
Citation: Chen, X.-Z.; Ma, Y.-L.; Lin,

C.-Q.; Fan, L.-L. Assessment of

Typhoon Precipitation Forecasts

Based on Topographic Factors.

Atmosphere 2023, 14, 1607. https://

doi.org/10.3390/atmos14111607

Academic Editors: Nina Nikolova

and Martin Gera

Received: 26 September 2023

Revised: 19 October 2023

Accepted: 24 October 2023

Published: 26 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Assessment of Typhoon Precipitation Forecasts Based on
Topographic Factors
Xu-Zhe Chen 1, Yu-Long Ma 2,*, Chun-Qiao Lin 1 and Ling-Li Fan 1,3,*

1 College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China;
2112102003@stu.gdou.edu.cn (X.-Z.C.); 2112202032@stu.gdou.edu.cn (C.-Q.L.)

2 Guangdong-Hong Kong-Macao Greater Bay Area Weather Research Center for Monitoring Warning and
Forecasting, Shenzhen 518040, China

3 South China Sea Institute of Marine Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
* Correspondence: mayulong@gbamwf.com (Y.-L.M.); fanll@gdou.edu.cn (L.-L.F.);

Tel.: +86-755-883-98247 (Y.-L.M.); +86-759-239-6055 (L.-L.F.)

Abstract: For this paper, a new global atmospheric model (Global-to-Regional Integrated forecast
SysTem; GRIST) with improved sub-grid scale orographic parameterization was verified and assessed,
with an emphasis on the precipitation caused by typhoons. Four typical typhoon cases were selected
for the verification of the model. The results indicate that, compared to the control experiments, the
sensitivity experiments consistently simulated the trends in the three-hour cumulative precipitation
changes and the high-value regions of total precipitation better. However, the improved experiments
only had an ameliorating effect on the cumulative precipitation modelling biases for Typhoon
LEKIMA and Typhoon HAGUPIT, not all of them. Precipitation bias is smaller on flat land than
that on mountainous land, but the precipitation bias on windward/leeward slopes depends on the
typhoon case. Precipitation modelling accuracy varies considerably between flat and mountainous
terrain but very little between windward and leeward slopes. The precipitation simulation is poor
for all terrains, with large precipitation thresholds in three typhoon cases, but for Typhoon HOTA,
after improving the terrain, the model has the ability to forecast the heavy rainfall scenarios of the
mountainous terrain.

Keywords: typhoon precipitation; forecast skill; model evaluation; topography

1. Introduction

Tropical cyclones cause serious economic losses and pose a threat to people’s lives and
health [1–3]. After a tropical cyclone creates landfall, the topography of the coastal region
affects typhoon precipitation through mechanisms such as the excitation of sub-mesoscale
eddies and forced uplift [4]. Significant spatial differences in precipitation occur under
the influence of topography, and there is a close link between typhoon precipitation and
topographic distribution after landfall [5].

Scholars use typhoon numerical forecasting techniques to conduct in-depth research
on the influence of topography on typhoon precipitation [6–8]. Woojin Cho et al. [9] found
that water vapour is forced upward by topography in typhoons, enhancing precipitation
on windward slopes and hilltops. Liu et al. [10] suggested that topography can induce
secondary circulation, which can lead to increased precipitation. Yu et al. [11] indicate
that mountains promote convection and increase precipitation intensity. Ouyang et al. [12]
proposed that as rainbands pass through mountain topography, warm and moist air is
lifted up onto steep slopes, causing unstable energy to accumulate on windward slopes,
which contributes to precipitation generation in these areas. However, these conclusions
were based on single typhoon case studies, and the question of whether they are specific or
not remains.
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The traditional test of precipitation is an important method for quantitatively assess-
ing the model’s ability to forecast precipitation. Based on the dichotomous contingency
table [13], skill scores such as the probability of detection(POD), the equitable threat score
(ETS) [14], false alarm ratio (FAR), and the critical success index(CSI) [15] have been devel-
oped. However, due to the “double-penalty” issues [16,17], such traditional point-to-point
scoring cannot better assess spatial forecasts of precipitation in high-resolution models,
so tools such as neighbourhood methods [18,19], scale separation methods [20], and field
deformation methods [21,22] have been developed to assess precipitation forecasts in high-
resolution models [23]. In particular, the neighbourhood method evaluates the probability
of precipitation at grid points within a neighbourhood by choosing a certain neighbourhood
radius, and it is able to derive the deviation of the spatial forecast of precipitation within the
neighbourhood radius [24]. In addition, precipitation model scores calculated on the basis
of a neighbourhood dichotomous contingency table can also characterise the precipitation
forecasts from the high-resolution model [25,26]. The model precipitation forecast test and
evaluation not only help improve the model but also aid in understanding the forecasting
capability of extreme precipitation and promote improvements in forecasting levels [27–29].
Typhoon precipitation simulations based on different models have been evaluated and
analysed mostly based on individual typhoon cases to explore the mechanisms by which
topography influences typhoon precipitation [30,31]. In other words, when a typhoon
passes over complex terrain, it can result in heavy local precipitation due to dynamic
factors. Previous authors have also quantitatively assessed and analysed the topographic
influences on precipitation based on different regions [32–34]. Then, is there any uncertainty
regarding the influence of topography on precipitation following typhoons? Typhoons
are specific. Terrain data can be optimised to improve precipitation simulations based on
numerical model experiments. There have been few quantitative assessments regarding
the effects of different terrains on typhoon precipitation, and there is a need for an in-depth
assessment of the models for forecasting typhoon precipitation in different terrains.

2. Data and Methods

This paper examines and evaluates the forecast performance of the model on a 3 h
cumulative precipitation basis for individual typhoon cases. In order to investigate whether
there are commonalities in precipitation across the topography of different typhoons, we
screened four individual typhoon cases, namely Typhoon HOTA, HAGUPIT, LEKIMA,
and INFA, which are severe socio-economic hazards and pass through complex terrain
after landfall but with inconsistent areas of activity. In addition, controlled and sensitivity
experiments were set up to verify the general applicability of optimising terrain data to
improve precipitation simulation.

2.1. Data

In order to compare the model’s ability to forecast precipitation over different terrains,
the time period and spatial area (within a 400 km radius of the typhoon centre) where
precipitation is heavier of each typhoon were selected for this study (Table 1). The Interna-
tional Best Track Archive for Climate Management (IBTrACS v04) provided the TC Best
Track dataset from the Joint Typhoon Warning Center (JTWC) (Pearl Harbor, HI, USA);
GPM IMERG Final Precipitation data with a spatial resolution of 0.1◦ × 0.1◦, topographic
data with a resolution of 10′′, and station wind field information were provided by the
Shanghai Typhoon Institute (Shanghai, China).

2.2. Method

We developed a new global atmospheric model (Global-to-Regional Integrated forecast
SysTem; GRIST: A22.5.1) [35] with improved sub-grid scale orographic parameterization,
which we set out to verify and assess. The control and sensitivity experiment used the same
physical scheme. The physics schemes included the Tiedtke–Bechtold scheme, diagnostic
cloud fraction parameterization, the Rapid Radiative Transfer Model for General Circulation
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Models Applications (RRTMG), the parameterization scheme for the Yonsei University
(YSU), surface layer (Sfclay) parameterizations, and the Noah with multiparameterization
(Noah-MP) land surface model. For the sensitivity tests, the grid terrain was based on
WRFv4.4 gravity wave drag (GWD) parameterization scheme improvement.

Table 1. Summary of typhoon events.

Event Period Averaged 3 h Comparisons

HOTA (2017) 0000 UTC 23 Aug. to 0000 UTC 24 Aug. 3 h update frequency: 8 valid times total
LEKIMA (2019) 1200 UTC 9 Aug. to 0000 UTC 11 Aug. 3 h update frequency: 12 valid times total
HAGUPIT (2020) 0000 UTC 3 Aug. to 0000 UTC 4 Aug. 3 h update frequency: 8 valid times total
INFA (2021) 1500 UTC 24 Jul. to 0300 UTC 26 Jul. 3 h update frequency: 12 valid times total

Based on the 10′′ resolution elevation data or the terrain height output from the model,
the terrain slope of each grid was calculated. This slope was then combined with the
wind direction to determine the windward and leeward slope of each grid point at a given
moment. Mountainous and flat areas were divided using a threshold of 500 m above sea
level. Experiments were conducted to improve the simulation of individual typhoon cases
by reducing the terrain smoothness to make it more closely resemble real conditions.

The traditional point-to-point assessment method and the neighbourhood spatial
assessment test method were used to assess the model’s forecasting capability for different
terrains and different magnitudes of precipitation. The neighbourhood radius were used to
calculate the equitable threat score (ETS), the probability of detection (POD), the fractions
skill score (FSS), and other test parameters based on the dichotomous contingency table, and
the 3 h accumulated precipitation was classified into four magnitudes: light rain or above
(greater than 0.1 mm), moderate rain or above (greater than 3 mm), heavy rain or above
(greater than 10 mm), and torrential rain or above (greater than 20 mm). The differences
in the forecast results before and after model simulation improvements were compared.
The traditional assessment methods evaluated overall precipitation forecasting capability,
while neighbourhood spatial assessment methods highlighted the spatial differences in
precipitation. Neighbourhood scoring represents a shift from traditional grid-based scoring
to ‘region-to-region’ scoring within an outwardly expanding neighbourhood centred on a
grid point [25]. The fractions skill score (FSS) is one of the tests within the neighbourhood
method [36,37] which transforms the forecast field and the real field into the probability
distribution field of the grid points to calculate the spatial forecasting capability of each
grid point at different precipitation thresholds and within different neighbourhood radii.
The FSS was defined as follows:

FSS = 1−
1
N ∑N(Pfcst − Pobs)

2

1
N

(
∑N P2

fcst −∑N P2
obs

) , (1)

where Pfcst and Pobs denote the probability of precipitation in the forecast field and the
probability of precipitation in the observed field within the radius of the neighbourhood,
respectively. N is the number of neighbourhood window areas in the scoring region. A
larger FSS indicates a better match between the forecast and the frequency of events in the
radius of the neighbourhood of the real situation. The minimum scale with forecasting skill
for different precipitation thresholds (and different terrains) was discriminated using the
FSSu defined by Roberts et al. [38]. The FSSu was defined as follows:

FSSu =
1 + Fobs

2
, (2)

where Fobs represents the percentage rate of actual precipitation over the entire test area.
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3. Statistical Characteristics of Precipitation and Forecasting Tests for Different Terrains
3.1. Distribution of Cumulative Typhoon Precipitation

The study of typhoon precipitation characteristics under different topographies begins
with identifying the region influenced by each individual typhoon. This involves screening
for periods of heavy precipitation before and after each typhoon’s landfall. It was observed
that there is a complex terrain area covered by typhoon precipitation during each study
period. Figure 1 shows China’s topography in the region of typhoon landfall.
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Figure 1. China’s topography in the region of typhoon landfall.

Figure 2 shows the distribution of the observed cumulative precipitation, the cumula-
tive precipitation in control experiments, and the cumulative precipitation in sensitivity
experiments for four typhoon cases. For Typhoon HOTA, the observed cumulative precip-
itation covers most of Guangdong, Hainan, and Guangxi, while the range of simulated
precipitation is smaller. The gradient of simulated cumulative precipitation is larger than
observed, with significant differences between simulated and observed precipitation in the
central and western regions of Guangxi. In addition, although the coverage of cumulative
precipitation after the model improvement still differs somewhat from the observed data,
the extent of the area of large values of cumulative precipitation is much closer to the actual
situation than the control experiments. For Typhoon LEKIMA, the model’s improved
precipitation simulations are closer to the observed precipitation than in the control ex-
periments, with precipitation mainly being concentrated in Zhejiang and Taiwan Island.
For Typhoon HAGUPIT, observed precipitation occurred mainly in Northern Taiwan and
southern Zhejiang, but the model simulations over-predicted precipitation in western Zhe-
jiang. The model-simulated cumulative precipitation distribution of Typhoon INFA is in
good agreement with the observed precipitation, but the observed cumulative precipitation
is around 90 mm in the large value area, while the model-simulated precipitation can reach
a maximum of over 210 mm, which means that the maximum value of the model-simulated
cumulative precipitation is higher than that observed. When considering the cumulative
precipitation distribution for the four individual cases, the model generally agrees with the
areas of large-value cumulative precipitation compared to the observations. However, the
model-simulated precipitation is higher than that observed, and the sensitivity experiments
tended to produce more precipitation than the control experiments.
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Figure 2. Distribution of observed cumulative precipitation (a–d), cumulative precipitation of the
control experiments (e–h), and cumulative precipitation of the sensitivity experiments (i–l) for
Typhoon HOTA, Typhoon LEKIMA, Typhoon HAGUPIT, and Typhoon INFA.

3.2. Categorizing Precipitation Patterns and Biases

To quantitatively analyse the mean and deviation of model precipitation, GPM pre-
cipitation data were interpolated into the grid of the GRIST model outputs as observed
precipitation (Figure 3). Although the Typhoon HOTA flatland precipitation mean was
much higher than the mountain precipitation mean, the mountain precipitation deviation
was higher than the flatland before and after model improvement. The model-simulated
precipitation values for Typhoon HAGUPIT, Typhoon LEKIMA, and Typhoon INFA were
significantly greater than the observed precipitation in all terrains both in the control
experiments and sensitivity experiments. Typhoon HAGUPIT and Typhoon LEKIMA
showed greater precipitation bias on the windward slopes than on the leeward slopes
both before and after model improvement, while the opposite was true for Typhoon INFA.
Shifts in the precipitation bias relationship between Typhoon HOTA on the windward and
leeward slopes before and after the model improvement were observed. Among the four
typhoons, the model has the smallest deviation in simulated precipitation for Typhoon
HAGUPIT, with only a 1.1 mm deviation in mountainous terrain being recorded before
terrain improvement. After terrain improvement, this deviation was further reduced to
0.5 mm. However, the model exhibited the largest deviation in simulated precipitation for
Typhoon LEKIMA, exceeding 12 mm in mountainous terrain before terrain improvement.
For the poorly modelled Typhoon LEKIMA, the model’s simulated precipitation bias was
somewhat reduced after decreasing the level of terrain smoothing. On the other hand, for
the other typhoon individual cases, improving the terrain is likely to increase the model’s
precipitation bias. When considering different terrain conditions, all precipitation simu-
lation biases are larger in mountainous areas than in flat areas, but there are individual
differences in the precipitation bias of the typhoons on windward and leeward slopes.
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Figure 3. Mean (a,c,e,g,i,k,m,o) and deviation (b,d,f,h,j,l,n,p) of three-hourly cumulative precipi-
tation for typhoons over different terrains in the control experiments (a–d,i–l) and the sensitivity
experiments (e–h,m–p). (a,b,e,f) Typhoon HOTA; (c,d,g,h) Typhoon LEKIMA; (i,j,m,n) Typhoon
HAGUPIT; (k,l,o,p) Typhoon INFA.

3.3. Evaluating Cumulative Precipitation Based on Traditional Method

We composed four scenarios with windward/leeward slopes and mountainous/flat
terrain. We used the traditional point-to-point assessment method to calculate the equitable
threat score (ETS) [14] for light, moderate, heavy, and torrential rainfall magnitudes for
each typhoon’s 3 h forecast during the test period (Figure 4). ETS values are generally
larger (indicating better performance) at lower precipitation thresholds because the model
tends to predict low-intensity and high-frequency events accurately. Among the four
typhoon examples, all of them except Typhoon HAGUPIT exhibit much higher ETSs for
the windward and leeward slopes in flat areas than for mountainous areas. This suggests
that the effect of topographic differences between flat and mountainous areas on the model-
simulated precipitation is much greater than that of the topographic differences between the
windward and leeward slopes and that the model simulates precipitation more accurately
for flat areas than for mountainous areas. The scores of the windward and leeward slopes
vary considerably from one typhoon case to another, indicating that the impact magnitude
varies somewhat from one typhoon case to another. The ETSs for precipitation simulated by
the sensitivity experiments are higher. With improved topography, the precipitation scores
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improved relative to the precipitation scores before the improved topography, especially
for the mountainous terrain, with high precipitation thresholds for Typhoon HOTA, and
the improved topography significantly improved its precipitation simulation capability.
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Figure 4. The equitable threat scores (ETSs) of the simulated (a,c,e,g) and modified (b,d,f,h) ex-
periments for forecasting light, moderate, heavy, and torrential rainfall for three-hourly cumula-
tive precipitation in the test period. (a,b) Typhoon HOTA; (c,d) Typhoon LEKIMA; (e,f) Typhoon
HAGUPIT; (g,h) Typhoon INFA.

To explore the differences in the modelled precipitation simulations before and after
the improved topography from multiple perspectives, we also calculated the probability
of detection (POD) (Figure 5) and false alarm ratio (FAR) (Figure omitted). The model’s
ability to forecast typhoon precipitation in the experiment with improved terrain was
greatly improved compared to the control experiment, especially for heavy and torrential
rainfall. However, the results somewhat depended on how well the typhoon tracks were
modelled, which once again demonstrates variations among different individual typhoons.
In general, improved terrain experiments are beneficial for enhancing typhoon precipitation
modelling. In the control experiments, Typhoon HOTA had 0 hits for storms on mountains,
resulting in very poor forecasting levels for mountain storm scenarios. This improved
with the introduction of better terrain modelling (Figure 5a,b). Typhoon HAGUPIT’s
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ability to forecast precipitation in the experiment with improved terrain was significantly
enhanced compared to the control experiment (Figure 5c,d), especially for heavy and
torrential rainfall. In the heavy rainfall scenario, the ETS increased from 0.1 to over 0.3;
the POD increased from 0.2 to 0.4 on flat land and rose to over 0.6 on mountainous land,
with a significant reduction in FAR. On the other hand, Typhoon INFA did not significantly
improve the precipitation forecasting capability due to the improved terrain, especially in
the mountainous storm scenario, and the hits did not change before and after the improved
experiment (Figure 5e,f). Typhoon HOTA has greater ETS and POD on the leeward slopes
of the mountains compared to the windward slopes of the mountains, along with smaller
FAR on the leeward slopes of the mountains. The opposite trend was observed for the
other typhoon cases (Figure 5g,h). This result depends somewhat on how well the typhoon
tracks are modelled and once again highlights the variations among the different individual
typhoons. However, in general, improved terrain experiments are beneficial for enhanced
typhoon precipitation modelling.
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3.4. Evaluating Neighbourhood Cumulative Precipitation

The model-simulated precipitation can differ somewhat from the spatial distribution
of observed precipitation due to shifts in the location of the rainbands. Therefore, relying
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solely on conventional scoring in a high-resolution model has limitations. Researchers
have developed methods to evaluate precipitation forecasts in high-resolution models [23],
including the neighbourhood method [17–19,24], the scale separation method [20], and
field deformation methods [21,22], for simulating the spatial evaluation of precipitation.
To quantitatively analyse the spatial characteristics of the four typhoon cases, our pa-
per adopted the neighbourhood method with varying neighbourhood radii to calculate
Fractional Skill Score (FSS) under different precipitation thresholds and across different
topographies (Figures 6 and 7). Higher FSSs at lower precipitation thresholds, even with
small neighbourhood radii, may be due to the greater frequency of lower precipitation
thresholds. However, this also indicates that there is not much spatial variation in precipi-
tation at small-precipitation thresholds. In contrast, increasing the neighbourhood radius
via using a larger precipitation threshold results in a less significant change in the FSS,
which may even still be smaller than the FSS under uniform conditions (FSSu). In general,
under different precipitation thresholds and different terrain conditions, the sensitivity
experiments improve the spatial bias of typhoon precipitation. The spatial distribution
of precipitation on the mountainous terrain has large error. This implies that the spatial
distribution of precipitation on mountainous terrain is highly biased, and the simulation
of the precipitation distribution on flat terrain after improving the topography is the most
accurate. The FSSs for the windward and leeward slopes still show varying performances
among the different typhoons, suggesting that the spatial differences in their precipitation
simulations depend on the characteristics of the specific typhoon. This finding is consistent
with the results described in Section 3.1.
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rain (a,c,i,k), moderate rain (b,d,j,l), heavy rain (e,g,m,o), and torrential rain (f,h,n,p) conditions.
(a,b,e,f) HOTA; (c,d,g,h) LEKIMA; (i,j,m,n) HAGUPIT; (k,l,o,p) INFA.



Atmosphere 2023, 14, 1607 10 of 14Atmosphere 2023, 14, 1607 10 of 14 
 

 

 
Figure 7. Variation curves of FSS in the sensitivity experiments with window area scale under light 
rain (a,c,i,k), moderate rain (b,d,j,l), heavy rain (e,g,m,o), and torrential rain (f,h,n,p) conditions. 
(a,b,e,f) HOTA; (c,d,g,h) LEKIMA; (i,j,m,n) HAGUPIT; (k,l,o,p) INFA. 

Increasing the neighbourhood radius improves the FSS [25,26]. When the precipita-
tion threshold is not large, the FSS for a neighbourhood radius of 13 grid points essentially 
passes the test for FSSu [39]. With this in mind, we calculated the critical success index 
(CSI) (Figure 8) and the bias score (BIAS) (Figure omitted) for the neighbourhood space 
test using a neighbourhood radius of 13 grid points. There were no significant differences 
in two-by-two combinations of windward/leeward slopes and mountain/flat terrain types. 
Therefore, they were simply categorised into four terrain scenarios: windward slopes, lee-
ward slopes, mountainous terrain, and flat terrain. For Typhoon LEKIMA, the CSI con-
verged to 1, and BIAS values were close to 1 for all precipitation thresholds. It is evident 
that precipitation within this radius was modelled very accurately (Figure 8c,d). In the 
scenarios of light and moderate rain, CSI was consistently close to 0.8. The simulation was 
also good, with the exception of Typhoon INFA, which slightly underperformed. How-
ever, precipitation simulation was slightly lacking for all terrains with large precipitation 
thresholds, with Typhoon INFA’s performance being particularly poor for heavy and tor-
rential rainfall. INFA’s precipitation modelling consistently resulted in more misses and 
nulls than hits, and the number of misses was greater than the number of nulls (Figure 
8g,h). Similarly, precipitation simulations in the neighbourhood were more accurate for 
flat land than for mountainous terrain. In the sensitivity experiments, precipitation simu-
lation within the neighbourhood tended to improve, but typhoon INFA’s performance 
worsened. 

Figure 7. Variation curves of FSS in the sensitivity experiments with window area scale under light
rain (a,c,i,k), moderate rain (b,d,j,l), heavy rain (e,g,m,o), and torrential rain (f,h,n,p) conditions.
(a,b,e,f) HOTA; (c,d,g,h) LEKIMA; (i,j,m,n) HAGUPIT; (k,l,o,p) INFA.

Increasing the neighbourhood radius improves the FSS [25,26]. When the precipitation
threshold is not large, the FSS for a neighbourhood radius of 13 grid points essentially
passes the test for FSSu [39]. With this in mind, we calculated the critical success index (CSI)
(Figure 8) and the bias score (BIAS) (Figure omitted) for the neighbourhood space test using
a neighbourhood radius of 13 grid points. There were no significant differences in two-by-
two combinations of windward/leeward slopes and mountain/flat terrain types. Therefore,
they were simply categorised into four terrain scenarios: windward slopes, leeward slopes,
mountainous terrain, and flat terrain. For Typhoon LEKIMA, the CSI converged to 1, and
BIAS values were close to 1 for all precipitation thresholds. It is evident that precipitation
within this radius was modelled very accurately (Figure 8c,d). In the scenarios of light
and moderate rain, CSI was consistently close to 0.8. The simulation was also good, with
the exception of Typhoon INFA, which slightly underperformed. However, precipitation
simulation was slightly lacking for all terrains with large precipitation thresholds, with
Typhoon INFA’s performance being particularly poor for heavy and torrential rainfall.
INFA’s precipitation modelling consistently resulted in more misses and nulls than hits,
and the number of misses was greater than the number of nulls (Figure 8g,h). Similarly,
precipitation simulations in the neighbourhood were more accurate for flat land than for
mountainous terrain. In the sensitivity experiments, precipitation simulation within the
neighbourhood tended to improve, but typhoon INFA’s performance worsened.



Atmosphere 2023, 14, 1607 11 of 14Atmosphere 2023, 14, 1607 11 of 14 
 

 

 
Figure 8. The critical success index (CSI) of the control experiments (a,c,e,g) and sensitivity experi-
ments (b,d,f,h) based on the neighbourhood maximum (NM) method for three-hourly cumulative 
precipitation forecasts of light, moderate, heavy, and torrential rainfall during the test period. (a,b) 
HOTA; (c,d) LEKIMA; (e,f) HAGUPIT; (g,h) INFA. 

4. Conclusions and Discussion 
The GRIST model was used to carry out two types of simulation experiments for Ty-

phoon HOTA, LEKIMA, HAGUPIT, and INFA, respectively. The difference between these 
two types of experiments lies in whether or not to reduce the degree of smoothness of the 
terrain so as to make it closer to the terrainʹs real-life state. For this paper, based on the 
precipitation distributions and typhoon centre locations of the four typhoon examples at 
each time period, the time periods with larger precipitation before and after the landfall 
of each typhoon were selected, and the area less than 400 km from the typhoon centre at 
each moment and with positive altitude was assessed. In addition, we divided the hills 
and flats with a threshold of 500 m. We used the topographic data to calculate the slope 
direction and divided the windward and leeward slopes by combining the wind field and 

Figure 8. The critical success index (CSI) of the control experiments (a,c,e,g) and sensitivity exper-
iments (b,d,f,h) based on the neighbourhood maximum (NM) method for three-hourly cumula-
tive precipitation forecasts of light, moderate, heavy, and torrential rainfall during the test period.
(a,b) HOTA; (c,d) LEKIMA; (e,f) HAGUPIT; (g,h) INFA.

4. Conclusions and Discussion

The GRIST model was used to carry out two types of simulation experiments for
Typhoon HOTA, LEKIMA, HAGUPIT, and INFA, respectively. The difference between
these two types of experiments lies in whether or not to reduce the degree of smoothness
of the terrain so as to make it closer to the terrain's real-life state. For this paper, based on
the precipitation distributions and typhoon centre locations of the four typhoon examples
at each time period, the time periods with larger precipitation before and after the landfall
of each typhoon were selected, and the area less than 400 km from the typhoon centre at
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each moment and with positive altitude was assessed. In addition, we divided the hills
and flats with a threshold of 500 m. We used the topographic data to calculate the slope
direction and divided the windward and leeward slopes by combining the wind field
and the height of the terrain. The cumulative precipitation changes for different terrains
at different precipitation thresholds were counted, and the level of model precipitation
simulation was evaluated. The results of the present study indicate the following:

(1) Compared to the experiment before the improved topography, the model after the
improved topography simulated more precipitation. The improved experiments
consistently simulated the area of large-value cumulative precipitation during the
study period and were more in line with the observations. The temporal trend of
the three-hourly cumulative precipitation was more consistent with the observed
precipitation. Typhoon HAGUPIT had the best modelled change in three-hourly
cumulative precipitation among the four individual typhoon cases.

(2) The simulated precipitation deviation was smallest for Typhoon HAGUPIT and largest
for Typhoon LEKIMA. Reducing the degree of terrain smoothing can mitigate the
model’s simulated precipitation bias for Typhoon LEKIMA, but it may inadvertently
increase the model’s precipitation bias for other typhoon individual typhoon cases.
The influence of topographic factors is evident as simulated precipitation deviations
are consistently larger in mountainous areas than in flat areas. However, the pre-
cipitation deviations on the windward and leeward slopes vary among different
typhoon events.

(3) Improved terrain not only enhances the number of hits but also reduces the spa-
tial bias in typhoon precipitation, thereby improving forecasts. The topographic
differences between flat and mountainous terrain are much more pronounced than
the effect of topographic differences between the windward and leeward slopes on
model-simulated precipitation. There is a significant bias in the spatial distribu-
tion of precipitation over mountains, and the model provides better precipitation
simulations for flat terrain. The impact of the windward and leeward slopes on
precipitation simulation varies among different typhoon cases. Precipitation simu-
lations for a wide range of terrains with large precipitation thresholds are slightly
inadequate. However, for Typhoon HOTA, after improving the terrain to enhance its
precipitation simulation, it has the capability to forecast heavy rainfall scenarios in
mountainous areas.

It should be noted that this paper only analyses the precipitation simulation characteris-
tics of the four typhoon cases in terms of two terrain factors, namely the windward/leeward
slopes and mountainous/flat terrain. From the results of this study, it is easy to see that
the effects of certain topographic factors on typhoon precipitation vary greatly from one
typhoon to another, which may be due to the fact that factors such as typhoon intensity and
structure synergistically influence typhoon precipitation with topographic factors, resulting
in a huge difference in the effects of the windward/leeward slopes on typhoon precipitation.
Therefore, the study sample can be increased to further investigate the commonality of
effects for different topographic factors on typhoon precipitation in future. On the other
hand, the physical mechanisms of typical typhoon cases affected by topographic factors
need to be investigated further.
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