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Abstract: This study presents the characterization and source apportionment of water-soluble inor-
ganic ions (WSII), contained in particulate matter with an aerodynamic diameter equal to or less than
2.5 µm (PM2.5), performed using the positive matrix factorization model (PMF). PM2.5 were collected
in Mexico City from two sites: at Merced (MER), which is a residential location with commercial activ-
ities, and at Metropolitan Autonomous University (UAM), which is located in an industrial area. The
monitoring campaign was carried out across three seasons named Hot Dry (HD) (March–June), Rain
(RA) (July–October), and Cold Dry (CD) (November-February). PM2.5 concentration behavior in both
sites was similar, following the order: CD > HD > RA. The UAM site exhibited higher concentrations
of PM2.5, of the five cations (Na+, Mg2+, Ca2+, K+ and NH4

+), and of the four anions (Cl−, SO4
2−,

NO3
− and PO4

3−) than MER, since the UAM site is surrounded by several industrial zones. PM2.5

average concentrations for UAM and MER were 28.4 ± 11.2 and 20.7 ± 8.4 µg m−3, respectively.
The ratio of cation equivalent to anion equivalent (CE/AC) showed that aerosol pH is acidic, which
was confirmed by direct pH measurements. The sulfur oxidation rate (SOR) was 20 times larger
than the nitrogen oxidation rate (NOR). Additionally, SO4

2− was the most abundant ion during the
whole year, especially during the CD season with 5.13 ± 2.5 µg m−3 and 4.9 ± 3.6 µg m−3 for UAM
and MER, respectively, when solar radiation displayed a high intensity. On the opposite side, the
conversion of NO2 to NO3

−, respectively, was low. The air mass backward trajectories were modeled
using the National Oceanic and Atmospheric Administration (NOAA-HYSPLIT), which allowed us
to know that differences in the mass trajectories during the days with higher concentrations were due
to an effect of air recirculation, which favored PM2.5 accumulation and resuspension. On the other
hand, on the days with less PM2.5, good air dispersion was observed. The main sources identified
with the PMF model were secondary aerosol, vehicular, industrial crustal, and biomass burning for
UAM, while for MER they were vehicular, secondary aerosol, and crustal.

Keywords: PM2.5; water-soluble inorganic ions; air quality; acidity; Hysplit; PMF

1. Introduction

The megacity Mexico City presents high atmospheric pollutant concentrations affect-
ing health and the environment, such as atmospheric aerosols, which have aroused interest
because they have been related to significant damage to the environment, climate change,
and the health of people exposed to breathing polluted air, since it is associated with
millions of premature deaths [1]. The pollutants emitted into the atmosphere participate
intensely in physics and chemistry processes like cloud formation and radiative balance.
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Meteorological conditions such as precipitation, wind direction, and speed are essential
for the dispersion and removal of pollutants [2,3]. As a consequence of economic growth,
reflected in the growth of the mobile and industrial activities, PM2.5 can be emitted from
different sources [4–6]. In addition, Mexico City presents geographic and climatic problems
that make their dispersion difficult [7]. According with the World Health Organization,
PM2.5 is considered the best indicator of the level of health risk from air pollution, due to
its association with a high number of deaths and respiratory illness and cancers [8]; for
that reason, the government has imposed a maximum permissible limit of PM2.5 exposure
which must not exceed 41 µg m−3 in 24 h.

PM2.5 composition includes organic and inorganic species, which must be identified
to have a better understanding of their behavior in the ambient air. Among them, the water
soluble inorganic ions (WSIIs), are of major interest since they are significant components
of atmospheric aerosols, and precursors of acid rain and secondary aerosol formation [9,10].
Several studies have reported the presence of WSIIs in PM2.5 such as NO3

−, F−, K+,
Ca2+, Mg2+, Na+, SO4

2−, NH4
+, and PO4

3−, and high concentrations in the air indicate
a serious environmental and health problem [11,12]. Some WSIIs are known as tracers
of some emission sources, for instance, K+ is a biomass burning tracer [13]; Ca2+, PO4

3−,
and Mg2+ are often associated with crustal, and Cl- is associated with biomass burning
and soil dust [14]. Ions are associated with chemically complex mixtures that depend on
hygroscopic properties and are usually found in 20 to 50% in the PM2.5 composition [15–17].
Acid rain formation is an important environmental damage process that involves the water
dissolution of atmospheric SO2 and NO2, which are typically associated with emissions
from industrial and mobile sources, to transform them into sulfuric acid (H2SO4) and nitric
acid (HNO3), causing damage to people, the environment, and structures; additionally,
SO2 and NO2 are important precursors in the formation of secondary aerosols such as
(NH4)2SO4 and NH4NO3 [18,19].

WSII measurement and quantification are required to estimate their formation rate
from SO2 and NO2, using the sulfur oxidation rate (SOR) and nitrogen oxidation rate
(NOR) [20]. Moreover, the seasonal distribution of each WSII helps to determine the
sources and chemical transformations generated in the atmosphere and the associated
damage to human health [21]. Nevertheless, although many PM characterization and
source reconciliation studies have been published, there are relatively few studies regarding
WSI; in addition, most of them have been performed only in China. Models have been
used to obtain better knowledge about pollutant species. On the one side, the HYSPLIT
model has been applied to obtain the dispersion and trajectory of pollutants such as PM2.5.
This tool provides the relationship between the origin of the wind masses and the receptor
site [22]. On the other side, receptor models like PMF are useful to determine the main
sources of PM2.5 and its WSII [23,24]. In this research, PM2.5 were collected in two sites in
Mexico City during one whole year in order to carry out a comprehensive WSII research
project that identified and quantified the ions, determined the ratio of equivalent anions and
cations to estimate the sulfur and nitrogen oxidation rates (SOR and NOR), the PM2.5 acidity,
WSII source contribution, as well as the identification of the path where the pollutants
came from.

2. Materials and Methods
2.1. Sampling Sites

For this study, two locations in Mexico City were selected (Figure 1). The first place
was a building located at the Metropolitan Autonomous University Azcapotzalco (UAM),
(19◦30′13.6′′ N 99◦11′09.0′′ W) 15 m above ground level; in this site, there are industrial
activities that are carried out in the surroundings. The second site was La Merced (MER),
a commercial and residential area in the downtown, where the equipment was installed
on the high school building “Francisco Zarco”, about 14 m above ground level; this site
is part of the Automatic Atmospheric Monitoring Network (RAMA), which is in charge
of measuring air quality in different areas of Mexico City. PM2.5 aerosols were collected
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every 6 days for 24 h, from December 2021 to December 2022. The monitoring campaign
was carried out in three seasons, cold-dry (CD) from November 2021 to February 2022,
hot-dry (HD) from March to June 2022, and rain (RA) from July to November 2022, with
two Tish Environmental High-Vol model TE 5007. Pre-calcinated quartz fiber filters (What-
mann), 20 cm × 25 cm were used. Meanwhile, the concentrations of NO2 and SO2 and
meteorological information were monitored and obtained by RAMA.
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Figure 1. Sampling sites in Mexico City. Metropolitan Autonomous University (UAM), Merced (MER).

2.2. Identification and Quantification of Water Soluble Inorganic Ions

The quartz filters were cut for different analyses. An area of 2.05 cm2 was selected for
the ion measurements. Samples were extracted in 15 mL of ultrapure water with a resistivity
of 18.2 MΩ*cm at 25 ◦C. All materials and high-density polyethylene bottles were cleaned
with the same type of water. Ions were extracted via ultrasonic for 60 min < 35 ◦C and
37 Hz, followed by agitation (120 cycles) for 60 min and refrigeration for 12 h before reading.
The aqueous extracts were analyzed by Ion Chromatography Metrohm 850 Professional
(IC), with Metrosep C 4-100/4.0 and Metrosep A sup 7-250/4.0 ion exchange columns for
cations and anions. Ion separation is based on their affinities for active sites; for anions, the
analytical sample time was 39 min at a flow of 0.600 mL/min and a pressure of 16.01 MPa,
whereas for cations, the analytical sample time was 15 min at a flow of 0.800 L/min and a
pressure of 6.84 MPa.

2.3. Measurement of pH and Conductivity

Once the ions were measured via chromatography, a part of the aqueous extract was
used for the pH determination using a Metrohm 916 Ti-Touch equipped with an electrode
(pH 1–11). The equipment was calibrated with three buffer solutions with pH 4, 7, and
9 covering the entire range of samples. The conductivity for every sample was measured
with a conductance meter YSI model 32 at 25 ◦C, and the equipment was calibrated with a
Nist traceable standard solution TDS/Conductivity 442-15 (23.8 µs cm−1 at 25 ◦C).

2.4. Ion Balance and PM2.5 Acidity

The cation equivalent to anion equivalent ratio in moles (CE/AE) has been used as an
indicator to reflect the PM2.5 potential acidity. Although it is only an empirical approach that
strongly depends on the selection of ion species, it has been applied by many researchers
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who have considered the same ions identified in this study [25–27]. Anion equivalents (AE)
and cation equivalents (CE) were calculated using the following equations:

CE =
[Na+]

23
+

(
NH+

4
)

18
+

([K+])

39
+

([
Mg2+])

12
+

([
Ca2+])

20
(1)

AE =

[
SO2−

4

]
48

+

([
NO−3

])
62

+
([Cl−])

35.5
+

([F−])
19

(2)

where [Na+], [NH4
+], [K+], [Mg2+], [Ca2+], [SO4

2−], [NO3
−], [F−], and [Cl−] are the water

soluble inorganic ion concentrations (nmol m−3), and AE and CE are the anion and cation
equivalents (nmol m−3). If the CE/AE ratio is bigger than 1, PM2.5 is alkaline; otherwise
if it is less than 1, PM2.5 is acidic [28]. Although F− was measured in all samples, the
concentrations were below detection limits. Other ions like NO2

−, Br−, and Li+ were not
measured due to their reported low concentrations in aerosol samples [29].

2.5. Conversion Flow Rate SOR and NOR

The conversion rate for NO2 and SO2 pollutants to secondary ions is estimated through
the Sulfur Oxidation Rate (SOR) and Nitrogen Oxidation Rate (NOR) following the next
equations [30]:

NOR =

[
NO−3

][
NO−3

]
+ [NO2]

(3)

SOR =

[
SO2−

4

]
[
SO2−

4

]
+ [SO2]

(4)

where [NO3
−] and [SO4

2−] are the ion molar concentrations, respectively, and NO2 and
SO2 represent the airborne gas concentrations that were obtained from the automatic
atmospheric monitoring network in the MER and CAM stations.

2.6. Aerosol Trajectories with HYSPLIT

An efficient tool to know the back trajectory of PM2.5 air mass is the Hybrid Single
Particle Lagrangian Integrated Trajectory Model (HYSPLIT); this model needs variables
such as wind speed and direction [31–33]. The model domain was considered at 2000 m
above ground level (AGL) and receptor back trajectories were simulated to 20 m AGL for
both sites. These simulations were for 24 h; the two receptor locations were the initiation
sites, where backwards trajectories were performed and generated every hour to obtain
6 trajectories every 4 h. Hysplit outputs were post-processed with Mathlab and Arcmap in
order to visualize all the outputs simultaneously; instead, only one output was shown for
the Hysplit model.

2.7. Receptor Model Analysis PMF

Positive matrix factorization has been used to determine the relationship between the
receptor and sources [34,35]. Two data files are required as input data to the model: the
concentration data, and their associated uncertainty. The PMF was used for the specific
data matrix X of I by j dimensions. In addition, i means number of samples and j speciation
species with its associated uncertainties u. Prior knowledge of the type and number of
sources is not necessary for the use of the PMF model [36]. The model objective is solving
Equation (3) where p means the number of factors and species f of every source.

Xij =
p

∑
k=1

gik fkj + eij (5)
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The value eij means the residual element-related sample and species. This multi-
variance factor analysis transforms a matrix of speciated samples in two ways, G factor
contributions and F factor profiles. And the model seeks to minimize the function Q in
Equation (4), where Uij is related to the uncertainty species.

Q =
m

∑
i=1

n

∑
j=1

[
Xij −∑

p
k=1 gik fij

Uij

]2

(6)

The apportionment performed with positive matrix factorization (PMF) has been used
as a tool for source identification. The diagnostic ratios can provide the identification of
each source using PM2.5 particle characterization and by finding the best solution, with the
information based on the factor profiles of PM2.5 concentrations, ions, and NO2 and SO2
data from a number of samples (n = 60); this USEPA tool identifies the main associated
sources (profile factors) and their contributions [37,38].

2.8. Quality Control and Quality Assurance

Hi-Vols were calibrated for each new season. All plastic bottles were cleaned more
than four times using deionized water until the measured conductivity was <0.8 µs cm−1

to 25 ◦C. In order to eliminate all organic impurities, quartz filters were pre-calcinated at
600 ◦C and put to a constant weight at a relative humidity of 35 ± 5% and temperature
of 20 ± 5 ◦C. Field blank samples were included with the same extraction treatment and
were subtracted from the samples. The internal standard was added every 10 samples. The
Method Detection Limit (MDL) was predefined for quality control: 0.02, 0.08, 0.11, 0.11,
0.02, 0.02, 0.02, 0.01, and 0.04 mg/L for F−, Cl−, SO4

2−, NO3
−, Na+, NH4

+, K+, Mg2+, and
Ca2+, respectively. Data validation and ionic balance were carried out with the determined
species, and a comparison between the measured and the calculated conductivity was
made [39].

2.9. Statistical Analysis

A Shapiro–Wilk test was applied to the data of each site, finding that the data had
no normality behavior; then, Mann–Whitney U tests were applied to make comparisons
between sites and seasons for each species (p < 0.05), using Tibco Statistica 14—Ultimate
Academic Bundle 32/64-bit (Perpetual License, Czech) software.

3. Results and Discussion
3.1. PM2.5 and Water Soluble Inorganic Ion Concentrations

The annual mean PM2.5 concentrations in UAM and MER were 28.4 ± 11.12 µg m−3

and 20.7 ± 8.4 µg m−3, respectively. These values are much higher than the annual limit
proposed by the WHO guidelines (5 µg m−3), and exceeded, by a factor of 2.8 and 2.07,
respectively, the Mexican national standard stated in the NOM-025-SSA1-2021 (10 µg m−3).
UAM annual median concentrations were 1.5 times larger than in MER, presenting signifi-
cant differences, due to the industrial emissions in the surroundings. The median PM2.5
concentrations are shown in Figure 2. The greatest PM2.5 concentrations were found in
the CD season, especially in December, due to the cold weather, atmospheric stability,
and human activities, while the lowest were in the RA season during September, which is
associated with atmospheric conditions like washing by rain precipitation occurring in this
season. Additionally, moisture plays an important role in the growth of aerosol particles,
PM2.5 formation, and deposition. For the same reason, concentrations by season presented
significant differences among RA compared with HD and CD in the UAM site, whereas in
the MER, significant differences were found among the three seasons. Seasonal abundance
concentrations were CD > HD > RA, in UAM, while in MER, the order was CD > RA > HD;
this is because during the rainy season in MER, there was a work construction near the
sampling site that increased the fine particle concentrations. Seasons CD and HD showed
significant differences (p < 0.05) between UAM and MER. The correlation between UAM
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and MER concentrations was small (R2 = 0.48), suggesting different source contributions,
as well as different meteorological conditions.
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standard and WHO guidelines).

Figure 3 presents the precursor gases serial times of SO4
2− and NO3

− in the two sites.
NO2 concentrations are around 1.6 times higher than SO2, and it can be noted that trends
have some differences, which are due to meteorological conditions and sources. SO2 and
NO2 had higher concentrations in UAM because this site is near several industrial areas
and there is high vehicular activity which impacts the air quality.
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The trends of major ions have some similarities in each location, suggesting similar
sources in the surroundings; nevertheless, important differences can be appreciated be-
tween the two sites, indicating that ion sources or their contributions are not the same
(Figure 4). Higher concentrations in UAM are also due to the nearby industrial facilities.

Table 1 displays the WSII and PM2.5 concentration basic statistics. The three ions,
known as SNA, presented the following abundance order, SO4

2− > NO3
− > NH4

+, con-
tributing from 50% to 70% of the total ions. Cl- and alkaline ions K+ and Mg2+ presented
the lowest contributions. The WSII annual average concentrations were 10.9 ± 1.7 µg m−3

in UAM and in MER they were 10.07 ± 1.6 µg m−3. The highest sum of ion concentra-
tions was in the CD season with 12.7 ±1.7 µg m−3 and 11.9 ± 1.5 µg m−3 in UAM and
MER, respectively; meanwhile, in the HD season, the WSII sums were 10.5 ± 1.5 µg m−3

and 8.7 ± 1.1 µg m−3 for UAM and MER, respectively. However, in the RA season, the
WSII sum was slightly greater in MER than in UAM due to the construction works
mentioned above.
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Table 1. Descriptive Statistic of PM2.5, gases, and water-soluble inorganic ions (µg m−3).

SITE/SPECIES N * Mean Median Min Max SD VC

UAM
PM2.5 61 28.4 28.5 11.2 62.3 11.2 39.4
SO2 54 12.7 8.8 3.9 49.6 9.9 78.1
NO2 55 46.4 48.3 3.8 93.9 20.5 44.2
Cl− 23 0.1 0.1 0.0 0.1 0.0 45.5

SO4
2− 25 4.8 4.0 0.9 9.0 2.4 50.6

Na+ 25 0.8 0.8 0.4 1.1 0.2 29.1
Mg2+ 25 0.1 0.1 0.0 0.2 0.0 63.3
Ca2+ 25 0.9 0.7 0.0 2.8 0.7 76.5

NO3
− 25 1.7 0.8 0.0 7.4 2.2 125.8

K+ 21 0.2 0.2 0.0 0.4 0.1 61.8
NH4

+ 25 1.8 1.7 0.0 4.7 1.1 61.4
PO4

3− 23 0.9 0.9 0.0 2.0 0.5 58.4
MER
PM2.5 61 20.7 18.8 8.8 41.1 8.4 40.4
SO2 54 7.8 5.5 2.1 35.2 6.8 87.1
NO2 57 46.1 51.5 3.4 97.1 24.0 52.1
Cl− 23 0.1 0.1 0.0 1.9 0.4 263.6

SO4
2− 24 4.3 3.4 0.5 13.4 3.0 71.4

Na+ 23 0.9 0.8 0.5 1.4 0.3 31.4
Mg2+ 24 0.1 0.1 0.0 0.2 0.0 62.9
Ca2+ 24 0.5 0.3 0.0 3.1 0.7 141.6

NO3
− 24 1.9 0.9 0.0 9.7 2.3 126.3

K+ 24 0.2 0.1 0.0 2.6 0.5 240.6
NH4

+ 24 1.4 0.9 0.1 4.8 1.2 85.4
PO4

3− 23 1.3 1.4 0.0 2.2 0.6 47.8
N * number of samples. SD standard deviation; VC variation coefficient.

3.2. Ion Balance and Seasonal Acidity

The ionic balance applied to verify the WSII measurements’ validity is presented in
Figure 5 for each site, exhibiting high determination coefficients (R2) between PM2.5 cations
and anions (µeq L−1): UAM: R2 = 0.81 (a) and MER: R2 = 0.90 (b). The correlation between
the measured ions and conductivity (c) yielded a good correlation (R2 = 0.92), meaning
good ion chromatography measurements. The annual averages of PM2.5 conductivities in
UAM and MER were 14.6 ± 0.9 µs cm−1 and 10.4 ± 2.2 µs cm−1, respectively, showing
lower ion concentrations in the second site as well, as the ion measurements exhibited.

Figure 6 presents the UAM and MER CE/AE ratios from all of the samples. In all
cases, ratios were slightly lower than one, suggesting PM2.5 have a weak acidic or neutral
behavior, and indicating the deficiency of cations to neutralize anions. It has also been
indicated that some organic acid anions could be adsorbed in the aerosol [26,40]. The



Atmosphere 2023, 14, 1585 8 of 19

seasonal ratio variation in UAM was HD > CD > RA with average values of 0.9, 0.85,
and 0.8, respectively, while in MER, the seasonal ratio variation was CD > HD > RA with
average values of 0.97 (practically neutral), 0.9, and 0.8. The pH values measured in UAM
were 6.29, 6.03, and 6.06 in the HD, CD, and RA seasons, respectively, while in MER, the
values were 6.27, 5.79, and 5.92 for the same seasons, confirming the PM2.5 acid character
determined using the ions. These results are in agreement with those of Guo et al. [41] and
Geng et al. [42] but are opposite to those of Yin et al. [26] who presented values greater
than one, probably due to the excess of alkaline ions.
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3.3. Water Soluble Ion Concentrations

Ion concentrations accounted for 39.6 ± 5.7% and 49.5 ± 3.9% of PM2.5 mass in UAM
and MER, respectively, presenting significant differences. The rest of the PM mass was
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composed of carbonaceous and silica materials not assessed in this work. WSII percentages
are shown in Figure 7 by site and season. The most abundant ion was by far the SO4

2−,
with more than 40% of the WSII mass, followed by NH4

+ and NO3
− in both sites, which is

in accordance with reported studies in other countries [43,44]. The high SO4
2− contribution

indicates direct gas emissions followed by atmospheric reactions and secondary aerosol
formation [45].
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Figure 7. Percentages of individual ions to the total WSII mass. It is possible to observe that
contributions to the WSII are not the same in the sites nor in the different seasons because the source
contributions can be different, the weather varies, as well as the speed and wind direction. The
lower K+ concentrations were during the rainy season; this can be explained because this ion is a
biomass-burning tracer, and, in that season, there were no wildfires.

3.4. Water Soluble Inorganic Ion Concentrations

Figures 8 and 9 show the most and least abundant WSII concentrations. Although the
most abundant anions and cations (SNA), SO4

2−, NO3
−, and NH4

+, had higher concentra-
tions in UAM than in MER, they did not present significant statistical differences in the
annual averages, although there were some differences between seasons. NH4

+ presented
its highest concentration in the HD season with 1.98 ± 1.4 µg m−3 in UAM, but there were
no statistically significant differences.

With the exception of Ca2+ and PO4
3− which had higher annual average concentra-

tions in MER than in UAM with statistically significant differences, the other ions with
less abundant concentrations had no differences; the reason for that may be due to the
construction work close to the MER site that took several months and increased the Ca2+

and PO4
3- emissions; moreover, these ions presented some significant differences among

different seasons, since the main source is crustal.
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3.5. Sulfur Oxidation Rate and Nitrogen Oxidation Rate

The annual averages of NOR and SOR, related to the atmospheric conversion of SO2
and NO2 into secondary aerosols, are shown in Figure 10. In both sites, SOR was up 5 to
20 times larger than NOR which is consistent with other studies [26,46]. The SOR annual
median was 0.21 ± 0.06 and the three seasons and sites had similar SOR results, ranging
between 0.21 and 3.4. These values indicate that sulfate secondary aerosol production was
high, since SO2 photochemical oxidation to SO4

2− takes place when SOR is greater than
0.1 [46,47]. Other authors have reported the lowest SOR values during winter, due to it
being the season when solar radiation decreases, and this condition does not favor the SO2
oxidation that involves also the OH- radical with further condensation and sorption into
the PM2.5 [26]. Nevertheless, in Mexico City, the UV radiation intensity is very high (11–15,
on the WHO scale) from the beginning of February to the end of October, but it is high
(7–10 on the WHO scale) during the other months. Then, the SO2 photochemical oxidation
is favored the whole year, maybe due to the saturation of the gas–ion transformation.

The NOR annual median was 0.015 ± 0.01, with higher values during the CD and the
RA seasons in UAM and MER respectively, ranging from 0.01 to 0.06 with no significant
differences between the sites; these small values indicate that the secondary transformation
of NO2 was low since NOR is much lower than 0.1 and that NO3

- comes mainly from
primary source emissions [46]. In Mexico City, NO2 emissions are produced primarily
by vehicles, industries, and the power plants located to the north of the city, and both
sites have important avenues close to the monitoring stations. The lowest NOR values
were observed during the HD seasons, with values up to six times smaller, because this
season’s experiments took place under high temperatures. Additionally, the secondary
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aerosol formed (NH4NO3), which can be evaporated and discomposed into its precursor
gases SO2 and HNO3; this behavior has been described in other works where higher NOR
values are observed in cold seasons in comparison with spring and summer [26,48].
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3.6. Molar Ratios

MER presented a higher correlation between molar concentrations of SO4
2− and NH4

+

(R2 = 0.7) than in UAM (R2 = 0.53), whereas correlations between NH4
+ and NO3

− were
lower in both sites: MER with R2 = 0.49 and UAM with R2 = 0.18. These results suggest that
in MER, the anthropogenic emission sources of those three ions have higher similarities
than in UAM. Figure 11 illustrates the relationships between the average ions of both sites.
The relationship between NH4

+ and the sum of the two cations indicates the neutralization
of sulfate and nitrate by the ammonium. The low concentration of NH4NO3 may be due
to it having a higher vapor pressure than (NH4)2SO4; then, this last compound is formed
before NH4NO3. Moreover, when NH4

+/SO4
2− is > 2, the aerosol is ammonium rich, but

in the two sites in Mexico City, this ratio is <1 meaning it is ammonium-poor, and NH4NO3
is maybe more related to crustal species [46].
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3.7. Meteorological Information

Table 2 shows the values of wind speed during the sampling period, with the predom-
inant wind direction from the northwest and north, with the exception of HD in MER when
the winds come from the southeast.

Table 2. Meteorological information for UAM and MER.

Season
Relative

Humidity
(%)

Temperature
(◦C)

Main Wind
Direction

Wind
Speed
(m/s)

Wind Rose

UAM
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CD 20 18 North 6
HD 50 25 Southwest 5
RA 80 15 Northeast 3.7

19 December 2022 60 12 Northeast 5
26 September 2022 50 22 Northeast 6

The primary wind direction showed an influence from the industrial zone, located to
the north of the city, affecting mainly UAM and further MER as a receptor site. Secondly,
although on a minor scale, the MER site had influences of south and northeast winds
several days of the year, modifying the impact from the industrial zone. As was mentioned
before, high temperatures favor aerosol production, although UV radiation is the most
important variable. The mechanism production of secondary aerosols is related to atmo-
spheric moisture; during RA and CD seasons, RH > 50, meaning that sulfate and nitrate
were primarily produced by aqueous-phase SO2 oxidation, rather than through gas-phase
conversion [46].

3.8. Hysplit Backward Trajectories

UAM site backward trajectory analysis was performed for the day with the highest
PM2.5 concentration (5 January 2022); that day, the air masses were brought to the sampling
site from the northwest, passing through large areas of industrial activities to the north of
the city. Meanwhile, on the day with the lowest concentration (22 June 2022), the PM2.5
masses crossed from the northeast, and despite passing through one of the industrial zones,
winds did not pass through both industrial zones, showing, as a consequence, a lower
contribution of industrial emissions for that day. A similar effect occurred in MER where
on the most polluted day (19 December 2022), the main backward trajectories were from
the northwest passing over the industrial zone, whereas on the day with the lowest PM2.5
concentration, the air masses arrived from the northwest, while in the UAM and MER.

The highest PM2.5 concentrations on the selected days were not only related to the
climatological conditions in the CD season but could also be associated with an air mass
recirculation phenomenon in the trajectories for both sites. When the air masses circu-
late around a specific area, they produce resuspension and high pollutant concentra-
tions, favoring bad air quality and possible transport from other sites, as can be seen in
Figures 12 and 13. When city conditions do not allow adequate air mass dispersion, this
can cause an increase in the concentration [49]; on the opposite side, on the days that
presented the lowest concentration, the trajectories continued straight without presenting
the recirculation phenomenon.
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3.9. Positive Matrix Factorization Model

PMF was applied to the 120 data (UAM and MER), where the identified factors
corresponded to Factor 1: Vehicular and crustal; Factor 2: secondary aerosols; and Factor 3:
industrial and biomass burning. Factor profiles achieved by PMF can include contributions
from different sources since they can have similar chemical profiles [23]. In this research,
two of the determined factors had mixed sources. Further, the model was applied to each
site in order to identify differences between the two locations, obtaining good fit and
convergence, despite applying the model with a lesser amount of data, since it is capable of
compensating for missing data by achieving the means of the input data. The identified
sources were the same, but with different contributions, as can be seen in Table 3 which
displays the percentage of each species in the source.

Figure 14 shows the source profiles for each site derived from the PMF model. For the
UAM site, Factor 1 had high contributions of NO2, which is a known tracer of vehicular
emissions [50]. NO3

− and SO4
2− are constituents of vehicular resuspended dust, since a

main avenue is close to the site. Moreover, some vehicular emissions control devices have
been associated with the NH3 emissions that could undergo a transformation to secondary
NH4

+ in the vehicular resuspended dust [51]. This first source contributed 54% of PM2.5
mass. In Factor 1, crustal is the second source, characterized mainly by specific inorganic
ions such as PO4

3−, Na+, K+, Ca2+, and Mg2+ [14,52] and it contributed 2% of PM2.5 mass.
The second factor is related also to two sources, one of them being the secondary inorganic
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aerosols, accounting for 25% of PM2.5 concentration, characterized by high NH4
+, NO3

−,
and SO4

2− [53–55]; the other source of this factor contributed 1% of PM2.5 concentration,
and is related to the K+ that is a biomass-burning tracer with the associated ion Na+ [56].
Factor 3 contributed 12% of PM2.5 mass and is high in Cl− derived from coal combustion,
which plays an important role in this ion’s formation, and is used in industrial activities
where SO2 and NO2 gasses are emitted [14,57].

Table 3. Summary of PMF factors and their specific tracers.

Factor Site Source Tracers

1 Mexico City VE CR NO2, NH4
+, PO4

3−, Na+

2 Mexico City SA SO4
2−, NH4

+

3 Mexico City IN BB Cl−, K+

1 UAM VE CR NO2, NH4
+

, NO3
−, PO4

3−, Mg2+, Na+

2 UAM SA BB SO4
2−, NO3

−, NH4
+, K+

3 UAM IN Cl−, SO2, NO3
−

1 MER VE IN NO2, NH4
+, Cl−,

2 MER SA SO4
2−, NO3

−, NH4
+,

3 MER CR Na+, Mg2+, PO4
3−

(VE) Vehicular, (SA) Secondary Aerosols, (IN) Industrial, (CR) Crustal, (BB) Biomass burning.
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The second Factor was able to determine the two same sources identified in UAM,
secondary aerosols related to the high presence of NO3

−, SO4
2−, and NH4

+ ions, accounting
for 20% of particle mass [58,59], and the biomass burning identified by the presence of K+,
with a contribution of <2%. The third Factor was associated with crustal dust due to high
Na+, Mg2+, and low PO4

3− (Figure 15).
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The summary of the sources found with the PMF model is presented in Figure 16.
Vehicular resuspended dust and emissions were the highest contributors to UAM and
MER with 57.5% and 50%, respectively, since sites are located close to main avenues. The
accounting of secondary aerosols was practically identical in both sites, showing that there
were similar mixtures of their precursor gases in the two zones. The larger apportionment
of the crustal source in MER is attributed to the construction work near the area, and
the influence of the industrial zones in MER is evident, with a contribution of around
13% versus 3% in MER. The biomass burning had a minimal contribution in UAM.
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The comparison of WSII concentrations and their source apportionment in this re-
search, compared to other urban sites, is shown in Table 4. With the exception of Tetuan
in Morocco, Mexico City presented the lowest PM2.5 and WSII concentrations among the
cities due to different sources and industrialization.
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Table 4. Comparison of water-soluble ion concentrations in PM2.5 in µg/m3 and in associated sources
determined using the PMF model.

Parameter Mexico City
(This Study)

Tetuan
Morocco [54]

Jiangsu
China [60]

Wuhan
China [61]

Nanjing
China [62]

Lyliang
China [51]

Lanzhou
China [63]

µg/m3

PM2.5 24 18 68.9 101.3 91.2 36.3 54.3
ΣWSII 10.7 6 32.4 59 44.9 29.1 13.2
SO4

2− 4.5 3 9.0 18.9 23.2 7.6 3.9
NO3

− 1.8 1.1 10.5 13.7 16.9 8.8 3.3
NH4

+ 1.6 1 6.4 24.9 5.3 7.3 1.3
K+ 0.2 ND 0.9 0.1 1.6 ND 0.4
Cl− 0.1 ND 1.7 0.8 2.1 4.7 2.6
%
SNA/PM2.5 32.9 28.3 37.6 56.8 49.8 65.3 15.7
Secondary
Aerosols/PM2.5

26.4 ND 20 35 27 43 10.8

Sources VE, SA, IN,
CR, BB

AM, RT,
BB, FSEA,

ASEA, ORF

VE, BB,
SA, DU

RD, SEA,
SN, SAM,

CC, BB

DU, SS,
INMS, BB

SA, BB, CC,
DU, VE

DU, IN, BB,
MES,

SA, SES

(VE) Vehicular; (SA) Secondary Aerosols; (IN) Industrial; (CR) Crustal; (BB) Biomass Burning; (DU) Dust; (AM)
Ammonium Sulfate; (RT) Road Traffic; (FSEA) Fresh sea salt; (ASEA) Aged sea salt; (SES) Sea spray; (CC) Coal
Combustion; (RD) Road dust; (SN) Secondary nitrate; (SS) Secondary sulfate; (MES) Metal smelting. SNA: sum of
sulfate, nitrate, and ammonium. ND: Not determined.

SO4
2−, NH4

+, and NO3
− (SNA) accounted for 32.9%, on average, of the total PM2.5

mass in Mexico City sites, which is similar to SNA measured in Jiangsu, China [60], and
Tetuan in Morocco [54], but lower than in Wuhan [61], Nanjing [62], and Lyliang [51], which
are Chinese industrial cities. On the opposite hand, this study recorded SNA concentrations
two times higher than in the study performed during the spring in Lanzhou [63] where
17% of monitoring days presented dust storms, increasing crustal ions with the decrease in
NO3

- and NH4
+ levels.

Regarding the contribution of secondary aerosol to PM2.5 total mass, this study shows
similar percentages to most Chinese cities, with the exception of Lanzhou in the storm
season and Lyliang, where secondary aerosol contribution is too high (43%) due to great
industrialization, ranking first, third, and fourth for soot, sulfur dioxide, and industrial
dust emissions, respectively, in China [63].

4. Conclusions

This research reports the water soluble inorganic ion (WSII) characterization in PM2.5
as well as the ion source apportionment in two sites in Mexico City over one year. The
annual average PM2.5 concentrations at the Metropolitan Autonomous University and
Merced were 28.4 ± 11.1 µg m−3 and 20.7 ± 8.3 µg m−3, respectively, both exceeding the
OMS air quality guidelines. Seasonal variations in PM2.5 and WSII were CD > HD > RA
in both sites, due mainly to weather conditions and impacts from industrial zones. Water-
soluble inorganic ions had contributions between 40 and 50% of PM2.5 total mass, and
SO4

2−, NH4
+, and NO3

− (SNA) concentrations were the most abundant ions, representing
50–70% of the total ions; these concentrations are lower than those reported in Chinese
industrialized cities. Differences between the two sites are due to differences in sources,
weather, and impacts from industrial zones, as was shown by wind roses and source
apportionment by the PMF model. The CE/AE ratios for UAM and MER were lower
than one, indicating PM2.5 acidity, which was confirmed with direct pH measurements.
This acidity is a characteristic of the Mexico City atmosphere, which is different to other
cities in China with excess alkaline ions in their atmosphere. This is confirmed by the
relationships among the SNA ions, showing a poor ammonium atmosphere with low
NH4NO3 formation. Moreover, the NOR median annual values for UAM and MER were
0.01 ± 0.02 and 0.02 ± 0.009, respectively, showing the lowest levels in the hot dry season
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where high temperatures can evaporate the formed nitrate secondary aerosol. On the
contrary, SOR values were 0.21 ± 0.06 and 0.28 ± 0.03, respectively, indicating the high
production of sulfate secondary aerosols because high solar radiation during the whole year
in Mexico City promotes the SO2 photochemical transformation to sulfate secondary aerosol.
Backward trajectories with the Hysplit model performed at 20 m demonstrated that during
the most polluted days, a recirculation phenomenon of winds was presented, raising the
dust resuspension and accumulation of pollutants. WSII source apportionment in 2022 was
comprehensively analyzed applying the PMF model, meaning that their major sources
were the vehicular emissions and resuspended dust, followed by secondary aerosols in
both sites. But, in MER, the third source was crustal dust, whereas in UAM it was the
industrial emissions. These results are useful for policy makers since they provide evidence
for carrying out inspections of industrial emissions and for tightening sulfur and nitrogen
dioxide emission standards, which not only impact the closest areas, but also more remote
receiving sites.
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