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Abstract: Surface methane (CH4) is a significant precursor of tropospheric ozone (O3), a greenhouse
gas that detrimentally impacts crops by suppressing their physiological processes, such as photo-
synthesis. This relationship implies that CH4 emissions can indirectly harm crops by increasing
troposphere O3 concentrations. While this topic is important, few studies have specifically exam-
ined the combined effects of CH4 and CH4-induced O3 on rice yield and production. Utilizing
the GEOS-Chem model, we assessed the potential reduction in rice yield and production in Asia
against a 50% reduction in anthropogenic CH4 emissions relative to the 2010 base year. Based on O3

exposure metrics, the results revealed an average relative yield loss of 9.5% and a rice production loss
of 45,121 kilotons (Kt) based on AOT40. Regions such as the India-Gangetic Plain and the Yellow
River basin were particularly affected. This study determined that substantial reductions in CH4

concentrations can prevent significant rice production losses. Specifically, curbing CH4 emissions
in the Beijing-Tianjin-Hebei region could significantly diminish the detrimental effects of O3 on rice
yields in China, Korea, and Japan. In summary, decreasing CH4 emissions is a viable strategy to
mitigate O3-induced reductions in rice yield and production in Asia.

Keywords: atmospheric chemistry model; methane; ozone; rice; production loss

1. Introduction

Fossil fuel combustion is a major source of carbon emissions and causes climate
change [1–3]. Methane (CH4) specifically serves as a potent yet short-lived climate pollutant,
playing a marked role in the generation of ground-level ozone (O3), impacting human
and ecosystem health [4]. CH4 concentrations have increased by over 150% since the pre-
industrial era, with anthropogenic activities now accounting for about 50% more emissions
than natural sources. In the last decade, CH4 concentrations have increased rapidly, with
the highest growth rate recorded in 2020 [5]. This increase is attributed to emissions from
agriculture, fossil fuel production, solid waste in landfills, and wastewater management [6].
Anthropogenic CH4 emissions are expected to continue to increase, potentially reaching
approximately 380 million tons per year by 2030, an 8% increase from 2020 levels [7]. These
emissions vary regionally depending on fossil fuel sources, waste management systems,
and agricultural practices, making CH4 mitigation crucial for addressing climate change,
human health, ecosystem, and agriculture-related concerns [8].

O3 is produced when sunlight interacts with NOx, CO, NMVOC, and CH4 emissions,
notably reducing crop yields and quality. Liu and Desai [9] reported that relative crop
yield losses due to air pollution from O3 and aerosols have ranged from 20 to 30% in the
United States over the past four decades. Additionally, O3 exposure results in global yield
losses of 7.1, 12.4, 6.1, and 4.4% for wheat, soybean, maize, and rice, respectively [10–13].
For every 1 million tons of CH4 reduction, there can be a yield loss prevention for 55,000,
17,000, 42,000, and 31,000 tons of wheat, soybeans, maize, and rice, respectively [13].
Shindell et al. [11] demonstrated that a 50% reduction in anthropogenic CH4 emissions
would lead to a 134 million ton decrease in CH4 emissions, preventing 4.2 million tons
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of rice yield losses. Major rice producers such as India, China, Bangladesh, and Vietnam
would see reduced losses in rice production due to these decreased emissions [5]. It is
important to assess the effect of reducing anthropogenic CH4 emissions on crop yields, and
atmospheric chemical models are crucial for estimating CH4 emissions and their impact
on surface O3 concentrations. However, these studies often concentrate on individual
countries or specific sectors, thereby lacking a comprehensive analysis that combines the
effects of CH4 and CH4-induced O3 on rice productivity on a regional scale, especially in
Asia.

Based on these insights, this study focuses on examining the detailed relationship
between CH4-induced O3 and rice productivity in Asia. While previous studies have
mainly focused on modeling at the country level, only a few have attempted to analyze
the response of O3 to CH4 emissions and rice yield in Asia using atmospheric chemistry
models to simulate sub-grid scale data. Therefore, there is a notable gap in understanding
their combined impact on rice productivity in Asia. This study is unique as it evaluates the
relationship between O3 and rice yield and production under a one-half anthropogenic CH4
emission scenario. The specific objectives of this study are to (1) investigate the applicability
of the GEOS-Chem model in predicting O3 responses to anthropogenic CH4 emission; (2)
analyze O3 exposure metrics such as accumulated O3 exposure over a threshold of 40 ppb
(AOT40) and mean 7 h O3 mixing ratio (M7); (3) quantitatively evaluate rice yield and
production loss in Asia due to CH4-induced O3 exposure. The framework of this study
involves data collection, model simulation, and analysis. Initially, I will collect and analyze
existing data on CH4 emissions and O3 concentrations. Subsequently, I will employ the
GEOS-Chem model to simulate the effects of reduced anthropogenic CH4 emissions on
O3 levels and, consequently, on rice yield and production in Asia. Finally, based on these
findings, the policy implications of this study will be discussed.

2. Materials and Methods
2.1. Model Description

The GEOS-Chem model (version 13.3.4) was used following the approach outlined by
Bey et al. [14] to comprehensively analyze the impact on rice yield and production resulting
from a 50% reduction in anthropogenic CH4 emissions. The baseline for comparison was
set in 2010 (Table 1). The GEOS-Chem model is an advanced global three-dimensional
chemical transport model designed to simulate the composition of the Earth’s atmosphere.
It operates using meteorological data sourced from the Goddard Earth Observing System
(GEOS), managed by NASA’s Global Modeling and Assimilation Office (GMAO). This
model enables a nuanced understanding of how changes in CH4 emissions can affect
atmospheric O3 levels, subsequently influencing rice yield and production across various
regions.

Table 1. Simulation cases of methane emissions were used in this study.

Simulation Name CH4 Emissions or Mixing Ratio (ppbv) Reference

BASE 1808 World Meteorological
Organization [15]

CASE1 50% anthropogenic CH4 reduction Fiore et al. [16]

To conduct the simulations, we organized the GEOS-Chem model into two domains
for nested-grid simulation. The first domain covered the entire globe with a 4◦ × 5◦

grid resolution and 72 vertical layers, spanning from 1 January 1990 to 31 December 2010
(UTC). The year 2010 was selected as the reference year due to the availability of reliable
emission and rice yield data up to that year. The second domain focused on East, South,
and Southeast Asia, with a higher resolution of 0.5◦ × 0.625◦ and 72 vertical levels, covering
the period from 1 January 2009 to 31 December 2010 (UTC). The nested simulations used
data from the global run to establish lateral boundary conditions. The time step was 300 s
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for transport and convection and 600 s for chemicals and emissions. The spin-up period
was 20 years for the outer domain and 1 year for the interdomain.

2.2. Emission and Meteorological Data

For emissions data, we utilized the Community Emissions Data System (CEDS v2021-
06) for global monthly mean anthropogenic emissions, including CO, CO2, NOx, SO2, NH3,
NMVOC, organic/black carbon, and emissions from various sectors such as agriculture,
energy, industry, and transportation. The CH4 mixing ratio data was obtained from the
World Meteorological Organization [15]. Other emission sources such as burning, dust,
sea salt, lightning NOx, and soil NOx were also taken into account from relevant stud-
ies [17–21]. To calculate biogenic emissions, the Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN 2.1) was utilized. MEGAN 2.1 estimates the release of
isoprene, monoterpenes, and various other trace gases and aerosols from ecosystems into
the atmosphere [22]. For a detailed description of the GEOS-Chem emissions, please refer
to Bey et al. [14]. The framework for CH4 emissions, which includes the percentage of an-
thropogenic emissions among CH4 emissions and the relationship between CH4 emissions
and concentrations with the OH feedback coefficients, followed the procedure described in
Prather et al. [23], Prather [24], and Fiore et al. [16].

Initial meteorological and boundary conditions were obtained from the modern-era
Retrospective analysis for Research and Applications, version 2 (MERRA-2) dataset [25].
This is a global atmospheric reanalysis produced by the GMAO with a horizontal resolution
of 0.5◦ × 0.625◦ and 72 hybrid sigma/pressure levels. Figure 1 shows a schematic of the
simulation process across Asia.
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Figure 1. Diagram of the atmospheric chemistry simulation in the GEOS-Chem model.

2.3. Observation Dataset

The 2010 rice production data utilized in this study were sourced from the Global Agro-
Ecological Zones (GAEZ) inventory [26]. While the Food and Agricultural Organization’s
FAOSTAT database provides national-level agricultural data, it lacks the level of detail
needed to capture spatial variations. To address this limitation, we utilized GAEZ data,
which downscales national production statistics to a grid scale by integrating various
geospatial data, including remote sensing, soil, climate, and population density. The GAEZ
data, available in a 5 arc-minute raster grid format, were adjusted to match the GEOS-Chem
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model grid. Additionally, the Crop Calendar Dataset [27] supplied gridded rice planting
and harvesting dates, which were crucial for computing the AOT40 and M7 metrics during
the growth period.

To validate the accuracy of the model outputs across Asia, observed surface O3 con-
centrations were obtained from the MACC global reanalysis of assimilated gridded O3 data
at the surface [28] for comparing the modeled surface O3.

2.4. Rice Yield and Production Losses Based on Ozone Exposure Metrics

O3 exposure metrics for the 2010 growing season were computed as rice’s sensitivity
to O3 significantly decreases after panicle formation [29]. The exposure-response function
varies according to the region, and statistical methods and definitions of the growing season
differ. Consequently, assessing the suitability of using exposure metrics in regions other
than their original context is complex, given the considerable uncertainties in estimating
rice yield losses via these metrics [30,31]. To address these complexities, we employed both
AOT40 and M7 metrics to predict rice yield losses based on exposure metrics. While AOT40
is primarily utilized in Europe to assess plant risk from O3 exposure and estimate crop
yield losses across various regions [32,33], the M7 metric measures the daily mean surface
O3 concentration during a specific 7 h period throughout the growing season of the plant.
Equations (1) and (2) were utilized to calculate the AOT40 and M7 metrics, respectively.

AOT40 =∑n
i=1([O3]i − 0.04), for O3 ≥ 0.04 ppmv from 8:00 to 19:59 (LST), (1)

M7 =
1
n ∑t=15:59

t=09:00 [O 3]t, (2)

where [O 3]i denotes the hourly mean surface O3 concentration in parts per million by
volume (ppmv), n is the total number of hours in the growing season, and [O 3]t signifies
hourly mean surface O3 concentration in parts per billion by volume (ppbv) from 9:00 to
15:59 LST.

The relative yield (RY) of rice was estimated and subtracted from unity to calculate
O3-induced relative yield loss (RYL), expressed as follows:

RYL = 1.0 − RY, (3)

where RY is the relative rice yield with O3 damage, and RYL is the theoretical reduction in
rice yield that would have occurred with O3-induced damage. RY was estimated based on
the empirical relationships derived for AOT40 [34] and M7 [32].

RY = 1.0 − (0.0045 × AOT40), (4)

RY = exp
[(

−
(

M7/ 202)2.47
]

/ exp
[
−(25/202)2.47

]
. (5)

The rice production loss (RPL) was computed using Equation (6) for each grid cell i in
the rice cultivated area using RYL and the actual rice production for 2010 obtained from
GAEZ:

RPLi= CPi×RYLi/(1 − RYL i) (6)

where CP symbolizes the actual rice production.

3. Results and Discussion
3.1. Reproduction Accuracy of Simulated Surface Ozone Concentration

Figure S1 shows the relative error of the monthly mean surface O3 for BASE simu-
lation with respect to the MACC global reanalysis of assimilated O3 for 2010 [28]. The
relative error was within ±15% in almost the entire simulated domain. In many cities and
industrial regions across Asia, emissions of O3 precursors, specifically NOx and NMVOC,
are prevalent, often promoting O3 formation with elevated O3 concentrations reported in
urban areas of China and India. Moreover, O3 concentrations exhibit seasonal variations in
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many parts of Asia, where strong solar radiation enhances O3 formation during summer.
Here, monthly simulated O3 values on land were overestimated by up to 15% from July
to September. Conversely, O3 values at sea were underestimated by 0–10% throughout
the year. Similar trends were found in the model inter-comparison study [35]. These
results may stem from (1) the TP ozone valley [36,37], (2) the depiction of the dispersion
of southwesterly clean marine air masses [38], and (3) the considerable diversity in O3
photochemical production [35,39]. Major challenges remain with regard to reproducing the
surface O3 over Asia using the GEOS-Chem model. However, the relative error of surface
O3 is generally acceptable. Here, I evaluated the effect of O3 on CH4 emission controls for
crops based on the simulation results.

3.2. Surface Methane and Ozone Distributions

Figure 2 shows the average surface CH4 and O3 mixing ratio of the rice cultivated area
for major rice producer countries monthly for the BASE simulation. Figures S2–S4 show
the simulated spatial distribution of CH4, O3, and OH mixing ratios, respectively, at the
ground level for each month for the BASE 2010 simulation. The CH4 mixing ratio in China,
Korea, and Japan was relatively high compared with those of other countries (Figure 2a),
whose CH4 mixing ratio was relatively high in winter compared with summer (Figure 2a),
attributed to OH radicals (Figure S4) produced using ultraviolet light reduction during
summer. The surface CH4 mixing ratio in summer was particularly high in Beijing-Tianjin-
Hebei (BTH), North China Plain (Figure S2), reflecting anthropogenic CH4 emissions from
coal, natural gas, and landfills [40]. The relatively high CH4 in summer and baseline CH4
in China, Korea, and Japan is mainly attributed to air transportation of the relatively high
CH4 mixing ratio from BTH to Korea and Japan. Except for China, Korea, Japan, and
Pakistan, the O3 mixing ratio peaks from spring to winter (Figures 2b and S3); however, the
summer O3 baseline in these four countries is high compared with that of other countries.
The relatively high winter-spring O3 concentrations in all countries except China, Korea,
Japan, and Pakistan are mainly attributed to O3 photolysis followed by the reaction of
excited oxygen atoms (O(1D)) with a relatively high water vapor content in summer and the
reaction of OH radicals (Figure 2c) leading to the loss of O3. Moreover, the inflow of oceanic
clean-up associated with the Asian summer monsoon would reduce O3 concentration
during summer in a relatively low latitude zone. The O3 mixing ratio peak during summer
in China, Japan, and Korea was mainly attributed to (1) the inflow of O3 from the south to
the north by the Asian summer monsoon (Figure S3) and (2) the higher CH4 emission at
BTH (Figure S2). Furthermore, one of the reasons for the high summer O3 concentration in
Pakistan is the influence of the Karakoram range, Hindu Kush mountains, and Himalayas
on the summer southwest monsoon, resulting in the retention of high O3 concentrations
(Figure S3). These O3 trends are consistent with those reported by Liu et al. [41].
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3.3. Distributions of Surface Accumulated Ozone Exposure

The Indo-Gangetic Plain and North China Plain have relatively high summer surface
O3 concentrations [42,43] owing to the comparatively large production of rice across India
and China, respectively (Table 2). These regions also experience the highest O3 pollution
levels (Figure S3). Elevated O3 precursor levels in these areas—influenced by wind con-
vection, clear skies, high pressure, and pollutant circulation—contribute to increased O3
formation and accumulation. Figure 3 shows the spatial distribution of AOT40 and M7 in
BASE simulation. Figure S5 shows the spatial distribution of AOT40 and M7 for CASE 1.
Averaged AOT40 (M7) in rice cultivated areas under the BASE scenario reached 22.3 ppmh
(48.5 ppbv), and the reduction rate of AOT40 (M7) for the simulation with CASE 1 was 17%
(6%) (Table 2). Both metrics were relatively high between 25–40◦ latitude for all scenarios,
with a hotspot identified in the Indo-Gangetic Plain and Yellow River basin. Conversely,
the southern parts of India and Southeast Asia showed relatively low AOT40 and M7
metrics. Deb Roy et al. [44] indicated that the AOT40 values in 2003 were higher along the
Himalayas. Feng et al. [45] and Macro et al. [46] found that AOT40 levels were relatively
high north of the Yellow River basin compared with central and south China. However,
full comparisons are complicated by the differences in the simulation models and years;
however, the results obtained here exhibit trends similar to those observed in previous
studies. One of the factors contributing to the relatively low AOT40 at lower latitudes is
the inflow of air with low O3 concentrations caused by the southwest summer monsoon.

Solar radiation through clear skies, NO2 photolysis, and photo-oxidation of NMVOC
(promotion of NO2) exert a notably high positive correlation between CH4 and O3 in
summer (not shown). Therefore, reducing the CH4 emissions during the summer effectively
reduces the impact of O3 on crops. Although high O3 concentrations in the India-Gangetic
Plain are attributed to meteorological and geographical conditions, in the BTH region, CH4
emissions from major industries such as coal, agriculture, and petroleum are likely the
major contributors to these concentrations. CH4 emission reductions in BTH would reduce
AOT40 and M7 in the 30–40◦ latitude band.

Table 2. Relative yield losses (RYL; %) and rice production losses (RPL; Kt) based on AOT40 (ppmh)
and M7 (ppbv) metrics for the year 2010, according to country.

Country
BASE CASE1 BASE CASE1

AOT40 RYL RPL AOT40 RYL RPL M7 RYL RPL M7 RYL RPL

Japan 9.1 3.8 236.1 6.8 2.8 172.8 45.5 2.0 121.5 43.2 1.6 101.2
Republic of Korea 13.7 5.6 282.5 10.9 4.4 219.8 50.3 2.6 131.8 47.6 2.2 110.5

North Korea 15.5 6.4 136.7 12.4 5.1 108 48.2 2.3 49.1 46.0 2.0 41.8
China 26.5 10.8 22,202.0 22.3 9.1 18,296.1 55.8 3.7 7047.2 52.9 3.2 5971.4

Philippines 0.2 0.1 8.0 0.1 0.1 5.9 21.8 0.1 7.2 20.7 0.0 4.4
Vietnam 11.2 4.7 1138.5 9.7 4.1 949.1 41.8 1.6 416.1 39.8 1.4 348.0

Cambodia 5.6 2.3 74.1 4.2 1.7 54 34.6 0.7 23.6 32.5 0.5 16.8
Laos 19.5 8.7 94.5 17 7.5 81.9 47.1 2.4 22.9 45.1 2.1 20.0

Thailand 3.3 1.4 319.6 2.5 1.1 237.3 31.5 0.6 118.8 29.5 0.4 87.7
Myanmar 1.0 0.4 21.9 1 0.4 26.7 24.0 0.1 5.0 22.1 0.1 2.5
Malaysia 6.3 3.3 38.8 5.4 2.8 32.4 32.4 0.9 12.0 31.0 0.8 10.3
Indonesia 1.6 0.7 541.5 1.3 0.6 428.8 25.6 0.3 215.4 24.5 0.3 177.9

Bangladesh 8.0 3.3 1183.3 5.9 2.4 804.5 38.2 1.2 490.6 34.9 0.8 338.8
Nepal 14.9 6.3 363.6 10.6 4.4 256.2 47.7 2.4 115.5 44.0 1.9 90.9

Bhutan 41.5 18.6 10.3 35.1 15.8 8.4 61.4 4.8 2.2 58.1 4.1 1.9
India 32.8 13.8 17,322.4 26.8 11.2 13,645.8 53.9 3.5 3861.4 50.5 2.9 3161.7

Pakistan 32.3 13.6 1116.8 25.2 10.6 815.3 58.0 4.3 324.9 53.9 3.5 256.5
Brunei 0.1 0.0 0.0 0.1 0.0 0.0 25.3 0.0 0.0 24.5 0.0 0.0
Taiwan 10.6 4.7 26.8 7.9 3.5 20.2 46.9 2.3 12.8 43.8 1.8 10.3

Sri Lanka 0.6 0.3 2.9 0.3 0.2 1.4 31.4 0.4 8.0 29.7 0.3 5.4

Asia 22.3 9.5 45,120.5 18.4 7.8 36,164.6 48.5 2.9 12,985.9 45.8 2.4 10,757.9
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3.4. Relative Rice Yields and Production Losses

Figure 4 shows the O3-induced RYL based on AOT40 and M7 for BASE and CASE
1 simulations. The spatial distribution of RYL based on AOT40 closely aligns with the
results reported by Sharma et al. [47] and Cao et al. [48]. According to our results, all
rice cultivation areas experienced some degree of damage and yield reduction for both
metrics. Based on the country, Aunan et al. [49] showed that RYL based on M7 in China
ranged from 1.1 to 1.5%. Wang and Mauzerall [32] indicated that RYLs based on M7 in
China, Japan, and South Korea are 3–5, 4, and 2%, respectively. Van Dingenen et al. [33]
indicated that RYLs based on AOT40 (M7) in China and India are 3.9% (3.1%) and 8.3%
(5.7%), respectively. Wang et al. (2012) indicated that the RYL in China based on M7 is
5%. Sinha et al. [50] showed that RYLs based on AOT40 in China ranged from 12 to 14%.
Danh et al. [51] showed that RYLs based on AOT40 (M7) in Vietnam ranged from 0.4 to
5.9% (0.02 to 0.06%). Lal et al. [52] showed that the RYL based on AOT40 (M7) in India
was 6.7% (0.3%). Lin et al. [53] indicated that RYLs based on AOT40 in China ranged from
11 to 17%. Sharma et al. [47] showed that RYLs based on AOT40 in India were less than
6%. Zhao et al. [54] indicated that RYLs based on AOT40 in China ranged from 3.9 to 7.3%.
For this study, the aggregated averaged RYLs based on AOT40 (M7) for BASE simulation
in China and India were 10.8% (3.7%) and 13.8% (3.5%), respectively (Table 2). The RYL
based on AOT40 in China obtained from this study was higher than those reported by Van
Dingenen et al. [33] and Zhao et al. [54] but consistent with those reported by Lin et al. [53].
Considering the M7 index, the outcomes demonstrated broad consistency across multiple
studies, except for the findings of Aunan et al. [49]. In contrast, when assessing RYLs
based on the AOT40 metric in India, they notably exceeded the results reported by Van
Dingenen et al. [33], Lal et al. [52], and Sharma et al. [47] but aligned with those reported
by Sinha et al. [50]. The RYL based on M7 in India exceeded that reported by Lal et al. [52]
but was smaller than that reported by Van Dingenen et al. [33]. The variation in RYLs was
attributed to the differences in O3 distribution, simulation models, growing period, and
years. The RYL for rice was largest in Bhutan (18.6% on AOT40; 4.8% on M7), followed
by India (13.8% on AOT40; 3.5% on M7), Pakistan (13.6% on AOT40; 4.3% on M7), China
(10.8% on AOT40; 3.7% on M7), and Laos (8.7% on AOT40; 2.4% on M7). Throughout Asia,
the average RYL was 9.5% on the AOT40 and 2.9% on the M7.
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An RYL gradient, moving from north to south, was evident for both East and South
Asia, based on estimates from both AOT40 and M7 metrics. (Figure 4). Based on regions,
the O3-induced RYL based on AOT40 (M7) for BASE was largest (RYL > 20% (10%)) in the
North China Plain—a highly industrialized and populated area—and a southern part of
the Himalayas, which is located at the southern monsoon winds, is blocked by a mountain
range, for all simulation scenarios. The rest of the rice cultivated area showed that RYL
on AOT40 (M7) ranged from 0 to 20% (0 to 10%). It is noteworthy that areas with higher
RYL estimated using the M7 metric closely mirrored those estimated using the AOT40
metrics, but RYL on M7 was 20% lower in all cultivated areas compared with AOT40. The
falling rate of RYL in Asia for CASE 1 compared with BASE simulation was 1.7% (0.5%)
based on AOT40 (M7), respectively (Figure 4 and Table 2). The RYL value exceeded 5% on
AOT40, considered a critical level [45], and was 68.2% for BASE and 59.6% for CASE 1 of
the total rice cultivated area. Similarly, the RYL values exceeded 5% on M7 and were 17.2%
for BASE and 9.3% for CASE 1.

Considering production, the largest RPL area was the India-Gangetic Plain and the
Yangtze River basin, which were slightly south of the larger RYL area owing to the overall
higher production in the south (Figure 5). The largest aggregated RPL for BASE simulation
was observed in China (22,202 Kt on AOT40; 7047 Kt on M7), followed by India (17,322 Kt
on AOT40; 3861 Kt on M7), Bangladesh (1183 Kt on AOT40; 491 Kt on M7), Vietnam (1139 Kt
on AOT40; 416 Kt on M7), and Pakistan (1117 Kt on AOT40; 325 Kt on M7) (Table 2). The
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RPL reduction in Asia for CASE 1 compared with BASE simulation was 8956 Kt on AOT40
and 2228 Kt on M7, respectively (Figure 5 and Table 2). This indicates that a 50% reduction
in anthropogenic CH4 would reduce losses from the total production in Asia by as much as
1.0% based on AOT40 and 0.3% based on M7.
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CH4-induced O3 affects rice yield and production negatively. Therefore, reducing
CH4 emissions not only mitigates greenhouse warming but also reduces yield losses due
to O3. The highest projected RYL in countries like Bhutan, India, Pakistan, China, and
Laos, based on the AOT40 metric, is likely due to anticipated O3 exposure exceeding
40 ppmh during the growth phase. However, it is important to note that the accuracy of this
value is uncertain due to the lack of high-resolution O3 studies in Asia for 2010 as a basis
for comparison. The study reveals a discrepancy between the RYLs calculated using the
AOT40 and M7 metrics. Rice appears to be more O3-resistant according to the M7 metric
but sensitive according to the AOT40 metric. This could imply that rice is more vulnerable
to short-term, high O3 levels than to prolonged, moderate levels, which is consistent with
the findings of Hollaway et al. [55]. Ground level O3 is harmful to rice, and reduced CH4
concentrations increase rice yields.
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3.5. Uncertainty from Impacts of Methane Emissions

O3 is generated using the interaction of sunlight with emissions of NOx, CO, NMVOC,
and CH4. Furthermore, a certain percentage of tropospheric O3 is transported from the
stratosphere. However, there is approximately a 50% uncertainty in the change in O3
owing to CH4 over 40 years calculated using multiple models that allow for the estimation
of interactions with NOx and NMVOC degradation chemistry and the resulting radical
levels [56]. Notably, 55% of the increase in the O3 budget since the pre-industrial era is
ascribed to NOx, with 25% linked to CH4 and 19% to CO and NMVOC [57]. Therefore, CH4
decomposition chemistry and the resulting O3 formation are elucidated using laboratory,
field, and modeling knowledge. Though model studies indicate contributions from CH4
to O3 trends, determining whether model performance limits the ability to predict O3
trends is difficult [58,59]. Therefore, the extent to which O3 trends can be attributed to
surface CH4 concentration and estimations of the effect of CH4-induced O3 on crop damage
are uncertain. The findings of this study provide valuable insights for policymakers,
aiding the formulation and implementation of emission control measures targeting O3
precursors to enhance the resilience of future crop yields. While external factors like
weather and soil conditions directly impact rice growth, there is a noticeable research
gap concerning the synergistic effects of CH4 and O3 levels with meteorological factors,
including climate change, on local-scale agricultural production. Therefore, aspects such
as long-term surface and troposphere O3 and CH4 observations and model development,
including parameterization and process improvement, should be studied further.

4. Conclusions

In this study, the GEOS-Chem model was applied to study rice impacts from CH4-
induced O3, as well as the effect of reducing anthropogenic CH4 emissions on rice yield
and production across Asia. The average O3-induced RYL for rice in Asia was 9.5%
on AOT40 and 2.9% on M7. The O3-induced damage to rice based on AOT40 and M7
were approximately 45,121 Kt and 12,986 Kt, respectively, on a production basis in Asia.
Regionally, the Hindustan Plains to the Deccan Plateau and the Yellow River Basin exhibited
relatively high RYLs. The Hindustan Plains and Yangtze River basin exhibited a relatively
high RPL. Moreover, simulation analysis shows that reducing anthropogenic CH4 emissions
mitigates O3 damage to rice production. In Asia, the reduced rice production losses with a
50% reduction in anthropogenic CH4 emission were 8956 Kt for AOT40 and 2228 Kt for M7.
Moreover, CH4 control in the BTH in the North China Plain would reduce the effect of O3
pollution on rice yields in high-latitude zones and emphasize the importance of reducing
CH4 emissions. The study findings are expected to contribute to the identification of a
more effective and environmentally friendly strategy for improving rice production against
the backdrop of CH4-induced O3. In addition, this study highlights the pressing necessity
for policy initiatives to reduce anthropogenic CH4 emissions, particularly within sectors
such as agriculture, fossil fuel production, and waste management. Implementing such
measures can effectively mitigate the adverse effects of climate change and substantially
curtail crop yield losses, thereby ensuring food security in major rice-producing nations
across Asia.

Future research should concentrate on refining O3 response models pertaining to
CH4 emissions and improving the accuracy of yield loss predictions. The development of
exposure-response relationships with reduced uncertainty will prove pivotal in quantifying
the benefits associated with CH4 emission reductions on rice yields and production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14101558/s1, Figure S1: Relative error between observed
and simulated surface O3 concentrations for 2010 at (a) January, (b) February, (c) March, (d) April,
(e) May, (f) June, (g) July, (h) August, (i) September, (j) October, (k) November, and (l) December.
Figure S2: Surface CH4 mixing ratio for 2010 at (a) January, (b) February, (c) March, (d) April, (e) May,
(f) June, (g) July, (h) August, (i) September, (j) October, (k) November, and (l) December. Figure S3:

https://www.mdpi.com/article/10.3390/atmos14101558/s1
https://www.mdpi.com/article/10.3390/atmos14101558/s1
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Surface O3 mixing ratio for 2010 at (a) January, (b) February, (c) March, (d) April, (e) May, (f) June, (g)
July, (h) August, (i) September, (j) October, (k) November, and (l) December. Figure S4: Surface OH
mixing ratio for 2010 in (a) January, (b) February, (c) March, (d) April, (e) May, (f) June, (g) July, (h)
August, (i) September, (j) October, (k) November, and (l) December. Figure S5: Distribution of surface
(a) AOT40 and (b) M7 values for rice production areas for 2010 for CASE 1.
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