
industrial sources. Figure 3 illustrates the total emissions of TSP (Total Suspended Particles),
PM10, PM2.5, NOx (Nitrogen Oxides), SO2 (Sulfur Dioxide), CO (Carbon Monoxide), and
COV (Volatile Organic Compounds) based on the official inventory for the year 2015.
The emissions are presented both for all source groups (Figure 3a) and specific industrial
groups (Figure 3b). As the official inventory only includes data from three of all the
34 municipalities, it is important to highlight that consequently, the official inventory
results might not fully represent all the cities within the metropolitan area, and there is a
lack of official information available for the emissions of the remaining regions. Therefore,
to gain a comprehensive understanding, an assessment was conducted by considering
companies licensed by the state [30] under different industrial categories in municipalities
with air quality monitoring stations within the state’s network, as depicted in Figure 4.
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Figure 3. State official source inventory for the year 2015, in the MABH considering Belo Horizonte,
Betim, and Contagem, in tons/year. (a) All sources groups. (b) Industrial groups.

Based on the inventory data, road traffic is a significant contributor to emissions,
accounting for 78% of TSP emissions, 22% of SO2 emissions, 86% of NO2 emissions, 81% of
CO emissions, and 26% of COV emissions [26]. Regarding the road traffic contributions to
particulate emissions, the inventory combined dust resuspension with exhaust emissions as
a single road traffic group. This approach presents a limitation as each component originates
from different sources and necessitates distinct control mechanisms. Consequently, the
official inventory fails to provide specific information about the percentage attributed
to each type of road traffic emission in the MABH area, indicating a weakness in the
availability of comprehensive information.

Santos et al. [24] also aimed to estimate traffic-related emissions in the MABH for
the year 2015. They reported TSP emissions of approximately 2.4 × 103 tons/year from
traffic sources, whereas the state inventory estimated much higher emissions at around
16 × 103 tons/year, nearly seven times greater than the former estimate. It is worth noting
that the authors considered emissions from all 34 municipalities in MABH, while the official
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data only included three of them. Considering only Belo Horizonte, the state inventory
estimated road traffic emissions of 11 × 103 tons/year for TSP, 27 × 103 tons/year for NOx,
1.7 × 103 tons/year for SOx, 52 × 103 tons/year for CO, and 6.4 × 103 tons/year for VOC.
However, Santos et al. [24] estimated only 1 × 103 tons/year, 581 tons/year, 581 tons/year,
17 × 103 tons/year, and 4.7 × 103 tons/year, respectively.
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Particulate matter emissions from transportation in the Belo Horizonte region were
found to exceed those of São Paulo [16], the most populous city in Brazil and the fourth most
populous in the world, encompassing the largest metropolitan region in the country. This
finding raises the possibility that the predominant contribution of road traffic emissions
may be overestimated or, at the very least, sheds light on the inherent fragility of the state’s
emission estimate from road traffic circulation and its respective contribution percentage.

Regarding TSP, PM10, PM2.5, and CO emissions, the industrial and biomass burn-
ing emissions groups constitute the other two significant contributors. The industrial
group’s particulate and CO emissions are primarily associated with metallurgical indus-
tries, whereas SO2 emissions are related to chemical plants. However, it is essential to
acknowledge that these results do not fully represent all the cities within MABH. Therefore,
to gain a comprehensive understanding, an assessment was conducted by considering
companies licensed by the state [30] under different industrial categories in municipalities
with air quality monitoring stations within the state’s network, as depicted in Figure 4. The
analysis reveals a variation in predominant emission typologies across different municipali-
ties. Specifically, in Belo Horizonte, Contagem, Betim, and Ibirité, the metallurgical industry
sector, waste management, and services, along with infrastructure activities, dominate the
emissions profile. However, São José da Lapa and Brumadinho show a more prominent
presence of mining activities, which significantly influence particulate matter emissions
in these cities. São José da Lapa also has a notable presence in chemical industries, waste
management, and services. However, the primary sector of production is mineral extraction
and limestone processing, which are situated within the urban center of the city [31]. This
difference between the categories of emission sources in the municipalities underscores
the complexity of air quality management in the MABH due to the variability of emis-
sion sources across different municipalities, making it crucial to consider regional-specific
factors when conducting emission assessments and air quality analyses.

Santos et al. [24] also estimated stationary emissions of MABH in 2015, showing
similar results for all pollutants from industrial emissions when compared with the official
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inventory of MABH. However, more than five years have passed since these works, and an
inventory review is required.

That way, the emission inventory in the MABH faces certain challenges. Nonetheless,
the primary contributors to PM10 emissions in this region are road traffic, industrial,
and biomass burning sources. The road traffic group, in particular, warrants attention,
given the significant growth in the general fleet of vehicles, especially motorcycles and
private vehicles, which surged by 76.6% between 2001 and 2009 [32], whereas MABHs
population increased by 13.5%. It is important to note that heavy vehicles in the state of
Minas Gerais, including the MABH region, were found to be the major contributors to
emissions of particulate matter, including TSP, PM10, and PM2.5, in 2015, as highlighted
by Santos et al. [24]. The emission breakdown for PM10 indicated that 48.8% originated
from exhaust, 32.1% from tire and brake wear, and 19.1% from road wear. Consequently,
it becomes evident that a significant portion of total PM10 emissions originates from non-
exhaust sources [24], aligning with observations from studies conducted in other urban
centers globally. The material composition of emitted particles is influenced by various
factors, such as the type of engine, fuel, vehicle age, maintenance level, and the origin of
deposited materials susceptible to resuspension [33–35]. An insightful study by Moura [36]
analyzing the composition of PM10 in the MABH identified road traffic activities as a
major emission source, alongside mining activities and soil dust resuspension. Regions
like São José da Lapa and Brumadinho, characterized by substantial mining activities and
waste management and services, contribute significantly to this pollutant’s emission profile
(Figure 4).

3.2. Air Quality Status and Tendency

Regarding the annual concentrations in the MABH, all pollutants exceeded the AQG
levels (Figure 5). Notably, for NO2, the concentrations surpassed the first interim target,
M1 = 40 µg·m−3, showing a decreasing trend between 1995 and 2022. Nowadays, NO2
concentrations vary between the M2 and M3 targets. The PM10 levels remained in the M2
phase most of the time, including in more recent years, whereas PM2.5 showed concentra-
tions at the M3 level since monitoring began. Furthermore, a drop in PM2.5 concentrations
was observed in 2020 compared to other years. Consequently, for all pollutants with annual
guidelines, the MABH failed to comply with the WHOs recommendations, highlighting the
associated risk to the local population. This observation aligns with other studies demon-
strating similar situations of pollutant concentrations exceeding recommended levels in
some Brazilian and South American urban centers [7,10,16].

For O3, SO2, and CO, there are no specific annual levels recommended by the WHO.
Nevertheless, a decrease in the average concentrations of O3 and CO is noticeable in the
MABH. There is no WHO 2021 recommended value for the annual average of SO2; however,
the results show that its concentrations did not present any decreasing tendency in relation
to the current and first interim of the Brazilian air quality standard of 40 µg/m3. Thus,
while the annual concentrations of SO2 have not decreased since 1995, they remain below
the final standard of Brazilian legislation. Comparatively, in other Brazilian areas and South
American cities [16], both CO and SO2 have not emerged as significant problems in urban
centers, primarily due to advancements in vehicle technology and fuels [37,38].

Considering the risks of these pollutants, it is important to cite the ELAPSE project.
The ELAPSE project is a Europe-wide initiative spanning from mid-2016 to mid-2019. It
delves into the effects of long-term exposure to low-level air pollutants like PM2.5, Black
Carbon, NO2, and O3. The project’s focus lies in investigating the health impacts—both
mortality and morbidity—stemming from these pollutants. It leverages detailed individual
data from around 380,000 subjects in specific cohorts of the ESCAPE study, as well as
data from seven extensive European administrative cohorts comprising over 35 million
subjects [39]. It is important to highlight that the ELAPSE project found adverse health
effects even for air pollutant concentrations below WHO-AQG (2021) levels, demonstrating
that even for pollutants levels below WHO-AQG, there is still risk for adverse health effects.
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Figure 5. Evolution between 1995 and 2022 of the average values of pollutant concentrations mea-
sured at the MABH air quality monitoring for annual concentrations of (a) PM10, (b) PM2.5, (c) O3,
(d) NO2, (e) SO2, and (f) CO. Note: NA—Not Apply.

It is crucial to highlight that the Brazilian air quality standards are ruled by CONAMA
Resolution No. 491/2018 [40], which established three interim standards and a final one,
corresponding to the WHO recommendations at that time, the Global Update 2005 [41].
However, in 2021, a new edition of the WHO global air quality guidelines was pub-
lished [11], offering updated recommendations for safeguarding public health from the
adverse effects of air pollutants. Additionally, the fact that the final Brazilian standard is
outdated, coupled with the country still adhering to the first interim standard with no mi-
gration deadline for the subsequent stages, underscores the nation’s challenges in effectively
monitoring and improving air pollutant concentrations throughout the Brazilian territory.

3.3. PM10 Averages and Trends

The analysis of the PM10 time series (Figure 6) reveals that annual concentrations
consistently exceeded the established AQG levels for nearly all monitoring stations. Partic-
ularly concerning are three stations located in Contagem and Betim municipalities, which
exhibit the most severe air quality degradation in the MABH. However, the stations of
Contagem and Betim showed significant improvements in the air quality, as demonstrated
by the Mann–Whitney test presented in Table 2. Despite this progress, it is crucial to
acknowledge that PM10 concentrations in these regions still remain above the WHO guide-
lines. Throughout the entire monitoring period, the CT01, BT01, and BT03 monitoring
stations registered average annual PM10 concentrations above 50 µg/m3, with BT01 Station
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reaching levels exceeding 70 µg/m3 (Figure 5). Comparatively, Peláez et al. [16] analyzed
air quality and trends in major cities across South America, revealing that long-term PM10
concentrations in all studied cities exceeded WHO-AQG levels. Notably, Belo Horizonte
reported higher annual averages of PM10 when compared to several Brazilian regions,
including Vitória, São Paulo, Rio de Janeiro, and Salvador [16]. In contrast, Belo Hori-
zonte displayed relatively lower PM10 concentrations compared to other prominent South
American cities such as Bogotá, Medellín, Quito, Santiago, and Lima. Among the South
American regions outside Brazil, only Buenos Aires recorded lower PM10 concentrations
than Belo Horizonte. Thus, the findings underscore the persistent challenge of achieving
and maintaining satisfactory air quality in the MABH, with PM10 concentrations posing
significant health risks to the population. To address this issue effectively, it is essential
to focus efforts on identifying the sources of PM10 pollution and implementing targeted
control mechanisms. The complexity of PM10 pollution extends not only to other regions
within Brazil [16,37,42,43] but also to various areas around the globe [16].
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Figure 6. Average annual concentrations of PM10, in µg/m3, between 1995 and 2022, classified
according to WHO air quality guidelines.
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Table 2. Mann–Kendall test results between 1995 and 2022 for PM10, PM2.5, NO2, and O3.

City Station

PM10
(1995–2022)

PM2.5
(2015–2022)

NO2
(1995–2022)

O3
(1995–2022)

p-
Value S Tendency p-

Value S Tendency p-
Value S Tendency p-

Value S Tendency

Belo
Horizonte

BH01 0.25 56 None 0.80 3 None 0.00 −125 Negative 0.10 31 None

BH02 0.13 35 None 0.55 5 None 1.00 0 None 0.39 −8 None

BH03 1.00 0 None 0.81 2 None 1.00 0 None 0.46 −4 None

BH04 0.73 2 None 1.00 0 None 0.73 −2 None 0.09 −6 None

Contagem CO01 0.01 −79 Negative 0.00 21 Positive 0.39 −8 None 0.39 −8 None

Betim

BT01 0.00 −193 Negative 0.11 14 None 0.60 −6 None 1.00 −1 None

BT02 0.00 −111 Negative 0.39 8 None 0.00 −83 Negative 0.00 −59 Negative

BT03 0.01 −69 Negative 0.71 4 None 0.03 −59 Negative 0.36 −16 None

Ibirité
IB01 0.48 21 None 0.13 13 None 0.09 −49 None 0.13 −29 None

IB02 0.01 66 Positive 0.62 5 None 0.00 −85 Negative 0.38 −17 None

São José da
Lapa

SJ01 0.90 −2 None 0.54 6 None - - - - - -

SJ02 0.71 −4 None 0.13 −13 None - - - - - -

SJ03 0.90 −2 None 0.11 −14 None - - - - - -

SJ04 0.04 18 Positive 0.27 10 None - - - - - -

Brumadinho

BR01 0.07 −13 None 1.00 −1 None - - - - - -

BR02 1.00 −1 None 0.30 3 None - - - - - -

BR03 1.00 −1 None 1.00 −1 None - - - - - -

Note: (i) if the p-value is below 0.05, it suggests a significant tendency; and (ii) if S is positive, it suggests a positive
tendency.

Over the last eight years, the Air Quality Monitoring Station (AQMS) in São José da
Lapa has experienced a concerning trend of high PM10 concentrations, surpassing the first
target level for SJ01, SJ03, and SJ04 stations. This pattern of elevated PM10 levels is unique to
São José da Lapa, as no other station exhibits a similar trend. The annual averages indicate
a stable trend over the years, with no discernible signs of improvement or deterioration
in PM10 concentrations. Figure 7, presenting a ranking of six stations with the highest
averages from 2019 to 2021, further reinforces the severity of the situation. This specific
period was chosen because all active stations were concurrently operational, providing
a comprehensive overview. Within this context, the monitoring stations located in São
José da Lapa (SJ01 and SJ04) recorded the highest and second-highest PM10 concentrations,
respectively. These two stations are in close proximity to lime industrial plants in the
region, suggesting a possible association between industrial activities and PM10 pollution.
Additionally, Ireno [44] reported prevailing winds blowing from the industrial region
toward the SJ01 station, indicating a high probability of particle transportation towards
the station. Furthermore, both SJ01 and SJ04 stations are situated near major traffic roads,
potentially contributing to the observed high PM10 levels. The third-highest average
concentration was observed at SJ03, also located in São José da Lapa, further emphasizing
the impact of local sources in the area. Notably, Contagem (CO01) and Brumadinho (BR02
and BR03) cities also recorded high average PM10 concentrations. CO01’s ranking as
the fourth-highest indicates the combined influence of industrial plants and road traffic
emissions in the area. Meanwhile, the elevated PM10 concentrations in BR02 and BR03
stations in Brumadinho point to the presence of local sources related to mining industries
in the vicinity.
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The findings of this study indicate a substantial influence of industrial sources on
PM10 pollution in the MABH. Notably, municipalities with the highest PM10 concentrations
are significantly impacted by emissions from industrial activities, primarily stemming
from the mining and steel industries. São José da Lapa, despite having a lower population
density compared to other municipalities, exhibited PM10 concentrations well above those
observed at other monitoring stations. This observation underscores the strong influence
of industrial emissions on air quality in the region. The MABH, being the third-largest
metropolitan area in Brazil, experiences a dual burden of pollution. Alongside pollution
from urban sources, the region contends with an extensive industrial complex, further
exacerbating air pollution challenges. As confirmed by Galvão et al. [45], in another
industrialized region of southeastern Brazil, the mineral phases present in particulate
matter are dependent on particle size. Hematite and quartz were found in significant
amounts in the Settleable Particulate Matter (SPM) and in the Total Suspended Particles
(TSP), whereas elemental carbon, sulfates, and halite were found in higher levels in the PM10
and PM2.5 fractions [45]. This highlights the complexity of particulate matter composition
and its potential implications for human health, as health risks are also influenced by PM
size [18].

The burning of biomass emerges as one of the three largest groups of emitters con-
tributing to PM10 pollution. A study conducted by [46] identified a concerning increase
in fires over the years, with peaks in burned areas in Brazil often coinciding with extreme
dry events. The extensive deforestation rates, particularly before 2005 and after 2019,
have significantly impacted the rise in areas subject to burning [46]. Furthermore, the dry
season, occurring between July and October, concentrates a staggering 83% of the country’s
burning activities [46]. The effects of biomass burning on more susceptible people, such as
children and elders, were carried out in Brazil and revealed that an increase of 10 µg·m−3 of
wildfire-related PM2.5 was associated with a 1.65% (95% CI 1.51–1.80) increase in hospital
admissions by all causes, besides an increase of 5.09% (4.73–5.44) of respiratory hospital
admissions and a 1.10% (0.78–1.42) increase in cardiovascular hospital admissions over
only 0 to 1 day after the exposure [47].

3.4. PM2.5 Averages and Trends

PM2.5 monitoring in the MABH area commenced in 2015 (Figure 8) and revealed con-
cerning results. Throughout the monitoring period, the concentrations of PM2.5 consistently
exceeded the AQG values, with readings falling between the M4 and M2 targets. The trend
analysis of the monitoring data displayed a stable pattern for most stations, suggesting
no significant improvements in air quality over time. However, station CO01 stood out
as an exception, showing a noticeable and significant increase in PM2.5 concentrations
over the last seven years. Despite this rise, the readings at CO01 remained within the M2
target throughout the entire time series. These findings indicate that Contagem, where
station CO01 is located, experiences the most concerning air quality conditions regarding
PM2.5. The consistently high levels and the positive trend observed at CO01 emphasize the
severity of the situation.
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Figure 8. Average annual concentrations of PM2.5, in µg/m3, between 1995 and 2022, classified
according to WHO air quality guidelines.

Figure 8 displays the PM2.5 average concentrations for CO01 and BT01, which are
the two stations with the highest readings. According to the official annual air quality
report [48], BT01 is situated in an area with moderate road traffic and an industrial complex
nearby. On the other hand, CO01 is located on the outskirts of the Industrial City of
Contagem, close to heavily trafficked roads that connect the cities of Belo Horizonte,
Contagem, and Betim. The stations SJ01, SJ04, and SJ03, located in the city of São José da
Lapa, were also ranked among the worst cases in terms of PM2.5 concentrations. Among the
four São José da Lapa stations, only one did not fall under the worst concentrations for both
fractions of particulates. This particular station is situated near an avenue in Vespasiano,
at a greater distance from the region’s lime industries. Another station with significant
PM2.5 levels is BH05, located in Belo Horizonte. In the vicinity of BH05, there are various
pollution sources within a 1.5 km radius, including a railway line, a steel plant, and the
industrial complex of Contagem.

Regarding PM2.5 concentrations, the MABH area exhibited higher levels in regions
with significant industrial influence. The stations CO01 and BT01, which recorded the
two highest concentrations, were both affected by emissions from road traffic and indus-
trial sources. According to the official state inventory [26], approximately 55% of PM2.5



Atmosphere 2023, 14, 1792 14 of 21

emissions in the MABH area originated from road traffic emissions, 30% from industrial
activities, and 14% from biomass burning. Moreover, Galvão et al. [18] conducted a study
that identified higher concentrations of particulate and gas-phase PAHs associated with
fire outbreaks in the MABH region. The study pinpointed four potential sources in the
area: gasoline-related (31.8%), diesel-related (25.1%), biomass burning (23.4%), and mixed
sources (19.6%). Their findings also underscored the increased risks associated with expo-
sure to PM2.5-bound PAHs, particularly through ingestion and dermal contact, highlighting
the urgency for mitigation and control measures to address PM2.5 pollution in the region.
Additionally, it is essential to consider the spatial context. Within a 40 km radius, the
intensely urbanized area of the Belo Horizonte, Contagem, Betim, and Ibirité axes is located.
As PM2.5 represents the finest fraction of particulates, longer-range transport may also
contribute to its presence in the region.

Regarding road traffic contributions, Santos et al. [24] found that heavy vehicles were
the primary contributors to particulate emissions in the state of Minas Gerais. For PM2.5,
63.9% of emissions originated from exhaust, while 22.5% came from tire wear and brakes,
and 13.5% from road wear.

Peláez et al. [16] conducted a study showing that long-term concentrations of PM2.5 in
all the studied cities exceeded the WHO-AQG. In the case of Belo Horizonte, its annual
PM2.5 concentrations were higher than Vitória’s but lower than São Paulo’s. However, this
difference decreased over the years between 2014 and 2017, with Belo Horizonte’s annual
average PM2.5 concentrations increasing while São Paulo’s decreased. In comparison to
other cities in South America, Belo Horizonte exhibited lower concentrations of PM2.5 than
cities like Bogotá, Medellín, Quito, Santiago, and Lima.

3.5. NO2 Averages and Trends

Figure 9 illustrates the distribution of NO2 concentrations, revealing that only Ibirité
stations (IB01 and IB02) recorded annual averages below the Air Quality Guideline—AQG.
However, the cities of Belo Horizonte (BH02, BH03, and BH04), Contagem (CO01), and
Betim (BT01 and BT03) experienced the highest current NO2 concentrations, falling within
the range of the M1 and M2 interim targets. The official inventory [26] highlights that NO2
emissions primarily originate from two sources: 86% from the road traffic group and 12%
from the industrial sector. Within the industrial sector, 61% of NO2 emissions come from
chemical industries, while 29% stem from metallurgical industries. An examination of NOx
emissions related to the fleet profile and fuel usage in Minas Gerais in 2015 [24] revealed
that 68% of NOx emissions were attributed to trucks, with an additional 23% coming from
buses. Remarkably, 94% of NOx emissions from vehicle exhaust were associated with
diesel-powered vehicles.

Over the last three years, the monitoring data revealed that BH02, BH03, and BT03
were the stations with the most concerning air quality, as they consistently remained
between the M1 and M2 interim targets for NO2 concentrations. Figure 7 further supported
this finding, confirming that the municipalities of Belo Horizonte (BH02, BH03, and BH04),
Contagem (CO01), and Betim (BT03) experienced the highest NO2 levels. According to
Peláez et al. [16], long-term concentrations of NO2 in all the studied cities surpassed the
WHO-AQG. However, it is noteworthy that Belo Horizonte exhibited relatively lower
concentrations compared to other South American cities, despite exceeding the WHO-AQG.
The results showed an improvement in air quality in locations where monitoring began
before 2009. Stations BH01, BT02, BT03, and IB02, situated in Belo Horizonte, Betim, and
Ibirité, respectively, experienced a significant decrease in NO2 concentrations. However,
other monitoring stations did not exhibit a clear trend regarding annual concentrations.
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Figure 9. Average annual concentrations of NO2, in µg/m3, between 1995 and 2022, classified
according to WHO air quality guidelines.

3.6. O3 Averages and Trends

Regarding O3, Figure 10 illustrates the evolution of maximum moving averages
of 6 months, calculated from the maximum daily values of representative 8 h moving
averages (with a 75% representation for 8 h), starting in June 2009. the WHO guidelines,
there were only a few instances when ozone concentrations remained below the AQG level,
as observed at monitoring stations BH01, IB01, and IB02. However, most of the time, ozone
concentrations were found between the M1 and M2 interim targets. On specific occasions,
particularly in 2019 and 2021 for SJ01 and in 1996 and 1998 for BT01, concentrations
exceeded 70 µg/m3, surpassing target levels. Throughout the time series, BH01 consistently
displayed the best air quality among all the monitoring stations. Moreover, all the stations
did not show any clear trend of improvement in air quality, except for BT02. The Mann–
Whitney test indicated a negative trend for BT02, which could be attributed to the unusually
high concentration in the first year of data collection in 2009, with an average exceeding
100 µg/m3.
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Figure 10. The annual maximum peak season concentrations of O3, in µg/m3, between 1995 and
2022 were classified according to WHO air quality guidelines.

Based on the last three years (Figure 10), the municipalities of Brumadinho (BR02),
Belo Horizonte (BH03, BH02, and BH04), Contagem (CO01), and Betim (BT03) were iden-
tified as the areas with the worst Ozone (O3) pollution. Notably, Brumadinho’s station
(BR02), which began monitoring in 2021, recorded the highest ozone air pollution within
the MABH network, with a value of 109 µg/m3. These findings highlight the necessity for a
comprehensive investigation into the factors driving the increase in ozone concentrations in
this area. Aside from BR02, other stations ranking high for O3 pollution also feature promi-
nently in the air pollution rankings for Nitrogen Dioxide (NO2), corroborating a potential
correlation between high O3 and NO2 levels in these locations, warranting further scrutiny.

Figure 11 provides a visual representation of the historical evolution of hourly ozone
concentrations in the MABHs air quality-monitoring network from 1999 to 2022, offering
valuable insights into the long-term trends in ozone levels. The results from 1999 to 2022
indicate a similarity in the curves between Belo Horizonte and the entire MABH network,
suggesting that O3 pollution in Belo Horizonte might influence the trend of the metropolitan
region. However, analyzing the period since 2009 (panel B, Figure 11), it becomes evident
that although the time series showed an increase since 1999, a reversal occurred from
2009 onwards, indicating a slight decrease. Given that O3 forms through the oxidation
of atmospheric pollutants like volatile organic compounds (VOC) and NOx, it is crucial
to investigate the formation processes and ideal conditions for reactivity. Understanding
this is vital to finding effective ways to reduce O3 levels in the MABH. The increase in
O3 concentrations, despite the presumed reduction in NO2, highlights the significance of
conducting a chemical speciation study and examining the potential influence of VOC on
ozone formation, as demonstrated by Alvim et al. [49] in the São Paulo region (SP/Brazil)
and Galvão et al. [50] in Vitória (ES/Brazil).
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According to the local emissions inventory [26], the significant contributors to VOC
emissions in 2015 were biomass burning (vegetation), road traffic, and industries, par-
ticularly service and trade groups, wholesalers, and chemical industries, as well as fuel
stations, liquefied petroleum gas filling plants, and landfills. However, it is important to
note the possibility of overestimating VOC emissions from vegetation in this inventory.
Galvão et al. [18] identified potential emission sources of PAHs in Belo Horizonte, includ-
ing fine fractions of particulates and VOCs, associated with road traffic sources (gasoline
and diesel), biomass burning, and mixed sources (industries and road traffic emissions
related to gasoline and natural gas combustion for industrial and domestic use). Regarding
particulate emissions, the local emission inventory of 2015 [26] also highlighted biomass
burning as one of the main contributors, even for smaller fractions, in the region.

Peláez et al. [16] conducted a short exposure analysis and revealed that among South
American cities, Brazilian cities such as Belo Horizonte, São Paulo, and Rio de Janeiro
exhibited the worst O3 concentrations.

4. Conclusions

This study faces a shortage of air quality information and research focused on the
MABH, which stands as the third most populous metropolitan region in Brazil. In this study,
our primary objective was to comprehensively investigate the air quality characterization
and trend of air pollutant concentrations within MABHs automatic network, spanning the
period from 1995 to 2022.

In general, results showed that pollutants like NO2, PM10, and PM2.5 consistently
exceeded WHO-AQG, posing risks to the local population. There were decreasing trends
in NO2 concentrations and variations in PM levels, with a noticeable drop in PM2.5 con-
centrations observed in 2020. O3, CO, and SO2 did not breach WHO-AQG, and there were
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decreases in average concentrations for O3 and CO, whereas SO2 levels remained below
the final standard in Brazilian legislation, despite not meeting WHO recommendations.
This aligns with similar situations in other Brazilian and South American urban centers,
highlighting the widespread challenge of air quality management in the region. Therefore,
collaborative efforts involving rigorous monitoring, comprehensive research, and effective
interventions are needed to ensure improved air quality and safeguard public health.

The results highlight persistent issues with high PM10 concentrations in the MABH,
particularly in stations located in Contagem, Betim, and São José da Lapa. Although
some stations in Contagem and Betim show improvements in air quality, they still exceed
WHO guidelines. São José da Lapa stands out for consistently high PM10 levels over
eight years, potentially linked to industrial and traffic-related sources. The proximity of
monitoring stations to industrial sites and major roads, combined with prevailing wind
patterns, suggests a strong association between these factors and heightened PM10 pollution.
Additionally, PM10 levels in Brumadinho indicate mining-related sources contributing to
elevated concentrations. These findings underscore the complex challenge of addressing
PM10 pollution in the MABH and emphasize the need for targeted strategies to identify
and control pollution sources for better air quality.

The PM2.5 monitoring from 2015 onwards consistently showed levels surpassing
AQGs, notably falling between the M4 and M2 targets. While most locations displayed
stable patterns, Contagem notably stood out for a significant and continuous increase in
PM2.5 concentrations over seven years, remaining within the M2 target. Contagem and
Betim (BT01) stations exhibited the highest PM2.5 levels, attributed to traffic and industrial
emissions. São José da Lapa’s stations also ranked poorly for PM2.5 concentrations, mainly
linked to industrial activities nearby. These findings align with reports indicating a majority
of PM2.5 emissions originate mainly from road traffic, industries, and biomass burning.
The results highlighted the urgent need for mitigation strategies. Additionally, the spatial
context of the intensely urbanized Belo Horizonte-Contagem-Betim-Ibirité axis suggests
potential long-range transport contributing to PM2.5 pollution in the region.

The analysis of ozone (O3) pollution in the MABH also highlights significant trends
and concerns. It shows a historical increase in ozone concentrations until 2009, followed by
a slight decrease thereafter. Monitoring stations showed variations in air quality, with some
stations in Belo Horizonte consistently displaying better conditions, whereas newer stations
in Brumadinho record alarmingly high ozone levels. There is a notable correlation between
areas with high O3 pollution and elevated NO2 levels, indicating a potential link between
these pollutants. This emphasizes the urgency of investigating the factors contributing to
increased O3 concentrations, particularly in regions like Brumadinho, and understanding
the role of pollutants like VOCs and NOx in ozone formation. The need for a chemical
speciation study is emphasized to devise effective strategies for mitigating ozone pollution
in the MABH region.

Lastly, this study sheds light on the existing gaps in understanding and addressing
air pollution issues in the MABH. By revealing the challenges and providing valuable
insights into the sources and trends of air pollutants, we hope to foster greater awareness
and drive effective actions toward ensuring healthier air quality for the inhabitants of this
densely populated region. Further research and a concerted effort by relevant stakeholders
are essential to mitigate the adverse impacts of air pollution and protect public health
in MABH.
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