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Abstract: Global climate change will modify precipitation and temperatures’ temporal and spatial
distribution, trigger more extreme weather events, and impact hydrological processes. The Yangtze
River basin is one of the world’s largest basins, and understanding future climate changes is vital for
water resource management and supply. Research on predicting future climate change in the upper
Yangtze River basin (UYRB) and introducing machine learning algorithms to analyze the impact
of climate factors, including extreme weather indicators, on surface runoff is urgently needed. In
this study, a statistical downscaling model (SDSM) was used to forecast the future climate in the
UYRB, and the Mann–Kendall (MK) or modified Mann–Kendall (MMK) trend test at a 5% level of
significance was applied to analyze temporal trends. The Spearman rank correlation (SRC) test at a
5% level of significance and random forest regression (RFR) model were employed to identify the key
climatic factors affecting surface runoff from annual precipitation, annual temperature, maximum
5-day precipitation (R×5Day), number of tropical nights (TR), and consecutive dry days (CDD), and
the RFR model was also used to predict future runoff. Based on the results, we found that, compared
to the selected historical period (1985–2014), the mean annual precipitation (temperature) during the
mid-term (2036–2065) increased by 18.93% (12.77%), 17.78% (14.68%), 20.03% (17.03%), and 19.67%
(19.29%) under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively, and during the long term
(2071–2100), increased by 19.44% (12.95%), 22.01% (21.37%), 30.31% (30.32%), and 34.48% (37.97%),
respectively. The warming and humidification characteristics of the northwestern UYRB were more
pronounced. The key climatic factors influencing surface runoff were annual precipitation, maximum
5-day precipitation (R×5day), and annual temperature. Because of warming and humidification,
surface runoff in the UYRB is expected to increase relative to the historical period. The surface runoff
during the mid-term (long term) increased by 12.09% (12.58%), 8.15% (6.84%), 8.86% (8.87%), and
5.77% (6.21%) under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. The implementation
of sustainable development pathways under the low radiative forcing scenario can be effective in
mitigating climate change, but at the same time, it may increase the risk of floods in the UYRB.

Keywords: climate change; hydroclimatic variables; runoff; the upper Yangtze River basin;
spatio-temporal variability

1. Introduction

Global climate change has become a significant challenge facing humanity and has
received extensive attention from society and academia [1,2]. The sixth assessment report of
the Intergovernmental Panel on Climate Change (IPCC) pointed out that climate change has
caused tremendous damage and increasingly irreversible losses to terrestrial, freshwater,
coastal, and marine ecosystems [3–10]. As climatic conditions are closely related to the
hydrological cycle, it is important to study climate change for regional and global water
resource management and utilization [11–14].

Temperature and precipitation are the basic meteorological factors [15]. Climate
change has changed the spatial and temporal distribution patterns of global temperature
and precipitation and increased the probability of extreme weather events in more than 80%
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of the world [16]. Climate change exhibits global and regional characteristics influenced
by various factors. Different regions have distinct climate change features. In areas with
complex topographies and volatile local climates, the regional natural conditions are more
sensitive to climate change, making the resulting impacts worthy of further research.

Climate change affects the hydrological cycle [17,18]. Global warming is accelerating
the hydrological cycle and changing the intensity and frequency of precipitation. Moreover,
precipitation is directly involved in the hydrological cycle, changing the runoff of the
basin [16,19,20]. The increase in temperature has changed the water resources’ temporal
and spatial distribution and increased the probability of extreme climate events [21,22].

Studies on rainfall–runoff modeling show that precipitation is an important recharge
source for surface runoff, and regional surface runoff is highly sensitive to changes in
precipitation [23–25]. The increase in temperature leads to an increase in the evaporation of
soil moisture and surface runoff and a decrease in streamflow [26–28]. Climate change has
enhanced the temporal and spatial variability of precipitation and temperature, leading to
the frequent occurrence of extreme weather events. Extreme weather events such as hot
extreme rainstorms are more likely to cause drought and flood disasters [29], which greatly
reduce the utilization capacity of regional water resources and cause significant damage to
the ecological environment and human social economy [11,16,30].

Extreme climatic factors need more attention in studies on surface runoff and climate.
Existing studies are usually conducted at the administrative scale, and few studies have
been conducted at the large watershed scale where climatic conditions are complex [31,32].
In addition, most studies have utilized statistical methods, such as linear regression, mul-
tiple linear regression, or nonparametric tests, to identify correlations between climatic
factors and surface runoff and to identify factors that influence surface runoff [27,33–35].
However, these methods make it difficult to accurately capture the relationship between
climatic factors and surface runoff. This results in low confidence in the identification of
key factors affecting surface runoff.

Machine learning is a technique that utilizes algorithms to learn from data and au-
tomatically improve the performance of a system. In machine learning, algorithms learn
laws and patterns from input data and make predictions or decisions about new data
based on these laws and patterns [36]. Machine learning techniques can be categorized
into three types: supervised learning, unsupervised learning, and reinforcement learning.
With the enhancement of the computing power of devices and the increase in data volume,
machine-learning algorithms have been widely applied in the field of hydrometeorology,
including the establishment of prediction models, decision-making classifications, and
data mining [37–42]. In the study of capturing the correlation between surface runoff and
climatic factors and deciding the key factors affecting surface runoff, the application of
machine-learning algorithms is expected to enhance the credibility of the conclusions.

The Yangtze River, the longest river in Asia and the third longest in the world, spans
6300 km [8,43]. The upper Yangtze River basin (UYRB) is characterized by complex terrain
and is significantly influenced by the Qinghai–Tibet Plateau, southwest monsoon, and
southeast monsoon. The region is sensitive and vulnerable to climate change [44]. Against
the backdrop of global warming, the frequency and intensity of droughts and floods in
the upstream Yangtze River region have increased. Aquatic and terrestrial ecosystems
are deteriorating, leading to frequent natural disasters. These factors severely impede
the sustainable socioeconomic development of the Yangtze River basin [45]. In the future,
climate change will likely alter the hydrological cycle and runoff processes in the UYRB. This
has a more pronounced impact on the distribution of water resources in the UYRB. It also
adversely affects the water resources for hydropower generation and agricultural irrigation.

At present, research on predicting future climate change in the UYRB and introducing
machine learning algorithms to analyze the impact of climate factors, including extreme
weather indicators, on surface runoff is urgently needed. To achieve these goals, this
study utilized meteorological observation data from 1985 to 2014 in the UYRB and general
circulation model (GCM) data under shared socioeconomic pathways (SSP) scenarios. A
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statistical downscaling model, a random forest regression model, and a multiple regression
model were employed to predict future precipitation, temperature, and runoff in the
UYRB. The specific research objectives were as follows: (1) to analyze the spatiotemporal
precipitation and temperature patterns in the UYRB; (2) to forecast spatiotemporal changes
in precipitation and temperature in the UYRB under different SSP scenarios; (3) to identify
the key climatic factors influencing runoff in the UYRB and predict trends of surface
runoff changes.

2. Materials and Methods
2.1. Research Area

The Yangtze River originates in the Tanggula Mountains in the Qinghai–Tibet Plateau,
with a total length of 6300 km. Yichang, Hubei Province, serves as the dividing point
between the upper and lower reaches of the Yangtze River. The upper Yangtze River
basin (UYRB) is located between 90◦32′~111◦33′ E and 24◦42′~35◦55′ N (Figure 1). It
spans approximately 4500 km in length and covers an area of 100 km2, which accounts for
over half of the total Yangtze River basin area. The UYRB encompasses nine provinces,
municipalities, and autonomous regions, including Yunnan, Sichuan, and Guizhou [11,30].
The topography of the UYRB is characterized by significant variations, with the land
elevation gradually decreasing from west to east. The regional elevation difference can
reach up to 7000 m. The river flows through the Qinghai–Tibet Plateau, Yungui Plateau,
eastern extension of the Qinling Mountains, and Sichuan basin. The terrain and landforms
within the UYRB are diverse and complex, with the largest areas occupied by mountains
and plateaus, accounting for 50% and 30% of the total area of the UYRB, respectively. Hills
account for 18% of the area, while plains make up only 2% [46].

Figure 1. Location of the upper Yangtze River basin, meteorological stations, and the five sub-
basins. (I) Jinsha River basin; (II) Mintuo River basin; (III) Jialing River basin; (IV) Wu River basin;
(V) Yibin–Yichang River basin.

The climate in the UYRB exhibits distinctive patterns on both temporal and spatial
scales due to the influences of the East Asian monsoon, the South Asian monsoon, and
the topography of the Qinghai–Tibet Plateau. At the temporal scale, the climate in the
UYRB exhibits significant interannual variations, uneven seasonal distribution, and notable
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rainy and hot periods. The annual precipitation over multiple years in the UYRB ranges
from 723 to 1134 mm, with an annual temperature of 8.6 to 16.8 ◦C. Precipitation in the
basin is concentrated from April to October (Figure 2a), accounting for over 90% of the
total annual precipitation. Moreover, the monthly average temperatures during this period
remain above 10 ◦C. Throughout the year, the precipitation (temperature) in the UYRB
gradually increases from January, reaches its peak in July at 162.81 mm (20.31 ◦C), and then
gradually decreases.

At the spatial scale, the climate conditions in the UYRB also exhibit considerable
variability. Specifically, the western high-altitude areas have a cold, temperate climate
characterized by long winters. The majority of the remaining areas, with elevations below
3000 m, are influenced by the East Asian monsoon and the West Asian monsoon, resulting
in abundant rainfall and considerable heat. Annual precipitation can reflect the moisture
level of a region. Typically, areas with annual precipitation above 800 mm are classified
as “humid regions”, while areas with precipitation between 400 and 800 mm fall into the
category of “semi-humid regions.” Areas with precipitation ranging from 200 to 400 mm
are classified as “semi-arid regions”, and areas with precipitation below 200 mm are
categorized as “arid regions.” As shown in Figure 2b, the mean annual precipitation in the
UYRB increases from northwest to southeast and is sequentially distributed in semi-arid,
semi-humid, and humid regions. The area of humid regions accounts for about 50% of
the total area of the UYRB, mainly distributed in the Wu River basin, Yibin–Yichang River
basin, and downstream of the other three sub-basins. Figure 2c illustrates that the mean
annual average temperature also increases from northwest to southeast. Cold regions with
mean annual temperatures below 0 ◦C are concentrated in the high-altitude areas in the
northwest, with elevations exceeding 4000 m. The mean annual temperature in the central
and eastern parts of the UYRB ranges from 14 to 20 ◦C.

Figure 2. Cont.
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Figure 2. The temporal and spatial patterns of climate in the UYRB (1985–2014), (a) monthly precipi-
tation and temperature, (b) mean annual precipitation, (c) mean annual average temperature.
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2.2. Data

The observed precipitation, temperature data, and NCEP-DOE Reanalysis 2 (R-2)
dataset were employed in this study to establish a statistical downscaling model for the
UYRB. The CMIP6 climate data was utilized for predicting future climate. A comprehensive
description of the data is provided below:

The daily precipitation and temperature data were sourced from the National Mete-
orological Science Data Center (http://data.cma.cn/, accessed on 15 June 2023). A total
of 58 meteorological stations within and around the UYRB were included, as depicted in
Figure 1. The information for all stations can be found in Table A1. The observed data
covers the period from 1985 to 2014 (1999–2014 for Dongxing station). Missing values were
represented by −999, enabling proper identification of data sequences when applying the
statistical downscaling model (SDSM).

The annual surface runoff records of Yichang hydrologic station, the outlet of the
UYRB, were collected from the literature [8]. Surface runoff data covers the period of
1985–2014. The surface runoff data were converted into surface runoff depth (mm) for
subsequent analysis.

NCEP-DOE Reanalysis 2 (R-2) was utilized for constructing the SDSM as the input
dataset [47]. It should be noted that the dataset used is an improved version of its prede-
cessor, NCEP/NCAR Reanalysis 1, as it includes updated parameterizations of physical
processes and error fixes [47]. NCEP-DOE Reanalysis 2 (R-2) dataset covers the same time
period as the observed data, which is from 1985 to 2014.

The CMIP6 daily predictor variables from the Canadian Earth System Model version 5
(CanESM5), the Max Planck Institute for Meteorology Earth System Model version 1.2
(MPI-ESM1.2), and the Norwegian Earth System Model version 2 (NorESM2) experiments
were used to project climate change in the UYRB over a medium future period (2036–2065)
and long-term future period (2071–2100). Four SSP datasets were used, including SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5. The R-2 and CMIP6 daily predictors are all grid datasets.
The grid has a uniform longitudinal/latitudinal resolution of 2.8125◦ [47].

All predictor variables were standardized. The 1985–2014 date range was selected as
the reference period for standardization of the predictor variables [48,49]. Standardized
values (n) are produced from predictor values (x) utilizing the mean (µ) and standard
deviation (σ) over the 1985–2014 reference period for each data source and according to
individual grid boxes using the following expression:

ni =
(xi − µ1985–2014)

σ1985–2014
(1)

2.3. Methods

To carry out the purpose of this paper, the following methods were used: (1) Statistical
downscaling model (SDSM) was employed to project future precipitation and temperature
in UYRB; (2) Mann–Kendall (MK)/modified Mann–Kendall (MMK) trend test and Theil–
Sen’s slope were utilized to assess the trends and the trend magnitudes; (3) extreme weather
indicators recommended by ECTTDI, such as number of tropical nights (TR), maximum
consecutive 5-day precipitation (R×5day), and consecutive dry days (CDD), were used to
measure extreme climate events. The definitions of extreme climate indices can be seen in
Table 1 [43,44]; (4) the Spearman rank correlation test (SRC) and random forest regression
(RFR) model were employed to identify the key climatic factors that influence runoff;
(5) multiple regression model was applied to predicting runoff; (6) some other common
statistical analysis methods were used in this research.

http://data.cma.cn/
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Table 1. Definitions of extreme weather indicators [43,44].

Indicators Name Definition Units

TR Number of tropical
nights

Number of days on which daily
minimum temperature > 20 ◦C days

R×5day Maximum 5-day
precipitation

Annual maximum consecutive 5-day
precipitation mm

CDD Consecutive dry days
Maximum number of consecutive
dry days (when daily precipitation

<1.0 mm)
days

2.3.1. Statistical Downscaling Model

The general circulation model (GCM) is currently the most feasible method for large-
scale climate simulation and climate change prediction research. However, the charac-
teristics of GCM data are large-scale and low-resolution, which makes GCM data unable
to meet the needs of regional studies for high-resolution meteorological data [50]. The
downscaling methods of large-scale climate data usually include statistical downscaling
methods (SDSM), dynamic downscaling methods, and downscaling methods combining
statistics and dynamics [29,51,52]. Among the three types of methods, SDSM is easy to use
and understand and has a clear physical meaning. Compared with the other two, SDSM
has a simple calculation process and a small calculation load. It is a common method
for downscaling GCM data [53,54]. In this paper, SDSM is used for downscaling and
forecasting climate change.

The basic process of SDSM is shown in Figure 3. First, the statistical relationship is
determined between observed data and NCEP reanalysis data, f (x). Then a statistical model
is established, and the accuracy of the model is tested. Finally, the statistical model is used
to downscale the GCM data to obtain future meteorological data in the UYRB.

Figure 3. Flow chart of basic ideas of statistical downscaling method (SDSM).

SDSM 4.2 software is used in this paper [55]. In the process of establishing the
statistical model, 1985–2004 is the identification period of the model, and 2005–2014 is the
verification period. The established SDSM model is applied to downscale the large-scale
data of CanESM5, MPI-ESM1.2, and NorESM2. The mean value of the model ensemble is
used as the future climate projection in the UYRB.

NCEP reanalysis data and GCM data used by SDSM are both large-scale predictor
variables. There are 23 predictor variables in total, and these are listed in Table 2.
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Table 2. List of the 23 predictor variable IDs and corresponding names.

No. ID Predictor Variable No. ID Predictor Variable

1 mslp Mean sea level pressure 13 p8_u 850 hPa Zonal wind
component

2 p1_f 1000 hPa Wind speed 14 p8_v 850 hPa Meridional
wind component

3 p1_u 1000 hPa Zonal wind
component 15 p8_z 850 hPa Relative

vorticity of true wind

4 p1_v 1000 hPa Meridional
wind component 16 p8zh 850 hPa Divergence of

true wind

5 p1_z 1000 hPa Relative
vorticity of true wind 17 p500 500 hPa Geopotential

6 p1zh 1000 hPa Divergence of
true wind 18 p850 850 hPa Geopotential

7 p5_f 500 hPa Wind speed 19 prcp Total precipitation

8 p5_u 500 hPa Zonal wind
component 20 s500 500 hPa Specific

humidity

9 p5_v 500 hPa Meridional
wind component 21 s850 850 hPa Specific

humidity

10 p5_z 500 hPa Relative
vorticity of true wind 22 shum 1000 hPa Specific

humidity

11 p5zh 500 hPa Divergence of
true wind 23 temp Air temperature at 2 m

12 p8_f 850 hPa Wind Speed

2.3.2. Mann–Kendall Trend Test

The Mann–Kendall trend test is applied at 5% significance level to detect the significant
trends in hydrometeorological time series in this study. Mann–Kendall (MK) trend test is a
widely used non-parametric statistical test method. It is particularly suitable for analyzing
meteorological data sequences that vary over time [56–58]. The MK trend test is usually
employed to assess the presence of a monotonic trend in a time series. A monotonically
increasing/decreasing trend implies that the variable consistently increases/decreases over
time, but the trend may be linear or non-linear. The advantages of MK trend test over
parametric tests are as follows: (1) it is applicable to various distributions and does not
require the tested variable to follow a normal distribution assumption; (2) it requires a
small sample size, with a minimum data sample size of 8 to 10.

Null hypothesis, H0, of MK test assumes that there is no trend in the data (x1, x2, . . ., xn).
Alternative hypothesis Ha is that the data have a monotonic trend [59].

Test statistic S:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(2)

where xj and xi are the annual data values in j-th year and i-th year, respectively, n is the
length of the data. The expression for the sgn() function is as follows:

sgn
(
xj − xi

)
=


1 xj > xi
0 xj = xi
−1 xj < xi

, (3)

For large n, the statistic S is approximately normally distributed with mean E(S) = 0
and variance Var(S) as follows:

Var(S) =
n(n− 1)(2n + 5)

18
(4)
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First, the statistical indicator, ZMK, is calculated:

ZMK =


S−1√
Var(S)

S > 0

0 S = 0
S+1√
Var(S)

S < 0
, (5)

If |ZMK| > Z1−α/2, the null hypothesis H0 is not acceptable, i.e., at the confidence level
α, there is a significant monotonic trend in the time series data. A positive value of ZMk
indicates an increasing trend, while a negative value indicates a decreasing trend. In this
study, the significance level for the MK trend test is 5%, Z1−α/2 = 1.96.

Then, Theil–Sen’s slope, β, is calculated:

β = Median
( xj − xi

j− i

)
, ∀ j > i, (6)

where Median() is the median function. Theil–Sen’s slope represents the trend magnitude
of a variable per unit time [26].

2.3.3. Modified Mann–Kendall Trend Test

Hydrometeorological time series normally display statistically significant autocorrela-
tion, which affects the power of MK trend test to detect trends correctly in time series data.
Prewhitening is a procedure for removing autocorrelation within a given time series by
adding white noise series to the original series [60]. But it has been reported that removal
of positive/negative autocorrelation by prewhitening removes/adds a portion of trend,
then reduces/increases the detection rate of significant trend in MK test [61,62].

Hamed and Rao proposed the modified Mann–Kendall (MMK) trend test to address
autocorrelation issues with a variance correction approach [8,56,63]. The MMK trend test is
applied at 5% significance level in this study.

The variance Var*(S) in the case of autocorrelated series is as follows:

Var∗(S) = Var(S)× n
n∗S

=
n(n− 1)(2n + 5)

18
× n

n∗S
(7)

where n
n∗S

represents a correction due to the autocorrelation in the data. Var(S) is the same
as the MK test. The expression of n

n∗S
is as follows:

n
n∗S

= 1 +
2

n(n− 1)(n− 2)
×

n−1

∑
i=1

(n− i)(n− i− 1)(n− i− 2)ρS(i) (8)

where ρS(i) is the autocorrelation function of the ranks of the observations.
The statistical indicator, ZMK is calculated:

ZMK =


S−1√
Var∗(S)

S > 0

0 S = 0
S+1√
Var∗(S)

S < 0
, (9)

If |ZMK| > Z1−α/2, the null hypothesis H0 is not acceptable, i.e., at the confidence level
α, there is a significant monotonic trend in the time series data. A positive value of ZMk
indicates an increasing trend, while a negative value indicates a decreasing trend. In this
study, the significance level for the MMK trend test is 5%, Z1−α/2 = 1.96.

The formula for Theil–Sen’s slope, β, is shown in Equation (6).
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2.3.4. Random Forest Regression Algorithm

Random forest regression model is used to identify the key climatic factors affect-
ing surface runoff and project future surface runoff in the UYRB. Random forest is an
ensemble machine learning algorithm. The random forest algorithm combines multiple
weak classifiers and finally obtains the results by voting or averaging, which makes the
classification or regression results of the overall model have high accuracy and generalizing
performance [64].

The weak classifier used in random forest is CART decision tree, which is also called
classification regression tree. When the dependent variable of the dataset is a continuous
variable, the tree algorithm is a regression tree with the mean of the leaf nodes as the
predicted value [65]. The random forest algorithm composed of regression trees is the
random forest regression (RFR) algorithm. The algorithmic process is as follows:

(1) Randomly sample the training dataset with dropout and construct a sub-training
dataset with the same capacity as the training dataset;

(2) Use the sub-training sample set to train a CART regression tree model. In the training
process, it is necessary to randomly select some features from all feature sets and then
select the optimal features according to the minimum mean square error principle;

(3) Repeat steps (1) and (2) to generate multiple CART regression trees to form a forest;
(4) The mean value of the prediction results of all CART regression trees is taken as the

final prediction result of random forest.

It can be seen that in the process of establishing the random forest regression model,
the algorithm itself has completed the screening of important features. Therefore, in this
paper, the annual average temperature, annual precipitation, CDD, TR, and R×5day in
the UYRB from 1985 to 2014 are taken as independent variables, and the annual surface
runoff depth of the basin is taken as dependent variable. Using Python’s sklearn tool
library, a random forest regression model was established to calculate the importance of
the independent variables to the dependent variable and identify the key climatic factors
that affect the runoff of the basin.

Using 80% of the meteorological and runoff data from 1985 to 2014 in the UYRB as
the training dataset, and the remaining 20% as the testing dataset. The number of weak
classifiers, n_estimators, is an important parameter of an RFR model, which has a significant
impact on the fitting accuracy of the model. The model was optimized using cyclic iterative
method to determine the value of n_estimators. In this study, n_estimators = 100, as it was
found through pre-experiments that R2 and Pearson’s correlation coefficient were both
greater than 0.90 with n_estimators = 100. All other parameters of the RFR model are default
values. The established RFR model was applied, and the importance score of variables was
calculated with function feature_importances_.

Before using the RFR model, we conducted a multicollinearity test on the dataset. If the
variance inflation factor (VIF) value of the variable was greater than 10, it was considered
that there was collinearity between the variables [66,67]. In this case, data preprocessing
was necessary to remove the influence of collinearity on the identification of important
variables in the RFR model.

After obtaining the key climatic factors affecting surface runoff, a new RFR model was
established using the key climatic factors and surface runoff in the UYRB from 1985 to 2014.
The new RFR model and future climate data were applied to predict surface runoff series
in the UYRB.

2.3.5. Multiple Regression Model

Multiple regression (MR) model typically refers to a linear regression model that
involves two or more independent variables, aiming to explain the linear relationship
between the dependent variable and multiple independent variables. Its mathematical
model is expressed as follows:

E(y) = β0 + ∑n
i=1 βi × xi, (10)
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In the equation, y represents the dependent variable, E(y) denotes the estimated value
of dependent variable, β0 is a constant term, n represents the number of independent
variables, xi represents the i-th independent variable, and βi represents the coefficient of
the i-th independent variable.

The response of surface runoff to climate change is nonlinear, so the accuracy of
applying multiple linear regression model to predict runoff is usually not as good as that
of other methods, such as neural networks, random forests, support vector machines,
etc. However, the prediction results of multiple linear regression model are still able to
reflect the overall trend of runoff series [68,69]. Meanwhile, because the multiple linear
regression model is characterized by rapid calculation, simple operation, and intuitive
results, multiple linear regression is still applied in the research of runoff prediction [70–72].

In this study, two sets of key climatic factors affecting surface runoff were identified
using the Spearman rank correlation (SRC) test and random forest regression (RFR), so we
needed to build a brand-new prediction model to fairly evaluate the credibility of the two
sets of key climatic factors. The performance of this brand-new prediction model does not
need to be particularly good; what is important is that it can reflect the trend of surface
runoff. To achieve this, a multiple regression model was constructed with climatic factors
in UYRB during the historical period (1985–2014) as independent variables and surface
runoff depth as the dependent variable. Two multiple regression models with different
input datasets were established. The multiple regression model with higher R2, higher
adjusted R2, and smaller RMSE is considered to have used more reasonable input variables.
These variables are the key climatic factors that influence surface runoff.

3. Results
3.1. Climate Change during Historical Periods
3.1.1. Temporal Variation Patterns of Precipitation and Temperature

Table A2 provides the ZMK values and trend magnitudes obtained from the MK/MMK
trend test for annual precipitation and annual average temperature from 1985 to 2014 at the
58 meteorological stations in the UYRB. Out of the 58 meteorological stations, the annual
precipitation series of 26 stations exhibited decreasing trends, with significant (at a 5% level)
decreasing trends observed at 2 stations, namely Zhanyi and Huili. Additionally, the annual
precipitation of 32 stations showed increasing trends, with significant increasing trends
observed at the Tuotuohe, Wudaoliang, Dari, and Suoxian stations. The trend slopes of the
annual precipitation series for all stations are represented using Theil–Sen’s slope estimator.
From 1985 to 2014, the trend slopes of annual precipitation in the UYRB ranged from
−101.83 mm/decade (Huili) to 87.94 mm/decade (Dongxing). The annual precipitation of
the whole UYRB was calculated using the Thiessen polygon method. Figure 4 illustrates the
annual precipitation in the historical period (1985–2014) of the UYRB. The multi-year mean
annual precipitation is 807.03 mm, with the maximum precipitation recorded at 923.26 mm
in 1998 and the minimum at 707.62 mm in 2006. The annual precipitation in the historical
period of UYRB exhibits a slightly increasing trend, with a trend slope of 10.44 mm/decade.

Regarding the annual average temperature, out of the 58 meteorological stations, ex-
cept for Guiyang station, where the temperature shows a significant (at a 5% level) decrease,
the temperature at the remaining 57 stations exhibited increasing trends. Among them,
53 stations showed significant (at a 5% level) warming trends. The trend slopes of the
annual average temperature ranged from −0.42 ◦C/decade (Guiyang) to 0.99 ◦C/decade
(Leibo). Figure 5 illustrates the annual average temperature in the historical period
(1985–2014) in the UYRB, which showed an increasing trend. The maximum temper-
ature recorded was 12.45 ◦C in 2006, which coincided with the year of the minimum
precipitation. The minimum temperature occurred in 1992, with a value of 10.64 ◦C. The
ZMK value for the annual average temperature in the UYRB is 4.14, indicating a significant
increasing trend at a 5% level. The warming trend slope is 0.42 ◦C/decade.
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Figure 4. Annual precipitation series of the UYRB during 1985–2014.

Figure 5. Annual average temperature series of the UYRB during 1985–2014.

3.1.2. Spatial Variation Patterns of Precipitation and Temperature

The spatial patterns of the trend slopes in annual precipitation (1985–2014) in the
UYRB are shown in Figure 6. In the western high-altitude regions, there was a general
increasing trend in annual precipitation, with an increase ranging from 0 to 60 mm/decade.
Moreover, the closer to the source of the Jinsha River basin, the greater the magnitude of the
increase in annual precipitation. Precipitation in the Jialing River basin and Mintuo River
basin also increased. Annual precipitation decreased in the southwestern part of the UYRB. In
particular, the lower reaches of the Jinsha River basin showed the most pronounced decrease in
precipitation. The annual precipitation series of Zhanyi and Huili decreased significantly (at a
5% level), with slopes of −90.75 mm/decade and −101.83 mm/decade, respectively.

The spatial patterns of the trend slopes in annual average temperature from 1985
to 2014 in the UYRB are depicted in Figure 7. It can be observed that almost the entire
UYRB exhibits significant warming trends, with localized areas in the southeast show-
ing decreasing temperature trends. Across the whole UYRB, the warming trend slope
decreases from northwest to southeast, and the significance of the trend gradually dimin-
ishes. In the high-altitude regions of the northwest, the warming magnitude ranges from
0.4 to 0.8 ◦C/decade, which is higher than that in the eastern and southeastern parts of the
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UYRB. Near Guiyang, the trend of the annual average temperature shifts from an increasing
trend to a decreasing trend, with a slope of −0.42 ◦C/decade for Guiyang.

Figure 6. Spatial distribution of annual precipitation trend slope in the UYRB (1985–2014). Note: “Sig.”
means significant at 5% level. Upward solid triangles represent significant increasing trends. Upward
hollow triangles represent an increasing trend that is not significant. A downward solid triangle
represents a significant downward trend. Downward hollow triangles represent a non-significant
downward trend.

Figure 7. Spatial distribution of annual average temperature trend slope in the UYRB (1985–2014).
Note: “Sig.” means significant at 5% level. Upward solid triangles represent significant increasing
trends. Upward hollow triangles represent an increasing trend that is not significant. A downward
solid triangle represents a significant downward trend. Downward hollow triangles represent a
non-significant downward trend.
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3.2. Identification and Verification of Statistical Downscaling Model

Figure 8 presents the simulation results of the statistical downscaling model (SDSM)
during the identification period (1985–2004) and verification period (2005–2014). It can
be observed that SDSM performs better at simulating the temperature compared to the
precipitation. In each month, the simulated temperature values by SDSM closely match the
observed values, capturing the dynamic characteristics of the temperature in the UYRB.
However, the simulated rainfall tends to be overestimated, especially during the rainy
season (from May to October). In terms of dynamic characteristics, the simulated results
can also capture the variability of precipitation in the UYRB well.

Figure 8. Simulation results of SDSM during identification (a) and verification (b) periods. Note:
Obs_Pre is the observed precipitation, Sim_Pre is the simulated precipitation, Obs_Tem is the observed
temperature, and Sim_Tem is the simulated temperature.

The simulation results of the annual precipitation and temperature by SDSM during
the identification and verification periods are shown in Figure 9. At the annual time
scale, the SDSM demonstrates better accuracy in simulating the temperature than the
precipitation, and the simulated precipitation values exceed the observed values, which is
consistent with the monthly scale simulation results (Figure 8). Figure 9 illustrates the linear
trends of precipitation and temperature. It can be observed that, both in the identification
and verification periods, the trends of the simulated values by the SDSM align with the
observed values. In the identification period, both precipitation and temperature show an
increasing trend. In the verification period, the precipitation exhibits an increasing trend,
while the temperature shows a decreasing trend. This discrepancy with the MK/MMK
trend test of the annual average temperature in the UYRB from 1985 to 2014 may be
attributed to the fact that the verification period is too short, at only 10 years (2005–2014).
Hydro-meteorological series are usually highly random over a short period, which greatly
affects the accuracy of trend analysis. The trend of temperature we obtained is a short-
period trend.

3.3. Future Climate Change in the Upper Yangtze River Basin
3.3.1. Temporal Variation Patterns of Future Precipitation and Temperature

Figure 10 represents the annual precipitation and annual average temperature series for
the historical (1985–2014) and future (mid-term: 2036–2065, long term: 2071–2100) periods
in the UYRB. The results of the MK trend test and trend slopes for future precipitation are
provided in Table 3.
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Figure 9. Simulation results and linear trends of annual precipitation and temperature over the
UYRB during 1985–2014. Note: Obs_Pre is the observed precipitation, Sim_Pre is the simulated
precipitation, Obs_Tem is the observed temperature, and Sim_Tem is the simulated temperature.

Figure 10. Cont.
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Figure 10. Prediction results of (a) future annual precipitation and (b) annual average temperature
for the whole UYRB.

Table 3. Projected mean annual precipitation (MAP) change in different future periods in the UYRB.

1985–2014 2036–2065 2071–2100

MAP (mm) ZMK
Slope

(mm/Decade) MAP (mm) ZMK
Slope

(mm/Decade) MAP (mm) ZMK
Slope

(mm/Decade)

Historical
period 807.03 0.82 10.44

SSP1-2.6 959.84 −0.89 −5.30 963.92 1.14 7.08
SSP2-4.5 950.54 1.61 12.08 984.64 2.00 16.68
SSP3-7.0 968.68 2.18 17.06 1051.63 2.34 29.17
SSP5-8.5 965.79 1.93 12.37 1085.30 4.67 47.93

Note: The “Bold” denotes a significant trend (at 5% level), |ZMK| > 1.96. The “italics” represent the MMK values
of time series with autocorrelation.

From Figure 10a, it can be observed that the mean annual precipitation (MAP) for
all four future SSP scenarios is higher than that in the historical period. In the mid-term
(2036–2065), the MAP values of the four scenarios are close, as is shown in Figure 10a,
with the four curves close together and overlapping with each other. The MAP of SSP1-2.6
in the mid-term (2036–2065) is 959.84 mm, which is an increase of 18.93% compared to
the historical period (1985–2014). The MAP of SSP2-4.5 in the mid-term is 950.54 mm
(an increase of 17.78%), SSP3-7.0 is 968.68 mm (an increase of 20.03%), and SSP5-8.5 is
965.79 mm (an increase of 19.67%) (Table 3). In the mid-term (2036–2065), SSP1-2.6 shows
a decreasing trend in precipitation with a slope of −5.30 mm/decade. The other three
scenarios show an increasing trend in precipitation. Under SSP3-7.0, precipitation increases
significantly (at a 5% level) with a slope of 17.06 mm/decade.

In the long term (2071–2100), the MAP values of the four scenarios appear significantly
different. In Figure 10a, the four curves in the long term are spread out, and the precip-
itation curve is more upward for a high radiative forcing value. The maximum MAP is
1085.30 mm under SSP5-8.5, and the minimum is 963.92 mm under SSP1-2.6. In the long
term (2071–2100), the precipitation curves of SSP2-4.5, SSP3-7.0, and SSP5-8.5 have a clear
increasing trend, except for SSP1-2.6. The slope increases as the radiative forcing increases.
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The results in Table 3 show that the precipitation increases significantly (at a 5% level)
under all four future scenarios.

The precipitation-increasing trends of SSP2-4.5, SSP3-7.0, and SSP5-8.5 are significant
(at a 5% level). The trend slopes in descending order are SSP5-8.5 (47.93 mm/decade),
SSP3-7.0 (29.17 mm/decade), SSP2-4.5 (16.68 mm/decade), and SSP1-2.6 (7.08 mm/decade).

From Figure 10b, it can be seen that under all four future scenarios, the mean annual
average temperature (MAT) values in the UYRB are higher than those in the historical
period. The MAT values increase with increasing radiative forcing. The temperature curves
in Figure 10b can be divided into three categories.

The first category: Temperature curves continue to increase in both the mid-term
(2036–2065) and the long term (2071–2100), and the slopes are relatively stable. The temper-
ature curves of SSP3-7.0 and SSP5-8.5 belong to the first category. As can be seen in Table 4,
the temperature of SSP3-7.0 increases significantly (at a 5% level) in both the mid-term
and the long term. The MAT of the mid-term is 13.47 ◦C, which is an increase of 17.03%
compared with the historical period. The long term MAT is 15.00 ◦C, which is an increase
of 30.32% compared with the historical period. The trend slopes for the mid-term and
long term under SSP3-7.0 are close to each other, with values of 0.47 and 0.45 ◦C/decade,
respectively. The temperature of SSP5-8.5 shows a significant increasing trend (at a 5%
level) both in the mid-term and the long term. The MAT values of the mid-term and long
term are 13.73 ◦C (an increase of 19.29%) and 15.88 ◦C (an increase of 37.97%), respectively.
The temperature slopes for the mid-term and long term under SSP5-8.5 are 0.54 ◦C/decade
and 0.67 ◦C/decade.

Table 4. Projected mean annual temperature (MAT) change in different future periods in the UYRB.

1985–2014 2036–2065 2071–2100

MAT (◦C) ZMK
Slope

(◦C/Decade) MAT (◦C) ZMK
Slope

(◦C/Decade) MAT (◦C) ZMK
Slope

(◦C/Decade)

Historical
period 11.51 4.14 0.42

SSP1-2.6 12.98 3.71 0.16 13.00 −1.75 −0.05
SSP2-4.5 13.20 5.39 0.29 13.97 2.82 0.10
SSP3-7.0 13.47 6.07 0.47 15.00 6.53 0.45
SSP5-8.5 13.73 6.60 0.54 15.88 6.64 0.67

Note: The “Bold” denotes a significant trend (at 5% level), |ZMK| > 1.96. The “italics” represent the MMK values
of time series with autocorrelation.

The second category: Temperature curves increase in both the mid-term (2036–2065)
and long term (2071–2100), but the slope in the long term is obviously smaller than that in
the mid-term. The temperature curve of SSP2-4.5 belongs to the second category. Table 4
shows that the temperature under SSP2-4.5 increases significantly (at a 5% level) in both
the mid-term and the long term. The MAT of the mid-term is 13.20 ◦C, which is an increase
of 14.68% compared with the historical period. The long term MAT is 13.97 ◦C, which is an
increase of 21.37% compared with the historical period. The slope is 0.29 ◦C/decade in the
mid-term and 0.10 ◦C/decade in the long term, which is a decrease of 65.52% compared to
the mid-term.

The third category: Temperature shows an increasing trend in the mid-term
(2036–2065) and a decreasing trend in the long term (2071–2100). The temperature curve of
SSP1-2.6 belongs to the third category. Table 4 shows that the temperature under SSP1-2.6
increases significantly (at a 5% level) in the mid-term with a MAT value of 12.98 ◦C, which
is an increase of 12.77% compared to the historical period. The slope in the mid-term is
0.16 ◦C/decade. In the long term, the temperature shows a decreasing trend. The MAT in
the long term is 13.00 ◦C, which is an increase of 12.95% compared to the historical period.
The temperature slope in the long term is −0.05 ◦C/decade.
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3.3.2. Spatial Variation Patterns of Future Precipitation and Temperature

The spatial distributions of the mean annual precipitation in the future periods over
the UYRB are shown in Figure 11. From northwest to southeast, the annual precipitation
increases under all four scenarios. With increasing radiative forcing, the area of the humid
region in UYRB expands, and the semi-humid and semi-arid regions decrease.

In the mid-term (2036–2065), the spatial patterns of precipitation under the four
scenarios are the same: see the left column of Figure 11 (Figure 11a–d). Here, SSP1-2.6
is used as an example for the analysis (Figure 11a), and the analysis of the other three
scenarios is omitted. Compared with the historical period (1985–2014), the upstream region
of the Mintuo River basin changes from a semi-humid region to a humid region, which
increases the total area of the humid region in the UYRB. Within the humid region, the
area of the heavy precipitation region with precipitation greater than 1200 mm increases.
Almost all of the Yibin–Yichang River basin becomes a heavy precipitation region, as do
the lower Jialing River basin, the lower Wu River basin, and the lower Jinsha River basin.
Semi-arid regions are distributed in the upstream region of the Jinsha River basin, and the
area of semi-arid regions in the mid-term is smaller than that in the historical period.

In the long term (2071–2100), the total area of the humid regions in the UYRB is greater
than that in the mid-term (2036–2065), as shown in the right column of Figure 11 (Figure 11e–h).
The spatial distribution patterns of the mean annual precipitation are similar under the
SSP3-7.0 and SSP5-8.5 scenarios. The area of humid regions under the high radiative forcing
scenario is larger than that under the low radiative forcing scenario. The middle reaches of
the Jinsha River basin change from a semi-humid region to a humid region, and the area of
the heavy precipitation region increases with the increasing radiative forcing. In contrast to
SSP1-2.6 and SSP2-4.5 scenarios (Figure 11e,f), under SSP3-7.0 and SSP5-8.5 (Figure 11g,h),
almost the whole Wu River basin turns into a heavy precipitation region.

Figure 12 shows the spatial distribution of the trend slopes for the future annual
precipitation of the UYRB. The results of the MK/MMK trend test and trend slopes can be
found in Table A3. In the mid-term (2036–2065), the spatial pattern of precipitation slopes
under SSP1-2.6 is different from the other three scenarios, as shown in the left column of
Figure 12 (Figure 12a–d). Under SSP1-2.6, precipitation decreases in the lower Jinsha River
basin, the lower Mintuo River basin, the Jialing River basin, and the Yibin–Yichang River
basin. Precipitation increases in the other regions of the UYRB. The decreasing regions are
indicated in yellow and orange, and the increasing regions are blue in Figure 12a. Under
SSP2-4.5, SSP3-7.0, and SSP5-8.5 (Figure 12b–d), precipitation increases significantly (at 5e%
level) in most parts of the UYRB, including the upper and lower parts of the Jinsha River
basin, the Yibin–Yichang River basin, and the Wu River basin. In the Jialing River basin
and the upper Mintuo River basin, precipitation increases under SSP3-7.0 and SSP5-8.5
(Figure 12c,d) and decreases under SSP2-4.5 (Figure 12b).

In the long term (2071–2100), precipitation increases in most parts of the UYRB under
all four scenarios, as shown in the right column of Figure 12 (Figure 12e–h). Under SSP1-2.6,
precipitation decreases only in the upper Jinsha River basin, the Wu River basin, and the
Yibin–Yichang River basin and increases in the remaining regions. The spatial pattern of the
precipitation slope under SSP1-2.6 in the long term is the opposite of that in the mid-term.
Under SSP2-4.5, precipitation decreases in the middle reaches of the Jinsha River basin
and the middle reaches of the Wu River basin and increases in the remainder of the UYRB.
Under SSP3-7.0 and SSP5-8.5, precipitation increases significantly (at a 5% level) over the
vast majority of the UYRB. The regions with decreasing precipitation are small in size, and
they are only distributed within the lower Jinsha River basin, the lower Mintuo River basin,
and the Wu River basin.

The spatial distribution of the mean annual average temperature in the future over
the UYRB is depicted in Figure 13. Under the four scenarios, the mean annual average
temperature in the UYRB increases along the northwest to southeast direction, and this
spatial pattern is shown in Figure 13 as a change in color from blue to red.



Atmosphere 2023, 14, 1576 19 of 39

Figure 11. Spatial distributions of mean annual precipitation (mm) over the UYRB. The left col-
umn is mid-term (2036–2065): (a) mid-term SSP1-2.6, (b) mid-term SSP2-4.5, (c) mid-term SSP3-7.0,
(d) mid-term SSP5-8.5. The right column is long term (2071–2100): (e) long term SSP1-2.6, (f) long
term SSP2-4.5, (g) long term SSP3-7.0, (h) long term SSP5-8.5.
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Figure 12. Spatial distributions of trend and significance and trend slope in annual precipitation
over UYRB. The left column is mid-term (2036–2065): (a) mid-term SSP1-2.6, (b) mid-term SSP2-4.5,
(c) mid-term SSP3-7.0, (d) mid-term SSP5-8.5. The right column is long term (2071–2100): (e) long
term SSP1-2.6, (f) long term SSP2-4.5, (g) long term SSP3-7.0, (h) long term SSP5-8.5.
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Figure 13. Spatial distributions of mean annual average temperature (◦C) over the UYRB. The left
column is mid-term (2036–2065): (a) mid-term SSP1-2.6, (b) mid-term SSP2-4.5, (c) mid-term SSP3-7.0,
(d) mid-term SSP5-8.5. The right column is long term (2071–2100): (e) long term SSP1-2.6, (f) long
term SSP2-4.5, (g) long term SSP3-7.0, (h) long term SSP5-8.5.
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In the mid-term (2036–2065), the spatial patterns of temperature under the four sce-
narios are the same, as seen in the left column of Figure 13 (Figure 13a–d). The area of the
cold regions with temperatures less than 0 ◦C (indicated in blue color) in the northwestern
part of the UYRB shrinks slightly as the radiative forcing increases. The area of the high-
temperature regions with temperatures greater than 20 ◦C increases slightly but remains
mainly within the Yibin–Yichang River basin.

In the long term (2071–2100), the area of the cold regions decreases and the area of the
high-temperature regions increases dramatically as the radiative forcing increases. The area
of high-temperature regions under SSP5-8.5 is the largest and is distributed in the Mintuo
River basin, Jialing River basin, Yibin–Yichang River basin, and Wu River basin. Under
SSP1-2.6, the spatial pattern of temperature in the long term is almost the same as in the
mid-term (Figure 13a,e). Under SSP2-4.5, SSP3-7.0, and SSP5-8.5 (Figure 13f–h), the area of
the cold regions in the long term is smaller than that in the mid-term, and the area of the
high-temperature regions is larger.

The trend slopes of annual average temperature in the future for the four scenarios in
the UYRB can be seen in Figure 14 and Table A4. In different future periods, temperature
over the entire UYRB under all four scenarios increases significantly (at a 5% level), except
for SSP1-2.6 in the long term (Figure 14e). Under SSP2-4.5, the slope in the long term is
smaller than that in the mid-term. In the mid-term, the temperature increases significantly
(at a 5% level) in the whole UYRB under SSP2-4.5 (Figure 14b), while in the long term
(Figure 14f), the increasing temperature trends are not significant in the Mintuo River
basin, Jialing River basin, or Yibin–Yichang River basin. Under SSP3-7.0, the slopes in the
Jialing River basin, Mintuo River basin, and Yibin–Yichang River basin in the long term
(Figure 14g) are smaller than those in the mid-term (Figure 14c). Under SSP5-8.5, the slope
in the long term (Figure 14h) is greater than that in the mid-term (Figure 14d).

3.4. The Influence of Climate Change on Surface Runoff
3.4.1. Key Climatic Factors Affecting Surface Runoff

In the historical period (1985–2014), the annual surface runoff depth in UYRB showed
a decreasing trend (Figure 15). The trend test yielded a result of ZMK = −1.41, indicating
a non-significant decreasing trend with a slope of −14.43 mm/decade. In the historical
period, the mean annual surface runoff (MAR) depth in the UYRB was 418.62 mm, with
a maximum value of 517.63 mm observed in 1998, which coincided with a year of heavy
rainfall and resulted in a severe flood disaster in the Yangtze River basin. The minimum
value of 284.60 mm was recorded in 2006, which was a year with the lowest precipitation
and highest temperature. This indicates that extreme weather events may have an impact
on the surface runoff in the UYRB.

We considered annual precipitation, annual average temperature, number of tropical
nights (TR), maximum consecutive 5-day precipitation (R×5day), and consecutive dry
days (CDD) as the climatic factors to be identified, using the Spearman rank correlation
(SRC) test and the random forest regression (RFR) model to identify the key climatic factors
influencing surface runoff depth. The Spearman rank correlation test is applied at a 5%
level of significance, and it assesses the strength of the relationship between different
factors and surface runoff by examining the magnitude of the correlation coefficients. The
random forest regression model calculates the importance score of each climatic factor in
relation to surface runoff. The sum of the importance scores of all factors is 1, with higher
importance score values indicating greater significance of the factor in influencing surface
runoff. Before the climatic factor datasets were input into the RFR model, the datasets were
analyzed for multicollinearity. If the variance inflation factor (VIF) value of the variable
was greater than 10, it was considered that there was collinearity between the variables.
The results of the correlation test and importance analysis can be found in Table 5.
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Figure 14. Spatial distributions of trend and significance and trend slope in annual average tem-
perature over UYRB. The left column is mid-term (2036–2065): (a) mid-term SSP1-2.6, (b) mid-term
SSP2-4.5, (c) mid-term SSP3-7.0, (d) mid-term SSP5-8.5. The right column is long term (2071–2100):
(e) long term SSP1-2.6, (f) long term SSP2-4.5, (g) long term SSP3-7.0, (h) long term SSP5-8.5.
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Figure 15. Annual surface runoff depth of UYRB during 1985–2014.

Table 5. Results of correlation test and importance analysis.

Methods Index
Climatic Factors

Precipitation R×5day Temperature CDD TR

Multicollinearity analysis VIF 2.17 2.02 4.45 1.10 4.55

RFR Importance score 0.57 0.16 0.12 0.08 0.07

SRC Correlation coefficient 0.75 0.46 −0.31 0.15 −0.44
Note: The “Bold” represents a significant result at the 5% level.

The results of the SRC test indicate a strong positive correlation between precipitation
and surface runoff, with the correlation coefficient being the highest at 0.75. The R×5day
shows a moderate positive correlation with surface runoff (correlation coefficient of 0.46),
while the CDD exhibits a very weak positive correlation with surface runoff (correlation
coefficient of 0.15). The mean annual average temperature and TR are negatively correlated
with surface runoff, with correlation coefficients of −0.31 (weak correlation) and −0.44
(moderate correlation), respectively. At a significance level of 5%, the relationships between
annual precipitation, R×5day, TR, and surface runoff are significant and are the key climatic
factors influencing surface runoff.

The VIF values for all variables are less than 10, indicating that there is no multi-
collinearity affecting the importance analysis results of the RFR model. The importance
analysis results reveal that precipitation has the greatest importance in explaining the
variation in surface runoff, with an importance score of 0.57. In descending order of
importance, the factors are ranked as follows: annual precipitation > R×5day > annual
average temperature > CDD > TR. The combined importance of precipitation, R×5day, and
temperature reaches 0.85, indicating a high explanatory power for surface runoff. On the
other hand, CDD and TR have a minor impact on surface runoff.

The two methods, SRC and RFR, identify slightly different key climatic factors that
influence surface runoff. Both the SRC and RFR results confirm that precipitation and
R×5day are crucial factors affecting surface runoff. The SRC identifies the third key factor as
TR, whereas the RFR identifies annual temperature as the third key factor. These variations
in results may arise from differences in the underlying algorithms and statistical approaches
used by the two methods. Nonetheless, the consensus on the importance of precipitation
and R×5day highlights their significant role in determining surface runoff patterns.

3.4.2. Changes in Future Surface Runoff

Since there are differences in the conclusions drawn from the Spearman rank correla-
tion (SRC) test and the random forest regression (RFR) model, two MR models, MRSRC and
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MRRFR, were constructed, and the model with the higher simulation accuracy was consid-
ered to have used more reasonable input variables. The two MR models’ parameters and
indicators can be found in Table 6, and the simulation results are illustrated in Figure 16.

Table 6. Parameters and indicators of two multiple regression models.

Models y x βi β0 R2 Adjusted R2 RMSE

MRSRC Surface runoff
Pre 0.64

−28.62 0.78 0.75 23.99R×5day −0.25
TR −1.47

MRRFR Surface runoff
Pre 0.73

278.24 0.82 0.80 21.29R×5day 0.49
Tem −41.21

Figure 16. Comparison of prediction results between MRSRC and MRRFR models.

Table 6 shows that the R2 and adjusted R2 values of MRRFR are higher than those of
MRSRC, and the RMSE is smaller. Figure 16 also demonstrates that the predicted values
of MRRFR are closer to the 1:1 line. This means that the input variables of MRRFR are
more reasonable. The key climatic factors affecting surface runoff are annual precipitation,
R×5day, and annual average temperature. The key climatic factors and surface runoff data
in the UYRB from 1985 to 2014 were used to build a new RFR model. The new RFR model
was utilized to predict future surface runoff by inputting climate data from the four future
scenarios.

The predictions of surface runoff in the UYRB under the four future scenarios are
shown in Figure 17. Table 7 provides the statistical characteristics and trends of surface
runoff in the future. It can be seen that the mean annual surface runoff (MAR) values of the
UYRB in the mid-term and long term are greater than those in the historical period, which
indicates an increase in future surface runoff in the UYRB.

In the mid-term (2036–2065), SSP1-2.6 has the largest MAR of 467.22 mm, which is an
increase of 12.09% compared with the historical period, followed by SSP3-7.0 at 453.75 mm
(an increase of 8.86%), SSP2-4.5 at 450.79 mm (an increase of 8.15%), and SSP5-8.5 at
440.87 mm (an increase of 5.77%). Surface runoff tends to decrease under all four future
scenarios. Surface runoff decreases significantly (at a 5% level) under SSP1-2.6, with a slope
of -9.46 mm/decade. SSP5-8.5 has the largest slope of −11.06 mm/decade.
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In the long term (2071–2100), the MAR values of the four future scenarios do not
differ significantly from those in the mid-term (2036–2065). The MAR is the largest under
SSP1-2.6 with 469.27 mm. Surface runoff under all four scenarios shows an increasing trend,
which is the opposite of the mid-term. Surface runoff increased significantly (at a 5% level)
under SSP1-2.6, with a trend slope of 7.99 mm/decade. SSP2-4.5 has the largest trend slope
of 9.15 mm/decade.

Table 7. Projected mean annual surface runoff (MAR) change in different future periods in the UYRB.

1985–2014 2036–2065 2071–2100

MAR
(mm) ZMK

Slope
(mm/Decade)

MAR
(mm) ZMK

Slope
(mm/Decade)

MAR
(mm) ZMK

Slope
(mm/Decade)

Historical
period 416.82 −1.41 −14.43

SSP1-2.6 467.22 −2.32 −9.46 469.27 1.97 7.99
SSP2-4.5 450.79 −0.46 −3.57 445.31 1.43 9.15
SSP3-7.0 453.75 −1.36 −6.71 453.80 0.32 2.35
SSP5-8.5 440.87 −1.32 −11.06 442.72 1.64 8.89

Note: The “Bold” represents a significant result at the 5% level. The “italics” represent the MMK values of time
series with autocorrelation.

Figure 17. Cont.
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Figure 17. Surface runoff depth in the UYRB under the four future scenarios, (a) SSP1-2.6, (b) SSP2-4.5,
(c) SSP3-7.0, and (d) SSP5-8.5.

4. Discussion and Limitations of the Study
4.1. Discussion

During the historical period (1985–2014), the climate in the UYRB exhibited a trend
towards warming and humidification. Both annual precipitation and annual average
temperature increased over time, with the warming and humidification trend being more
pronounced in the northwest and central regions compared to the other areas. The increase
in precipitation across the entire basin was not significant. Spatially, the areas showing
an increasing trend in precipitation were mainly located in the northwest and in the
Jialing River basin. The closer to the source of the Yangtze River, the greater the slope
increase in annual precipitation. The temperature series in the whole UYRB showed a
significant increasing trend. Spatially, the slope of temperature decreased from northwest
to southeast, with the source area and central region of the UYRB experiencing a larger
increase in temperature.

In the future period, the MAP and MAT values of the UYRB were shown to be greater
than those in the historical period. The climate of the UYRB will experience warming and
humidification in the future. The trend slopes of precipitation and temperature increase
with increasing radiative forcing. These findings are consistent with the conclusions of the
study conducted by Li et al. (2021), Zhu et al. (2021), and Wu et al. (2022) [2,43,73].

Our study reveals that the temporal and spatial variation patterns of precipitation
and temperature under SSP1-2.6 in the UYRB are different from the other three scenarios.
The precipitation series under SSP1-2.6 first decreases and then increases from the mid-
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term (2036–2065) to the long term (2071–2100), while the temperature under SSP1-2.6 first
increases and then decreases. Precipitation and temperature under the other three scenarios
show increasing trends in both the mid-term (2036–2065) and long term (2071–2100). The
reason for this is that SSP1-2.6 represents the sustainable development pathway with
a low radiative forcing level. The SSP1-2.6 scenario involves sustainable development
practices and proactive measures to mitigate climate change, resulting in lower fossil
fuel consumption and greenhouse gas emissions compared to the other scenarios [74,75].
Another low radiative forcing scenario, SSP2-4.5, shows an overall increasing trend in
precipitation and temperature. Comparatively, the high radiative forcing scenarios, SSP3-
7.0 and SSP5-8.5, characterized by intensive social and economic development patterns
with substantial fossil fuel consumption and greenhouse gas emissions, lead to significant
increases in precipitation and temperature across all future periods. At the spatial scale,
the mean annual precipitation and mean annual temperature in the UYRB under the four
future scenarios exhibit similar spatial distribution patterns to the historical period. The
upstream region generally experiences lower precipitation and temperatures compared
to the downstream region, primarily due to variations in elevation and topography. At
the same time, the warming and humidification of the climate are more pronounced in the
high-altitude regions.

In the process of identifying key climatic factors affecting surface runoff, the results of
the random forest regression model are more reasonable than those of the Spearman rank
correlation test. This may be because the relationship between climatic factors and surface
runoff is very complex, and traditional statistical analysis methods have weaker recognition
and processing capabilities than machine learning algorithms for this complex relationship.
According to the results of the random forest regression model, the surface runoff in the
UYRB is mainly affected by annual precipitation, R×5day, and annual average temperature.
The sum of the three factors’ interpretation degree of surface runoff reaches 85%. Annual
precipitation is the most important influencing factor of surface runoff, followed by R×5day
and temperature. From the parameters of the multiple linear regression model, it can be
seen that precipitation and R×5day are positively correlated with surface runoff, while
temperature is negatively correlated with surface runoff. This is because precipitation
is an important source of surface runoff, and changes in temperature affect evaporative
conditions in the region. An increase in air temperature leads to stronger evaporation,
which in turn increases the amount of surface runoff loss [76].

During the historical period (1985–2014), the surface runoff in the UYRB exhibited a
decreasing trend [8,30]. The MAR values of the UYRB were higher than the historical period
under all four scenarios, and the streamflow in the UYRB increased [11,46]. Compared
with the historical period, the SSP1-2.6 scenario showed the highest increase in surface
runoff, with an increase of 12.09% in the mid-term (2036–2065) and 12.58% in the long
term (2071–2100). Surface runoff under all four scenarios showed a decreasing trend in
the mid-term (2036–2065) and an increasing trend in the long term (2071–2100). Among
the four scenarios, only the surface runoff trends under SSP1-2.6 were significant (at a 5%
level) in both the mid-term and long term. This is due to the unique temporal and spatial
variation patterns of climate under SSP1-2.6. In the mid-term (2036–2065), decreasing
precipitation and increasing temperatures under SSP1-2.6 resulted in a significant (at a 5%
level) decrease in surface runoff due to decreased recharge and increased loss of surface
runoff. Similarly, when precipitation increased and temperature decreased in the long term
(2071–2100), surface runoff increased significantly (at a 5% level).

The trends of surface runoff are not significant under SSP2-4.5, SSP3-7.0, or SSP5-8.5.
This is due to the fact that precipitation and temperature act in opposite directions on
surface runoff under these three scenarios. Under SSP2-4.5, SSP3-7.0, and SSP5-8.5, both
precipitation and temperature increase in all future periods. However, the trends of surface
runoff in two future periods are different. This indicates that the intensity of the influence
of precipitation and temperature on surface runoff will change in different future periods.
In the mid-term (2036–2065), the influence of temperature on surface runoff dominates,
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causing surface runoff to decrease. In the long term (2071–2100), precipitation has a stronger
influence on surface runoff than temperature.

4.2. Limitations of This Study

It should be acknowledged that this study contains some limitations. First, in this study,
the mean of a model ensemble is used as the future climate projection in the UYRB [77].
However, no further analysis was conducted on the uncertainty of the predicted results.
This may lead to an incomplete analysis when discussing the impact of climate change on
surface runoff [1].

Second, no physically based hydrologic models (e.g., SWAT) were used to predict
future surface runoff in this study, but rather a data-driven climate–runoff prediction
model was utilized. The reason for this is that building a reliable hydrologic model usually
requires a large amount of observational data, including daily precipitation, daily maximum
temperature, daily minimum temperature, runoff records, and some other spatial data [78].
In this study, the data we collected were daily precipitation, daily mean temperature, and
annual runoff at the watershed outlet, and it is difficult to build a reliable hydrological
model using these data, so a data-driven climate–runoff prediction model is a better choice.
It must also be acknowledged that the climate–runoff prediction model developed in this
paper has limited accuracy and can only be used to analyze surface runoff trends. This
is because the model only considers climate change, and other factors that affect surface
runoff, such as land use and human activities, are not considered.

5. Conclusions

This study analyzed the temporal and spatial patterns of precipitation and temperature
in the upper Yangtze River basin (UYRB) during the historical period (1985–2014) and two
future periods: mid-term (2036–2065) and long term (2071–2100). The key climatic factors
influencing surface runoff were identified, and the surface runoff sequence under climate
change conditions was predicted. The main conclusions are as follows:

(1) During the historical period (1985–2014), the UYRB experienced warming and humid-
ification trends, with both annual precipitation and temperature increasing over time.
The warming and humidification trends were more pronounced in the northwestern
and central regions.

(2) Under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, relative to those in the historical
period (1985–2014), the mean annual precipitation (MAP) and mean annual average
temperature (MAT) over the UYRB increase in the future. The MAP and MAT values
increase more in the long term (2071–2100) than in the mid-term (2036–2065).

(3) Under SSP2-4.5, SSP3-7.0, and SSP5-8.5, precipitation and temperature show increas-
ing trends in both the mid-term (2036–2065) and long term (2071–2100). Under
SSP1-2.6, the precipitation series first decreases and then increases from the mid-term
(2036–2065) to the long term (2071–2100), while the temperature first increases and
then decreases. The trend slopes of precipitation and temperature are minimized
under SSP1-2.6. This indicates that the sustainable development pathway is conducive
to reducing the impact of climate change in the UYRB.

(4) At the spatial scale, the humid regions (annual precipitation > 800 mm) and high-
temperature regions (annual temperature > 20 ◦C) in the future are projected to
increase. Conversely, the semi-arid regions (annual precipitation between 200 mm
and 400 mm) and cold regions (annual temperature below 0 ◦C) are expected to
decrease. These changes are enhanced with increasing values of radiative forcing. The
slopes of precipitation and temperature are greater in high-altitude regions than those
in low-altitude regions.

(5) The introduction of the random forest regression algorithm can effectively improve the
credibility of the identification of key climatic factors influencing surface runoff. Apart
from annual precipitation and annual average temperature, the key climatic factors
influencing surface runoff also include the extreme climate indicator, R×5day. Precip-
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itation and R×5day are positively correlated with surface runoff, and temperature is
negatively correlated with surface runoff.

(6) Under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, the mean annual surface runoff
(MAR) values in the UYRB are greater than those in the historical period in both the
mid-term (2036–2065) and the long term (2071–2100). Surface runoff tends to decrease
in the mid-term (2036–2065) due to temperature increases and to increase in the long
term (2071–2100) due to precipitation increases. Under SSP1-2.6, the surface runoff
increases significantly (at a 5% level), which means the risk of flood disaster in the
future in the UYRB may increase under the scenario of lower radiative forcing.
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Appendix A

Table A1. Information on meteorological stations used in this study.

Number Station Name Short Name Code Latitude (◦N) Longitude (◦E)

1 Wudaoliang WDL 52908 35.22 93.08

2 Anduo AND 55294 32.35 91.10

3 Tuotuohe TTH 56004 34.22 92.43

4 Zaduo ZAD 56018 32.88 95.28

5 Qumalai QML 56021 34.12 95.80

6 Yushu YUS 56029 33.00 96.97

7 Qingshuihe QSH 56034 33.80 97.13

8 Shiqu SHQ 56038 32.98 98.10

9 Dari DAR 56046 33.75 99.65

10 Jiuzhi JZH 56067 33.43 101.48

11 Minxian MNX 56093 34.43 104.02

12 Wudu WUD 56096 33.40 104.92

13 Suoxian SUX 56106 31.88 93.78

14 Changdu CHD 56137 31.15 97.17

15 Dege DEG 56144 31.80 98.58

16 Seda SED 56152 32.28 100.33

17 Ma’erkang MEK 56172 31.90 102.23

18 Xiaojin XAJ 56178 31.00 102.35

19 Songpan SNP 56182 32.67 103.60

20 Wenjiang WEJ 56187 30.75 103.87

21 Mianyang MAY 56196 31.45 104.73

22 Batang BAT 56247 30.00 99.10

23 Xinlong XNL 56251 30.93 100.32

24 Ya’an YAN 56287 29.98 103.00

http://data.cma.cn/
https://psl.noaa.gov
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Table A1. Cont.

Number Station Name Short Name Code Latitude (◦N) Longitude (◦E)

25 Zuogong ZUG 56331 29.67 97.83

26 Daocheng DAC 56357 29.05 100.30

27 Kangding KAN 56374 30.05 101.97

28 Leshan LSH 56386 29.57 103.75

29 Deqin DEQ 56444 28.48 98.92

30 Jiulong JUL 56462 29.00 101.50

31 Leibo LEB 56485 28.27 103.58

32 Yibin YBN 56492 28.80 104.60

33 Xichang XIC 56571 27.90 102.27

34 Lijiang LIJ 56651 26.85 100.22

35 Huili HUL 56671 26.65 102.25

36 Weining WEN 56691 26.87 104.28

37 Dali DAL 56751 25.70 100.18

38 Zhanyi ZHY 56786 25.58 103.83

39 Maiji MAJ 57014 34.57 105.87

40 Hanzhong HAZ 57127 33.07 107.03

41 Wanyuan WAY 57237 32.07 108.03

42 Fangxian FAX 57259 32.03 110.77

43 Langzhong LZH 57306 31.58 105.98

44 Daxian DXN 57328 31.20 107.50

45 Zhenping ZHP 57343 31.90 109.53

46 Badong BAD 57355 31.03 110.37

47 Wanzhou WAZ 57432 30.77 108.40

48 Lichuan LCH 57439 30.28 108.93

49 Yichang YIC 57461 30.73 111.37

50 Dongxingqu DON 57503 29.62 105.12

51 Hechuan HEC 57512 29.97 106.27

52 Fengdu FED 57523 29.85 107.73

53 Xuyong XYA 57608 28.17 105.43

54 Qijiang QIJ 57612 29.00 106.65

55 Youyang YOU 57633 28.82 108.77

56 Renhuai REH 57710 27.80 106.40

57 Guiyang GUI 57816 26.58 106.73

58 Kunming KUN 56778 25.00 102.65

Table A2. The MK/MMK test (at 5% level) results and trend slope of annual mean precipitation and
temperature over the UYRB during 1985–2014. The “*” indicates passing the 5% significance level.
The italics represent the MMK values of time series with autocorrelation. Positive/negative ZMK

values indicate increasing/decreasing trend.

Station
Annual Mean Precipitation Annual Mean Temperature

ZMK
Slope

(mm/Decade) ZMK
Slope

(◦C/Decade)

AND 1.36 21.79 4.14 * 0.46

SUX 2.00 * 43.77 3.82 * 0.50
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Table A2. Cont.

Station
Annual Mean Precipitation Annual Mean Temperature

ZMK
Slope

(mm/Decade) ZMK
Slope

(◦C/Decade)

TTH 3.21 * 53.45 4.57 * 0.72

WDL 3.07 * 38.58 4.17 * 0.54

YUS 0.89 21.50 3.46 * 0.50

ZAD 0.71 9.20 4.50 * 0.58

QML 1.93 35.84 5.17 * 0.70

BAT −1.00 −25.89 3.75 * 0.46

DEQ −0.11 −7.29 4.03 * 0.49

ZUG 0.16 1.50 3.75 * 0.39

CHD −1.30 −29.30 3.43 * 0.35

DEG −0.29 −7.40 3.28 * 0.30

SHQ 0.87 16.27 3.71 * 0.54

DAR 2.00 * 36.36 4.28 * 0.54

QSH 1.57 30.67 4.71 * 0.66

KUN −0.68 −42.82 4.03 * 0.61

DAL −1.46 −63.44 4.07 * 0.45

HUL −2.43 * −101.83 3.64 * 0.38

LIJ −1.64 −49.71 3.28 * 0.43

XIC −0.75 −38.62 3.25 * 0.37

DAC −0.21 −4.00 4.07 * 0.45

JUL −0.29 −6.59 3.14 * 0.28

KAN −1.02 −19.54 2.71 * 0.29

JZH 0.70 16.28 4.25 * 0.47

MEK 0.39 7.50 3.46 * 0.35

SED 0.39 7.14 3.96 * 0.38

XAJ −0.66 −8.18 2.39 * 0.30

XNL −0.07 −4.44 3.32 * 0.30

WEN 0.39 20.80 3.53 * 0.44

ZHY −2.18 * −90.75 3.71 * 0.43

DON 0.68 87.94 0.32 0.06

LSH −0.46 −13.18 3.18 * 0.38

LEB −0.16 −10.50 4.42 * 0.99

XYA −0.32 −11.78 2.85 * 0.28

YAN −1.28 −78.91 2.07 * 0.23

YBN −1.25 −60.67 3.75 * 0.41

MAY 0.93 36.00 3.21 * 0.47

SNP 1.14 17.36 3.14 * 0.33

WEJ 0.04 6.54 2.96 * 0.35

WUD 0.36 5.59 3.03 * 0.37

MNX 0.54 12.07 3.96 * 0.42
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Table A2. Cont.

Station
Annual Mean Precipitation Annual Mean Temperature

ZMK
Slope

(mm/Decade) ZMK
Slope

(◦C/Decade)

GUI −0.21 −11.26 −3.68 * −0.42

REH −1.75 −47.71 2.28 * 0.20

FED −0.36 −11.67 3.14 * 0.35

HEC 0.21 11.60 3.10 * 0.32

QIJ 0.75 29.88 0.86 0.11

DXN 1.28 61.00 3.21 * 0.29

HAZ 1.50 73.56 5.10 * 0.54

LZH 0.96 45.05 3.03 * 0.32

WAY 1.28 59.00 2.50 * 0.26

MAJ 0.57 14.53 3.14 * 0.30

LCH −1.61 −43.53 3.07 * 0.29

YOU 0.71 48.20 1.89 0.21

BAD 0.61 22.79 1.21 0.11

FAX −0.29 −4.92 2.32 * 0.21

WAZ −0.18 −4.75 3.57 * 0.38

ZHP 0.64 27.67 2.60 * 0.26

YIC 0.04 1.72 2.28 * 0.29

UYRB 0.82 10.44 4.14 * 0.42

Table A3. The MK/MMK test (at 5% level) results and trend slope (mm/decade) of annual mean
precipitation over the UYRB during 2036–2065. The bold indicates passing the 5% significance level.
The italics represent the MMK values of time series with autocorrelation. Positive/negative ZMK

values indicate increasing/decreasing trend.

Station

Mid-Term (2036–2065) Long-Term (2071–2100)

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope

AND 0.29 4.84 3.14 37.35 3.32 59.75 3.96 70.65 −0.86 −12.62 0.29 2.29 3.39 53.08 3.32 67.81

SUX −1.53 −12.99 −2.82 −24.11 −3.60 −28.32 −3.00 −24.74 1.11 6.51 −1.50 −9.42 −3.25 −22.81 −3.78 −32.70

TTH 0.93 5.42 4.03 22.71 3.64 32.34 4.82 40.05 −0.18 −0.65 1.64 12.04 3.57 41.51 5.25 63.75

WDL 0.57 4.11 3.07 23.52 3.14 31.59 3.82 40.34 −0.21 −2.60 0.07 0.44 3.32 40.94 4.89 54.93

YUS −0.18 −0.70 −2.68 −12.29 −4.03 −17.58 −4.82 −24.95 2.03 6.22 0.07 0.11 −4.57 −23.41 −6.03 −29.33

ZAD −0.89 −5.15 −0.29 −2.54 −0.32 −3.80 −0.11 −1.04 0.54 2.32 −1.21 −10.75 1.07 9.37 2.96 24.82

QML 1.11 8.41 2.75 22.50 3.39 30.21 4.21 40.57 1.03 6.49 0.36 2.10 3.21 30.67 5.71 66.05

BAT −0.43 −5.04 1.36 13.69 2.32 22.27 1.57 16.91 1.18 7.20 1.32 10.99 3.28 35.22 3.85 45.67

DEQ −1.25 −10.67 1.64 15.31 0.46 7.32 1.68 12.38 0.61 6.67 1.39 17.50 2.75 29.92 3.21 39.17

ZUG −0.75 −5.57 1.03 11.00 1.53 12.99 1.03 10.61 1.36 13.13 1.78 16.72 3.07 33.45 3.10 36.03

CHD −0.43 −3.32 0.32 2.45 2.57 23.98 1.93 17.36 0.46 3.58 −0.46 −4.92 2.75 31.16 3.82 44.09

DEG 0.50 2.93 3.07 19.43 4.00 39.73 4.17 34.61 0.46 4.31 −0.46 −2.43 4.25 38.58 5.25 74.61
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Table A3. Cont.

Station

Mid-Term (2036–2065) Long-Term (2071–2100)

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope

SHQ 0.75 4.67 1.61 10.56 2.32 19.23 1.96 17.68 1.11 7.22 −0.93 −7.91 2.82 23.58 4.89 54.08

DAR 1.50 10.52 2.32 19.46 2.96 21.85 3.64 36.62 1.89 13.95 −0.11 −1.61 3.35 33.61 5.03 62.98

QSH 1.21 8.56 2.46 21.41 2.85 22.50 3.28 31.43 2.03 13.79 −0.43 −2.11 3.60 34.30 5.14 61.20

KUN −1.18 −17.59 0.04 1.04 −2.11 −45.93 −3.18 −62.66 0.54 9.27 1.82 27.93 −2.11 −37.41 −2.53 −60.56

DAL −2.25 −34.73 0.46 4.73 −1.21 −26.09 −2.57 −47.59 −0.18 −3.72 0.00 0.00 0.71 9.56 −0.64 −18.50

HUL −0.39 −5.44 2.71 65.10 1.96 41.76 1.14 27.39 1.18 18.76 2.36 58.17 3.50 68.20 3.78 95.88

LIJ −1.96 −24.09 1.68 31.46 1.07 26.32 0.93 15.79 −0.43 −6.01 1.39 27.02 3.60 61.62 2.93 65.46

XIC 0.00 −0.74 2.00 39.20 1.68 33.70 1.39 28.81 0.79 13.87 2.28 45.17 2.96 54.39 3.82 85.84

DAC −1.46 −12.68 −0.39 −4.85 −0.14 −2.26 −0.75 −11.91 1.57 14.23 0.32 3.43 2.11 23.47 2.50 29.83

JUL −0.79 −13.95 2.50 32.84 3.53 69.00 2.96 48.83 1.03 10.84 1.53 23.85 4.71 88.31 5.60 106.68

KAN 0.57 5.23 0.96 9.39 1.75 15.98 0.82 10.22 1.43 19.08 0.93 9.12 0.93 6.94 2.32 25.59

JZH 0.86 6.54 0.32 5.57 3.64 53.58 4.32 51.90 0.25 1.97 1.11 9.37 4.50 50.48 5.71 93.95

MEK 0.68 7.27 1.50 14.00 4.10 62.85 4.46 59.65 0.29 3.50 0.89 9.71 5.07 65.07 5.64 103.15

SED 0.25 1.91 −1.07 −8.45 2.28 24.56 1.93 14.62 1.64 11.11 0.25 3.84 2.75 27.62 4.50 52.85

XAJ 1.43 10.63 0.14 1.90 4.14 42.48 4.28 44.46 0.75 3.70 0.71 7.28 4.03 31.62 5.78 60.96

XNL −0.36 −3.79 −1.39 −10.22 −0.71 −7.29 −1.39 −16.33 2.21 18.08 −0.64 −8.30 −0.04 −1.34 2.46 16.05

WEN −0.93 −10.99 0.50 8.60 −1.14 −17.58 −1.82 −25.83 0.00 −0.59 0.61 11.55 1.50 18.93 0.07 1.68

ZHY −0.46 −3.72 1.39 24.90 −0.25 −3.93 −0.07 −1.74 −0.07 −0.10 0.93 18.34 1.75 33.48 1.71 30.29

DON −2.39 −34.74 1.32 17.65 1.36 24.84 1.46 17.99 0.82 7.44 2.07 34.65 1.71 29.06 3.18 46.25

LSH −1.93 −36.63 −0.71 −12.99 −1.78 −36.42 −1.11 −25.73 1.50 21.65 0.57 12.10 0.68 17.99 0.04 0.81

LEB −1.53 −17.53 0.46 4.10 −0.75 −9.47 −0.64 −5.04 −0.07 −1.03 0.21 4.67 1.18 18.70 1.46 18.79

XYA −0.93 −7.95 0.64 5.38 −0.32 −2.80 1.14 11.04 0.32 1.59 0.93 6.69 1.14 15.66 2.71 23.28

YAN −1.14 −26.34 −1.03 −31.06 −1.32 −31.36 −1.46 −34.33 2.21 34.15 −0.04 −2.20 0.61 13.91 −0.36 −3.06

YBN −1.75 −29.15 −1.03 −19.09 −2.32 −42.93 −2.18 −36.57 2.03 26.99 1.21 22.49 −0.86 −11.88 −0.86 −9.64

MAY −1.53 −20.87 −1.50 −25.77 0.68 8.49 −0.21 −3.17 1.32 16.80 1.75 23.47 0.46 12.99 2.46 35.47

SNP −0.07 −0.64 0.57 4.60 2.85 22.80 3.78 30.26 1.96 15.53 1.89 12.70 3.39 32.90 5.64 56.37

WEJ −0.96 −18.09 −1.89 −28.12 0.50 7.37 −1.14 −18.89 1.78 19.24 1.39 17.40 −0.11 −1.31 0.29 3.31

WUD −1.36 −10.61 −1.25 −7.56 1.32 8.79 1.32 6.56 1.32 12.06 2.07 14.37 0.71 8.65 2.68 18.19

MNX 0.25 1.12 −0.39 −4.70 1.46 21.27 1.39 10.93 −0.25 −3.33 1.93 17.49 1.61 16.46 3.78 40.58

GUI 1.21 13.21 1.46 22.30 1.21 19.08 0.93 13.41 −0.68 −7.39 0.36 5.79 0.61 8.19 2.57 48.60

REH 0.86 10.19 2.00 24.06 1.71 20.38 1.21 13.29 −1.82 −19.02 −0.39 −7.28 1.18 13.55 2.25 45.01

FED −0.36 −3.49 2.46 23.59 3.00 19.47 2.21 24.49 −0.46 −5.40 1.28 17.43 1.46 18.88 3.07 38.67

HEC −1.28 −25.06 0.21 2.88 0.29 5.26 0.18 0.95 −1.00 −13.67 0.61 11.82 −0.18 −3.88 1.75 43.06

QIJ −2.14 −23.68 1.50 18.62 0.36 5.78 2.60 41.04 −0.79 −5.88 1.25 16.78 2.25 24.47 4.03 70.54

DXN −0.89 −8.34 0.50 7.08 2.57 38.56 2.28 40.35 0.64 6.24 1.32 23.65 3.21 47.03 5.14 76.90

HAZ −0.68 −8.65 0.07 2.25 1.50 20.49 0.93 20.73 0.71 10.52 1.61 27.82 1.03 20.94 2.14 34.38

LZH −1.07 −17.83 −0.39 −6.81 1.14 18.12 1.32 20.96 1.50 18.50 2.14 41.28 1.28 36.48 2.28 42.70

WAY −0.75 −15.93 0.11 3.58 2.00 34.60 1.64 37.31 0.93 14.31 1.82 46.71 1.00 22.58 2.64 61.00

MAJ 0.46 4.35 −0.18 −3.43 1.50 20.64 0.75 7.02 0.00 −0.57 1.68 22.02 1.28 21.22 2.78 33.00

LCH −0.11 −0.52 1.93 38.13 2.14 32.81 1.89 36.42 −0.04 −1.80 0.18 2.53 1.36 17.61 3.43 100.78

YOU 0.89 12.01 1.21 26.38 0.68 11.83 0.57 9.44 −0.11 −1.18 0.71 15.84 0.07 0.22 2.53 56.77

BAD −1.18 −10.60 1.43 17.07 1.46 23.08 2.28 38.00 0.46 3.07 1.25 18.48 2.07 35.42 3.60 59.35

FAX −0.29 −2.41 1.00 12.64 1.86 20.81 2.18 32.25 −0.32 −2.31 0.75 12.08 3.00 41.28 3.43 53.46

WAZ −1.03 −10.31 1.64 28.23 2.21 44.90 2.93 59.33 0.18 1.51 1.53 28.08 3.18 50.70 4.57 99.84

ZHP −0.89 −8.12 0.89 12.53 1.32 19.73 1.86 38.40 0.68 9.17 1.11 22.32 2.64 53.75 3.57 79.28

YIC 0.32 3.87 1.03 16.33 0.93 22.52 1.50 26.25 1.61 30.17 1.00 20.85 2.18 41.49 2.36 53.35

UYRB −0.89 −5.30 1.61 12.08 2.18 17.06 1.93 12.37 1.14 7.08 2.00 16.68 3.43 29.17 4.67 47.93
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Table A4. The MK test results and trend slope (◦C/decade) of annual mean temperature over
the UYRB during 2015–2100. The bold indicates passing the 5% significance level. The italics
represent the MMK values of time series with autocorrelation. Positive/negative ZMK values indicate
increasing/decreasing trend.

Station

Mid-Term (2036–2065) Long-Term (2071–2100)

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope

AND 1.46 0.11 4.46 0.30 6.17 0.66 5.92 0.68 −0.93 −0.06 2.07 0.09 5.28 0.54 6.21 0.78

SUX 2.03 0.12 4.82 0.29 6.21 0.61 6.21 0.61 −0.57 −0.03 2.78 0.09 5.46 0.53 6.14 0.71

TTH 2.46 0.12 4.96 0.29 6.14 0.57 5.89 0.53 −1.32 −0.05 2.11 0.07 5.46 0.51 6.35 0.69

WDL 2.43 0.16 4.89 0.33 5.92 0.61 6.10 0.60 −2.14 −0.08 2.00 0.08 5.71 0.57 6.35 0.72

YUS 2.71 0.18 5.21 0.32 6.14 0.58 6.42 0.58 −0.96 −0.05 3.03 0.10 5.50 0.53 6.17 0.70

ZAD 2.93 0.21 5.39 0.33 5.89 0.60 6.39 0.60 −1.21 −0.06 2.89 0.11 5.46 0.58 6.10 0.72

QML 2.57 0.16 5.39 0.31 5.67 0.55 6.14 0.52 −1.53 −0.06 1.75 0.07 5.96 0.51 6.14 0.61

BAT 4.07 0.17 4.57 0.24 6.07 0.42 6.39 0.44 0.61 0.02 2.36 0.08 5.46 0.43 6.46 0.56

DEQ 3.35 0.17 5.14 0.28 6.28 0.58 6.53 0.61 −1.32 −0.06 4.17 0.14 6.10 0.56 6.60 0.73

ZUG 3.50 0.18 4.75 0.27 5.67 0.52 6.46 0.58 −0.79 −0.04 3.28 0.14 5.74 0.55 6.39 0.68

CHD 2.85 0.19 5.14 0.33 5.82 0.53 6.21 0.55 −1.28 −0.07 2.50 0.09 5.46 0.51 5.89 0.67

DEG 3.35 0.18 5.21 0.29 5.78 0.50 6.42 0.51 −1.57 −0.07 2.32 0.08 5.64 0.47 6.24 0.62

SHQ 3.18 0.23 5.28 0.35 5.99 0.66 6.46 0.70 −0.96 −0.06 3.35 0.14 5.53 0.64 6.46 0.82

DAR 3.57 0.17 5.39 0.31 5.92 0.52 6.42 0.58 −1.25 −0.04 2.25 0.08 6.07 0.57 6.35 0.79

QSH 3.89 0.18 5.25 0.32 5.85 0.55 6.21 0.60 −1.39 −0.04 2.07 0.09 6.21 0.60 6.39 0.84

KUN 3.10 0.15 4.35 0.32 4.39 0.34 6.03 0.57 −0.11 0.00 1.25 0.08 5.32 0.46 6.28 0.66

DAL 4.00 0.15 4.60 0.23 5.10 0.33 6.46 0.48 −0.89 −0.03 1.25 0.05 5.71 0.38 6.57 0.55

HUL 3.82 0.16 4.64 0.27 5.17 0.41 6.49 0.56 −0.36 −0.02 1.46 0.06 5.60 0.43 6.49 0.65

LIJ 4.00 0.18 4.42 0.27 5.28 0.46 6.49 0.59 −0.54 −0.03 2.07 0.09 5.71 0.47 6.49 0.68

XIC 2.85 0.13 4.03 0.31 4.78 0.42 6.07 0.67 0.07 0.00 1.61 0.08 5.17 0.50 6.28 0.76

DAC 3.71 0.17 4.96 0.24 6.10 0.53 6.60 0.54 −0.89 −0.03 3.71 0.13 6.10 0.50 6.60 0.68

JUL 3.64 0.16 4.92 0.23 5.92 0.46 6.64 0.52 −1.07 −0.04 3.14 0.10 5.96 0.46 6.60 0.63

KAN 3.25 0.16 4.39 0.30 5.99 0.57 6.03 0.55 −1.46 −0.05 3.28 0.13 5.74 0.51 6.53 0.76

JZH 3.35 0.18 4.78 0.31 5.99 0.60 6.24 0.61 −1.82 −0.09 2.60 0.12 5.92 0.56 6.49 0.77

MEK 3.75 0.13 4.60 0.18 5.53 0.34 6.07 0.38 −1.53 −0.05 3.03 0.09 6.03 0.32 6.64 0.46

SED 3.53 0.19 4.78 0.28 5.74 0.54 6.53 0.58 −1.43 −0.04 3.25 0.10 6.24 0.55 6.46 0.76

XAJ 2.82 0.16 5.07 0.28 6.21 0.58 6.32 0.57 −1.86 −0.07 2.85 0.09 6.03 0.49 6.49 0.72

XNL 3.18 0.16 4.92 0.25 5.89 0.47 6.60 0.51 −1.89 −0.04 3.35 0.08 5.99 0.44 6.35 0.63

WEN 2.50 0.12 4.07 0.27 4.82 0.47 5.92 0.59 0.07 0.01 2.25 0.16 5.10 0.49 6.49 0.73

ZHY 2.46 0.13 4.17 0.25 4.78 0.35 5.85 0.53 −0.39 −0.03 2.00 0.11 5.10 0.42 6.39 0.63

DON 3.03 0.14 4.96 0.27 5.82 0.42 5.85 0.45 −2.32 −0.07 0.96 0.05 5.96 0.40 6.49 0.59

LSH 3.00 0.14 5.00 0.25 5.78 0.40 6.07 0.42 −1.96 −0.07 1.46 0.05 5.74 0.36 6.60 0.57

LEB 3.21 0.16 5.03 0.29 5.74 0.50 6.14 0.54 −1.39 −0.07 2.32 0.11 5.96 0.46 6.74 0.70

XYA 3.25 0.16 4.75 0.28 5.82 0.48 6.03 0.52 −1.86 −0.06 1.86 0.09 5.74 0.44 6.64 0.68

YAN 2.68 0.13 4.85 0.25 5.89 0.41 5.85 0.42 −1.82 −0.06 1.86 0.06 5.64 0.35 6.64 0.56

YBN 3.10 0.15 4.92 0.27 5.82 0.42 5.92 0.47 −2.36 −0.07 1.46 0.06 5.74 0.41 6.60 0.61

MAY 3.43 0.15 5.03 0.29 6.14 0.48 6.39 0.48 −2.39 −0.08 1.61 0.07 5.92 0.41 6.74 0.62

SNP 3.18 0.16 4.75 0.27 6.32 0.52 6.39 0.54 −1.96 −0.06 3.10 0.13 6.21 0.48 6.67 0.68

WEJ 3.28 0.15 4.89 0.27 6.28 0.47 6.35 0.48 −2.32 −0.07 1.64 0.08 5.89 0.41 6.78 0.60

WUD 3.28 0.17 4.92 0.29 5.89 0.47 6.17 0.51 −2.03 −0.08 0.79 0.05 5.78 0.43 6.53 0.64

MNX 3.14 0.16 5.00 0.27 6.21 0.52 6.46 0.52 −1.75 −0.04 2.28 0.08 5.89 0.46 6.64 0.66

GUI 1.64 0.07 4.46 0.26 5.10 0.37 5.78 0.49 0.00 0.00 2.07 0.16 5.46 0.42 6.14 0.62

REH 2.64 0.15 4.60 0.38 5.74 0.61 6.53 0.73 −0.71 −0.03 2.18 0.17 5.99 0.64 6.49 0.93

FED 3.14 0.14 4.85 0.27 5.85 0.45 5.96 0.51 −1.07 −0.04 1.82 0.09 5.89 0.44 6.57 0.65

HEC 3.35 0.14 4.53 0.25 5.74 0.42 5.85 0.46 −0.54 −0.02 1.32 0.06 5.74 0.40 6.17 0.59
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Table A4. Cont.

Station

Mid-Term (2036–2065) Long-Term (2071–2100)

SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope ZMK Slope

QIJ 3.32 0.16 4.82 0.29 5.64 0.50 6.14 0.54 −1.14 −0.05 1.89 0.11 5.92 0.49 6.39 0.69

DXN 3.71 0.17 5.32 0.30 6.17 0.52 6.21 0.54 −1.93 −0.07 1.78 0.08 6.03 0.45 6.49 0.70

HAZ 3.57 0.17 4.82 0.27 5.85 0.43 5.92 0.46 −2.18 −0.07 0.11 0.01 5.60 0.37 6.21 0.60

LZH 3.57 0.16 5.03 0.27 5.96 0.46 6.10 0.49 −2.57 −0.07 1.14 0.04 5.60 0.39 6.42 0.62

WAY 3.32 0.16 5.00 0.27 5.92 0.49 6.14 0.53 −2.21 −0.07 1.39 0.07 5.78 0.43 6.46 0.68

MAJ 3.35 0.16 4.46 0.28 5.85 0.49 6.24 0.51 −2.25 −0.07 0.57 0.02 5.35 0.42 6.17 0.63

LCH 2.57 0.12 4.82 0.29 6.10 0.46 6.28 0.52 −1.11 −0.05 2.46 0.12 6.39 0.45 6.42 0.64

YOU 2.36 0.12 4.78 0.29 6.03 0.49 6.53 0.53 −0.64 −0.02 2.57 0.14 6.32 0.48 6.42 0.70

BAD 3.21 0.17 4.92 0.29 6.24 0.55 6.03 0.57 −1.89 −0.07 1.39 0.08 6.17 0.49 6.32 0.69

FAX 3.43 0.16 5.07 0.29 6.17 0.52 5.99 0.54 −1.50 −0.06 0.96 0.06 6.03 0.47 6.49 0.69

WAZ 3.43 0.15 5.28 0.27 6.24 0.47 6.42 0.49 −1.89 −0.05 1.82 0.07 6.46 0.43 6.60 0.62

ZHP 3.10 0.17 4.64 0.31 6.42 0.56 6.17 0.59 −1.78 −0.06 1.96 0.10 6.07 0.51 6.46 0.77

YIC 2.43 0.13 4.39 0.32 5.57 0.54 5.78 0.55 −1.71 −0.07 1.89 0.12 5.78 0.51 6.35 0.71

UYRB 3.71 0.16 5.39 0.29 6.07 0.47 6.60 0.54 −1.75 −0.05 2.82 0.10 6.53 0.45 6.64 0.67
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