
Citation: Reja, R.K.; Amin, R.;

Tasneem, Z.; Abhi, S.H.; Bhatti, U.A.;

Sarker, S.K.; Ain, Q.u.; Ghadi, Y.Y. A

New ANN Technique for Short-Term

Wind Speed Prediction Based on

SCADA System Data in Turkey.

Atmosphere 2023, 14, 1516.

https://doi.org/10.3390/

atmos14101516

Academic Editors: William Cheng

and Anthony R. Lupo

Received: 13 July 2023

Revised: 26 September 2023

Accepted: 28 September 2023

Published: 30 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

A New ANN Technique for Short-Term Wind Speed Prediction
Based on SCADA System Data in Turkey
R. K. Reja 1,†, Ruhul Amin 1,†, Zinat Tasneem 1,†, Sarafat Hussain Abhi 1,†, Uzair Aslam Bhatti 2,*,† ,
Subrata Kumar Sarker 1,*,† , Qurat ul Ain 3,† and Yazeed Yasin Ghadi 4,†

1 Department of Mechatronics Engineering, Rajshahi University of Engineering and Technology,
Rajshahi 6204, Bangladesh; 1608029@student.ruet.ac.bd (R.K.R.); 1608018@student.ruet.ac.bd (R.A.);
zinattasneem@mte.ruet.ac.bd (Z.T.); abhi@mte.ruet.ac.bd (S.H.A.)

2 School of Information and Communication Engineering, Hainan University, Haikou 570228, China
3 Amazon Corporate Headquarters, Seattle, WA 98109, USA; engrannie@live.com
4 Department of Computer Science and Software Engineering, Al Ain University,

Al Ain P.O. Box 64141, United Arab Emirates; yazeed.ghadi@aau.ac.ae
* Correspondence: uzair@hainanu.edu.cn (U.A.B.); subrata@mte.ruet.ac.bd (S.K.S.)
† These authors contributed equally to this work.

Abstract: The restored interest now receives renewable energy due to the global decline in green-
house gas emanations and fossil fuel combustion. The fasted growing energy source, wind energy
generation, is recognized as a clean energy source that has grown fast and is used extensively in wind
power-producing facilities. This study’s short-term wind speed estimations are made using a multi-
variate model based on an artificial neural network (ANN) that combines several local measurements,
including wind speed, wind direction, LV active power, and theoretical power curve. The dataset
was received from Turkey’s SCADA system at 10-min intervals, and the actual data validated the
expected performance. The research took wind speed into account as an input parameter and created
a multivariate model. To perform prediction outcomes on time series data, an algorithm such as an
artificial neural network (ANN) is utilized. The experiment verdicts reveal that the ANN algorithm
produces reliable predicting results when metrics like 0.693 for MSE, 0.833 for RMSE and 0.96 for R-
squared or Co-efficient of determination are considered.

Keywords: artificial neural network; time series prediction; wind speed; short-term prediction;
co-efficient of performance

1. Introduction

Energy consumption seems to be increasing at a tremendous rate which influences
many countries to turn toward renewable energy sources [1]. Furthermore, as a result of
pollution, depletion of traditional energy sources, ecological harm, the threat of energy
shortages, and atmospheric pollution, the globe is increasingly reliant on renewable and
clean energy sources such as wind energy [2]. Naturally, one of the most significant
advantages of renewable energy is that a considerable portion of it qualifies as green and
clean energy. Machine Learning (ML) applications in the manufacturing fields of renewable
energies (wind, solar, bio-mass, and hydro-power), smart grids, the catalysis industry,
and power storage and distribution significantly impact sustainability and the environment.

Artificial neural networks are the most recommended method among ML algorithms
because they can generalize perfectly [3]. Predicting wind speeds is essential for both
air pollution model concentrations and the production of wind energy. The ability to
predict wind speed is essential for reducing the standby cost of the wind power grid and
choosing the best reserve capacity at various time intervals [4]. Machine learning in wind
speed predicts produces excellent and dependable power system maneuvers. As a result,
the operating costs of producing wind energy were greatly decreased, and the design and
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construction of power systems and wind farms were aided by the effective integration of
wind energy into the electrical power grid.

The author propositions a durable wind speed extrapolation exemplary based on
innumerable artificial neural network approaches, including Improved Back-Propagation
Network (IBPN), Multi-layer Perception Network (MLPN), Recursive Radial Basis Function
Network (RRBFN), and Elman Network, in the study [5]. Senjyu et al. [6] suggested
utilizing RNN to anticipate wind speed and use that information to prognosticate the
output supremacy of wind generators. According to [7], the author employs an inter-
short-term wind speed projection technique that makes use of multivariate exogenous
input factors. Conv-LSTM and BPNN models are used by Gonggui et al. to address
the issue of wind speed prediction. As the final prediction values, they evaluated the
performance assessment matrix (MAPE = 2.62%, RMSE = 0.151) [8]. After testing with
CEEDMAN (combining full ensemble empirical mode decomposition adaptive noise),
flower pollination algorithm with chaotic local search (CLSFPA), five neural networks,
and no negative constraint theory (NNCT), Wenyu et al. proposed an appropriate wind
speed prediction model [9]. In this study [10], a hybrid model for short-term wind speed
prediction was suggested. The model is tailored to the wind speed data set and extracts
energetic properties to support window slant in speed prediction. Because wind speed
displays high intermodulation distortion and features typically, to improve prediction
performance [11]. The suggested system is a revolutionary hybrid prediction system with
efficient data decomposition methods, recurrent neural network algorithms, and error
deconstruction repair mechanisms. A highly accurate short-term prediction model is
required to fill the research gap in wind speed prediction applications. Due to the effect of
different atmospheric conditions, the wind is unpredictable.

A trustworthy prediction model is therefore required. The proposed short-term wind
speed prediction models in this study solved the research gaps indicated previously by
including the essential influencing parameters as model inputs [12]. The ability to anticipate
wind speed is a vital hot issue in the study since it is unpredictable and time-varying. Our
proposed study paper makes the following significant contributions:

1. An appropriate wind speed prediction model is suggested, and among the models,
ANN is thought to be the best.

2. Wind speed prediction concerning short-term horizon.
3. Analyzed a real-time wind data-set to assess the performance of the suggested models.
4. Concerning hidden neurons, evaluations based on functionality and consistency

were conducted.
5. Assessment criteria are used to compare actual and predicted data to determine how

well the proposed model predicts future wind speed values.

Here, the key elements of the short-term wind speed extrapolation model’s develop-
ment and performance improvement, which will be covered in greater depth later, are
noted. The rest of the article is organized like follows: Section 2 emphasizes the impor-
tance of predicting wind speed. Section 3 illustrates the related works to this research.
The methodology of this research, the development procedure of the model, and the details
steps to carry out the outcome of the research are discussed in Section 4. Section 5 discusses
the performance evaluation metrics. Section 6 highlights the model’s structural framework.
In Section 7 the ANN model results are reviewed, and identifying the ANN model out-
comes is based on the diversity of optimizer functions. Section 8 provides the future scope
of the thesis so that it can be updated in future work, and Section 9 concludes the paper.

2. Significance of Anticipating Wind Speed

Due to a lack of traditional energy sources, environmental harm, and carbon dioxide
emissions, wind speed scheming has been a popular topic in research. Because of various
common characteristics, including its self-erudition solid aptitude, real-time maneuver-
ability, fault tolerance, straightforward implementation, and economic viability, ANN is
extensively employed in wind speed predicting [13]. However, wind power has a detri-
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mental effect on the power system because of how abrupt, unpredictable, and indecisive.
These adverse consequences have mitigated the significance of predicting the wind speed
is explained further beneath:

1. To support the administration of a wind farm and electricity grid.
2. Wind energy is really being integrated into the electricity grid.
3. Jobs in the power system that are constant and critical.
4. To determine the need for a system with a shorter gyrating fallback.
5. To reduce the cost at which wind energy is generated.

Time series analysis offers several instruments for weather and climate research, includ-
ing weather prediction, the development of wind farms, etc. Decentralized methods, such
as numerical prediction models, are typically used to estimate wind speed in small time
increments [14]. The goal of this study is to use an artificial neural network to analyze time
series data of wind speed at 10-min intervals (ANN). Several other authors have revealed
appropriate forms of this paper, including Perez-Llera et al. [15], Bilgili M et al. [16], Torres
JL et al. [17], H. Selcuk Nogay et al. [18], Karakuş O et al. [19], and Neshat et al. [20].

3. Related Works

This article has presented a research study related to this research. It is split into two
segments. The first portion discusses predicting wind speed, while the second section
discusses machine learning techniques. In the second section, both long-term wind speed
prediction using machine learning approaches and short-term wind speed prediction using
artificial neural networks are covered.

3.1. Prediction of Wind Speed

An instantaneous speed is noted as a peak wind speed, wind gust, or squall; alterna-
tively, it could be an averaged the phrase “wind speed” describes the rate at which air is
moving past a specific spot. For a flexible and intelligent electricity grid, wind parameter
prediction is essential. By predicting wind parameters, wind power generation can be
anticipated. A wind farm can benefit greatly from this in terms of maintenance, planning,
and productivity. Wind speed and direction are essential for monitoring and predicting
weather patterns and the state of the global climate.

3.2. Wind Speed Prediction Using ML Techniques

A frequent and accurate prediction of wind speed is necessary for wind energy, a renew-
able energy source with enormous development potential. Using the fireworks approach,
an LSTM neural network-based wind speed estimation model was improved (FWA). In an
integrated predicting strategy, it is also advised for hyperparameter tuning [21]. FWA is
used to improve the hyperparameters of an LSTM-based wind speed prediction model.
The model’s parameters may be established adaptively, highlighting the model’s reliance
on wind speed data and rapid real-time change. For short-term time series prediction,
Viet et al. [22] suggests a hybrid deep learning-based architecture termed ConvLSTM.
The recommended computational structure conglomerates the advantages of CNN and
LSTM networks to produce highly accurate wind speed predictions with fewer hidden
neurons, delays, and computing complexity. RNN identify the sequential properties of
input and utilize patterns to predict the likely situation that follows. This paper proposes
an innovative hybrid prediction system that combines effective data disintegration proce-
dures, recurrent neural network extrapolation systems, and error putrefaction dealings [23].
The study uses both univariate and multivariate ARIMA models, as well as their recurrent
neural network counterparts, to predict wind speed. Recurrent neural network models
outperform ARIMA models, whereas multivariate models outperform univariate models,
according to the study’s findings [24]. Finally, it is possible to infer that the use of machine
learning algorithms in wind speed prediction is increasing on a daily basis in order to more
precisely predict wind speed while also reducing prediction time and cost.
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3.2.1. ANN for Long-Term Wind Speed Prediction

Due to the energy crisis, finding marginal energy cradles for a sustainable energy
stream has become critical, and wind energy is one of the appealing choices. An essential
component of a wind energy scheme is wind speed. Avoid ineffective and less dependable
results, wind energy, which has unstable and intermittent features. Long-term wind speed
prediction is a popular topic that necessitates the establishment of precise projected data for
the best design of wind farms, restructured electricity markets, and energy management
are just a few of the research areas.

3.2.2. ANN-Based Short-Term Wind Speed Prediction

The term “short-term wind speed prediction” refers to hourly and daily prediction
for the next 24 and 72 h, respectively. In [24], wind speed data were chosen to see how
a space-time model might estimate wind speed. Furthermore, wind speed demonstrates
significant non-linearity and non-stationarity. In order to improve prediction accuracy,
Duan et al. [11] suggests a particular hybridized prediction system that combines efficient
data putrefaction techniques, recurrent neural network prophecy algorithms, and error
fetidness repair methods. Short-term and long-term wind speed prediction, on the other
hand, is required for the installation of any wind farm. Table 1 lists important traits and
findings from several studies using long-term and short-term wind speed prediction.

Table 1. Various Models Used for Both Long and Short Term Wind Speed Prediction.

Serial No. Features Findings Year Reference

1 • Leading forecasting models
• Available forecasting models

• Each model can predict long-term
wind speed accurately.

2021 [25]

2
• Control power systems and wind farms. • Improves the wind speed prediction

accuracy. 2021 [5]

3
• Wind speed prediction by using RNN. • Able to forecast accurate results.

2006 [6]

4

• Wind speed might be predicted using
the Space-time model.

• Wind data were used as geo-
statistical variables.

• Accurately estimate short-term wind
speeds in both space and time. 2020 [26]

5
• Data measurements of 10 years

were obtained
• Very good accuracy. 2011 [27]

6 • The site’s time sequence is shown. • Very good accuracy. 2009 [28]

4. Methodology

Even though it is necessary to estimate wind speed owing to the uneven nature
of wind, data-driven approaches are often employed to accomplish so [29]. In most
circumstances, wind speed prognosis is difficult, especially when air pollution modeling
is included [30]. Machine learning techniques can play a tremendous role in data mining
approaches, especially in classification and regression problems. Here we are concerned
with the regression problem that strongly focuses on predicting future conditions or values
of a particular data based on the current state or values of these data. Machine learning
automatically completes a specific task by teaching one of its algorithms what to do with a
particular data set. The importance of a specific machine learning method in training the
data set is seen in Figure 1 below.
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Figure 1. Application of machine learning algorithm on the testing data-set.

Learning begins with observations or knowledge, such as examples, first-hand expe-
rience, or teaching, to seek patterns in the data and subsequently make better decisions
based on the examples we provide. The major objective is to make it possible for computers
to respond appropriately without human intervention or assistance and to change activities
as needed.

4.1. Time Series Forecasting

Prediction is the act of scaling something by one or more user data. A significant field
of scholarly investigation into the accumulation of data from time series observations is
time series prediction [31]. A time series will offer predictions of brand-new words in the
future, which may be compared to what has already been seen. Suppose we predict time
series x1,x2,. . . . . . xN and the future value xN+h where h is the lead time. The prediction
method is an algorithmic rule and procedure used in the predicting model to anticipate
future data based on the current or present observed data. There are several prediction
methods, such as Judgemental, Univariate, and Multivariate time series prediction.

Here, we focus only on multivariate prediction based on the types of dataset features.
To anticipate a multivariate time series, more than one feature, or more than one equation,
must be included if the components are interdependent. Techniques for analyzing time
series data are used to provide beneficial statistical results that reveal the data’s many prop-
erties. By using a model to estimate future values using previously observed information,
time series prediction is a technique. With training and testing data taken from Turkey’s
online SCADA system, the research uses machine learning.

4.2. Model Overview (ANN)

The artificial neural network is a framework for data processing that is used to examine
many aspects of a system that processes information and is prompted by the human
nervous system, such as the brain [32]. The connectionist model of the neural network is
used to train and recall algorithms, and this connection forms the neural structure of the
network [33]. The usage of ANN is widespread due to its many advantages, including
its high level of flexibility, self-learning capacity, and error tolerance. Elman, Hopfield,
and Boltzmann machines are examples of feedback networks [34].

Networks that transmit information forward and backward are known as artificial
neural networks (ANN). Feed-forward networks have input-to-output layers like MLP,
BPN, and RBFN, for example [35]. The suggested wind speed prognosis model is built
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with four inputs, and the optional input is omitted from the data set, which has no effect
on the wind speed prediction. This model’s input and output vectors are explained below:

Input vector X = [Wind speed (m/s), LV active power (kW), Wind direction (degree),
Theoretical power curve (Kwh)].

Output vector Y = [predicted wind speed (m/s)].
The ANN model’s architecture is ultimately linked, with three concealed layers and

one yield layer. The architecture of the ANN-based short-term wind speed prediction
model is depicted in Figure 2.

Figure 2. Machine learning algorithm implementation on the training dataset.

The weights are multiplied by the inputs in the feed-forward process, and the resulting
value is stimulated toward the ensuing layer until it approaches the production layer,
as shown below [36]:

ŷ = f1

n

∑
i

wixi (1)

x̂ = f2

m

∑
j

wijyt−1 (2)

Here, f1 and f2 are activation functions, and wij is the weight relocated from the jth
input to the ith node, which is the input x̂ is the synopsis of inputs of the ith node. Using trial
and error methods together with the necessary information, the correct number of neurons
in the hidden layer and the transfer functions are established. The back-propagation
approach yields the error value by computing the difference between the anticipated and
expected values, starting with an output layer and working your way back to the input
layer. It is signposted by the representation δ(l)j, which correspondent to the blunder of
node j in layer l.

δ(l)j = xj − yj (3)
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After adjusting the weight, the technique is done multiple times because it is monotonous.
When the model is processed, the remembered weights are kept in the ANN. The amount
of DoF (degree of freedom) required to fully master the processing operation and how
long it takes to complete the processing operation are both strongly influenced by the
number of input and output nodes. As the amount of hidden nodes grows, the system
may occasionally become overly well-fitted [37]. The ANN execution is examined when
training is complete. Depending on the outcome, the ANN may need to be retrained or
may very well be used for the intended purpose.

4.3. Data Collection

Data from a wind turbine’s SCADA system that was operational and producing power
in Turkey from January to December 2018 was gathered for this study. SCADA Systems
measure and store information in wind turbines every ten minutes, including wind speed,
wind direction, generated electricity, and other factors [38]. The data monitoring system
and meteorological stations are displayed in Figure 3. This stage is crucial since how
effective your prediction model may be will genuinely depend on the type and volume of
data we gather. The research’s data set includes the following:

1. Date/Time (for 10 min interludes)
2. LV Active Power (kW): The turbine’s output at the moment in terms of power.
3. Wind Speed (m/s): At the height of the turbine’s hub, the wind speed.
4. Theoretical Power Curve (KWh): The turbine’s theoretical power outputs at the wind

speed recommended by the manufacturer.
5. Wind Direction (°): The wind direction at the turbine’s hub height.

Figure 3. The locations of monitoring devices and meteorological stations in Turkey [39].

4.4. Data Preparation

We load our data in the proper location and prepare it for usage in our machine
learning model training. Additionally, this would be a good time to perform any necessary
visualizations of our data to assist us to identify any imbalances and determine whether
there are any relevant connections between different elements that we can take advantage of.
In the beginning, there were 52,530 rows in the data-set obtained from the SCADA system
archive in Turkey. The data-set will be split into two parts for our analysis. The initial
segment will comprise the majority of the data set needed to build the model. The training
set contains the vast bulk of the data (75%). The second data-set component will be utilized
to test the model. Roughly 25% of the original data set is present in the testing data set.
The data we acquire occasionally requires various kinds of modifications and alterations.
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During this phase, tasks including standardization, error correction, the elimination of
certain columns or features, and more are completed. Depending on the model we choose,
we must normalize our data.

4.5. Data-Set Cleaning and Visualization

The dataset was collected from the SCADA system in turkey and converted into
comma-separated values (CSV). The data will be stored in the data frame and the “Date/Time”
features drop out. The data with NaN values will be dropped out from the data frame.
The date column will be used to group all of the CSV files, and the mean will then be
computed. A CSV file will be used to store the finished data frame. The resultant data will
be visualized for further analyzing the dataset. Figure 4 depicts the wind speed density
and rotational angle of the wind turbine rotor with regard to the hub. The wind rose is
divided into eight parts, each of which is worth 45°. The velocity is positioned radially
to highlight the wind speed at the specific angle of the turbine rotor. The spoke’s end
represents the highest values, while its center represents the lowest, and the incremental
velocity is 5 m/s. This figure visualizes that, at the locations of N to E or 0°–90°and S to S-W
or 180°–225°of the wind turbine rotor, the wind speed is excessively greater. The varied
color-coated rectangles show the velocity range for each co-ordination. The maximum
power for high density of wind speed is generated by the rotor positions at 0°–90°degrees
and 180°–225° degrees.

From Figure 5, we can see that the theoretical power production curve fits well with the
real power production (LV Active Power (KW)). This figure also depicts that the wind speed
reaches a maximum level and continues in a straight line if the power reaches 3500 KW.

Figure 4. Diagram of wind speed and direction.
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Figure 5. Wind speed and power production chart.

5. Model Performance Evaluation

The main features of regression issues concentrate on simply containing the dataset
of the intended actual values, and the errors show how the model makes errors in its
prediction. Using specific metrics to make a comparison between the original aim and the
predicted one is the primary idea behind assessing the success of the regression model.
Depending on the sort of model, different assessment measures are used. We’ll briefly go
through the assessment measures in this part to make it easier to see how accurate the
regression model is.

5.1. Background in Mathematics

In the succeeding procedures, Xi is the prophesied ith rate, and Yi is the predicted ith
value of the elementary SCADA system dataset. The model predicts the Yi value based on
the tangible value of dataset Xi, and m is the aggregate data.

5.1.1. Mean Squared Error (MSE)

MSE (Mean Squared Error) is a measure of the difference between actual and expected
values that is calculated by squaring the mean difference across the whole data set. MSE
may be used to find any outliers that are required [40]. The squaring portion of the function
enlarges the error if the model eventually produces one especially poor predict. MSE has
the best value of zero and the worst value of (Infinity). The formula for mean squared error
is given below:

MSE =
m

∑
i=1

(Xi − Yi)
2 (4)

5.1.2. Root Mean Squared Error (RMSE)

The root mean squared error, or RMSE, is the calculation’s root (MSE). The most typical
statistic used to judge how well a regression model operates is RMSE [41]. The result is that
a high RMSE is “bad” and a low RMSE is “good”. The formula of RMSE is shown below:
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RMSE =

√
1
m

m

∑
i=1

(Xi − Yi)2 (5)

MSE seems to be the average of the squared residual terms. Additionally, the RMSE is
only regarded as the mean squared error’s root (MSE).

5.1.3. Co-Efficient of Determination (R-Squared or R2 )

The strong relationship between the residuals is provided by the coefficient of determi-
nation, commonly abbreviated as R2 (i.e., between the actual and predicted values) [42]. It
spans from 0.0 to 1.0, for instance, R2 = 0.89 means that R2 accounts for 89% of the variance
of the anticipated variables in the total observed responses of the data. Here is the simple
formula for R2 given below:

R2 = 1 − ∑m
i=1(Xi − Yi)

2

∑m
i=1(Ȳ − Yi)2 (6)

While both RMSE and R2 assess a model’s quality of fit, they define ”good” differently.
“Good” for RMSE denotes that the model produces precise predictions (small residuals).
“Good” for R2 signifies that the predictor variable predicts, as opposed to the response
variable just having low variation and being straightforward to predict even in the absence
of the predictor variable [43]. There are mainly four conditions taken into consideration for
regression models evaluation metrics such as:

1. Low RMSE and High R2 ( best case)
2. Low RMSE and Low R2

3. High RMSE and High R2

4. High RMSE and High R2 (worst case)

Low RMSE and High R2 : The residuals are firmly centered about zero concerning the
scale of the response parameters, resulting in why this is regarded as the best situation.

Low RMSE and Low R2: The models are good enough because the RMSE value is low
but the observed values are independent of the predicted values that indirectly highlight
no relation in the residuals.

High RMSE and High R2: In this case, the model produces poor predictions and there
is still hope though the predictor determines the observed data.

High RMSE and High R2 (worst case): This is considered the worst case because
the model generates crummy predictions (as high RMSE) and the predictor provides no
information about the observed data.

6. The Structure of the ANN-Based Prediction Model for Short-Term Data

The suggested ANN-based model for predicting short-term wind speeds is shown in
Figure 6 as an architectural diagram. A two-part primary model is presented here, with the
first section focusing on data preparation and the second highlighting the development
of the suggested model. After completing a number of tasks, such as data cleaning and
removing extraneous characteristics from the data, the preprocessing portion divides test
and train data. The data obtained is then entered into the model to provide the desired
result of anticipating future values.
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Figure 6. Diagram of the suggested model’s architecture.

7. Analyze the Results & Discussion

Using a multivariate artificial neural network model, we evaluated the precision
of wind speed prediction in this study. So we divided our dataset into training and
testing parts, utilizing 25% of the data for testing and the lingering 75% for training.
The decision to allocate 75% of the dataset for training and 25% for testing serves a pivotal
role in achieving a robust and effective machine learning model. This proportion strikes a
delicate equilibrium between two fundamental objectives: nurturing the model’s capacity
to comprehend intricate data patterns and validating its proficiency on unseen instances.
By dedicating a substantial portion to training, the model is endowed with ample exposure
to the underlying relationships within the data, enabling it to discern complex correlations
and trends. This mitigates the risk of overfitting, where the model becomes excessively
tailored to the training data’s idiosyncrasies. On the other hand, setting aside a quarter of
the data for testing facilitates a comprehensive evaluation of the model’s generalization
prowess. This reserved subset acts as a litmus test for assessing how well the model
extrapolates its learned knowledge to previously unseen scenarios. Ultimately, the 75–25%
split encapsulates a well-considered balance that fosters accurate learning while ensuring
reliable performance appraisal, laying the foundation for a dependable and insightful
machine learning solution.Initially, we build a regressor object with the names xtrain and
ytrain, where xtrain has all characteristics except for the one that needs to be predicted and
ytrain contains those features. The values of the ytest are then predicted.
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7.1. The Configuration of Our Proposed ANN Model

The effective Adam optimizer function and the Mean Squared Error (MSE) loss func-
tion were employed. With a batch size of 32, the model will be suitable for 100 training
epochs. We can make predictions for the complete test dataset after the model has been
fitted. The architecture of a neural network consists of layers, each containing neurons.
The choice of the number of layers and neurons in those layers can have a significant impact
on the network’s performance. However, there is no one-size-fits-all answer, and the opti-
mal architecture can vary greatly depending on the complexity of the problem, the amount
of available data, and other factors. Generally, deeper networks (more layers) can capture
complex relationships in the data, but they can also lead to overfitting if not properly regu-
larized. Shallower networks might generalize better but might struggle to learn intricate
patterns. Similarly, more neurons per layer can increase the capacity of the network to
capture complex patterns, but too many neurons can lead to overfitting. This study layers
are more to understand better relationship of the data. The setup of our suggested ANN
model, which is utilized to predict the future value of the data, is shown in Table 2.

Table 2. Configuration of ANN Model.

No. of Hidden Layer No. of Neurons in Each Layer Optimizer Function

01 128

Adam
02 64

03 32

04 1

7.2. The ANN Model’S Outcome

Table 3 shows that the ANN model has strong prediction outcomes and accuracy due to
its low RMSE and high R2 value as compare to other methods of study [44] which used ran-
dom forest and study [45] which used neural network for prediction without optimization.
This model uses adam optimizer function because of providing the highest performance or
co-efficient of performance, and MSE and RMSE value among other optimizer functions.
Figure 7. illustrates the training and test error that happens when the model is run on split
data. According to this graph, the test error varies between epochs whereas the training
error decreases as the number of epochs increases. The discrepancy between the actual and
predicted wind speed is shown in Figure 8a based on the suggested short-term artificial
neural network model. More than 12,000 data points of actual and anticipated values are
presented for the simplification of Figure 8a. And Figure 8b highlights the predicted wind
speed of over 25% of test data among the total data of the data-set. The maximum speed of
wind exceeds more than 20 m/s and most wind speeds vary from 5 m/s to 15 m/s. When
the performance of the suggested model is evaluated using real wind speed-based data,
as shown in Figure 8a, the predicted value is noticeably closer to the actual value. Two
estimated metrics, such as RMSE and R2, are regarded critical aspects in evaluating the
model’s performance, where the RMSE value is substantially lower and R2 is relatively high
(from Table 3), indicating the best scenario among the other four points in the regression
model. The ANN model utilized two hundred twenty-five neurons to mend short-term
wind speed speculating. The findings support the hypothesis that the suggested method
yields superior outcomes over alternatives.
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Table 3. The ANN Model’s Outcome comparison with other methods.

Method Mean Squared Error (MSE) (m/s) Root Mean Squared Error
(RMSE) (m/s)

Co-Efficient of Determination
(R-Squared or R2) (m/s)

Proposed Method 0.693 0.833 0.96 or 96%

Study [44] 0.794 0.939 0.93 or 93%

Study [45] 0.823 0.943 0.91 or 91%

Figure 7. The model loss of the train and test data.

(a) (b)

Figure 8. (a) Actual and anticipated wind speed comparison., and (b) Predicted wind speed
(m/s) characteristics.
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7.3. Statistical Model Evaluation

Table 4 illustrates the performance of the model based on different optimizer functions
while the neuron numbers are kept the same for all assessment processes.

Table 4. Performance Evaluation of the ANN Model Based on Different Optimizer Functions.

Optimization Function Mean Squared Error (m/s) Root Mean Squared Error (RMSE) (m/s) Coefficient of Performance
(R-Squared or R2) (m/s)

“sgd” 0.743 0.862 0.96 or 96%

“RMSprop” 0.773 0.879 0.954 or 95.4%

“Adadelta” 1.425 1.194 0.915 or 91.5%

“Adagrad” 1.001 1.000 0.940 or 94%

“Adamax” 0.786 0.887 0.953 or 95.3%

“Nadam” 0.676 0.822 0 .959 or 96%

“Ftrl” 1.188 1.089 0.929 or 93%

Figure 9 illustrates the comparison of different optimizers of our proposed ANN
model. Suppose, the “Nadam” optimizer highlights the lowest difference between actual
and anticipated values than other ones. However, “Adadelta” and “Ftrl” give the greatest
discrepancy between the data-actual set’s and projected values. The performance of the
model is good for the “sgd” optimizer and bad for the “Adadelta” optimizer as well due to
having high and low values of R2 in comparison to other functions.

Figure 9. Comparison of seven different optimizer functions of the ANN model based on their
performance metrics values.

8. Future Scope

For easy model training, our model is currently fitted for multivariate parameters.
Later, it may be expanded to include various parameters whose data is available in our
data-set. On a minute basis, the time series data may be processed with more control over
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the calculations. Consequently, a more in-depth analysis of the time series data is provided.
We may implement Support Vector Regression using the SVM execution developed for this
job with the right understanding of the science behind it. Recently, many new methods
exists for prediction and deep analysis which can be used for improving results of deep
analysis [46,47].

While also taking into account changes to the neural network’s engineering, various
pre-processing techniques, and the inclusion of new, unique elements, we anticipate keep-
ing an eye out for ways to improve our model’s predictions [48,49]. In the future, we’ll
take additional measurements to predict working conditions under increasingly severe
situations. Additionally, we will consider the fundamental causes of deficits and investigate
their characteristics using several time series regression and classification techniques, such
as the one that makes use of deep belief networks. Future research will focus on designing
a memory block that is more successful, taking into account the drawback of a long training
cycle and also developing improved modeling approach [50–52].

The presented study holds significant practical implications within the realm of re-
newable energy, particularly wind energy generation. Given the escalating global focus on
mitigating greenhouse gas emissions and transitioning away from fossil fuels, the resur-
gence of interest in renewable energy sources, like wind energy, becomes highly relevant.
Wind power generation has emerged as a leading contender in this transition due to its
rapid growth and reputation as a clean energy alternative.

The study’s reliance on real-world data acquired from Turkey’s SCADA system,
with 10-min interval measurements, ensures its applicability to practical wind power
facilities. This empirical validation underscores the reliability of the proposed approach.
The integration of an ANN algorithm, tailored for time series data prediction, enhances
the accuracy of short-term wind speed estimations, thereby contributing to more effective
resource allocation and operational planning for wind energy facilities.

The reported performance metrics, such as the Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and Coefficient of Determination (R-squared), further substantiate
the effectiveness of the ANN algorithm. The study’s notable outcomes, including an MSE
of 0.693, an RMSE of 0.833, and an R-squared of 0.96, underscore the model’s ability to
provide reliable wind speed predictions.

Practically, these findings hold immense potential for the renewable energy sector.
By harnessing accurate short-term wind speed estimations, wind power-producing facilities
can optimize energy production, improve grid integration, and enhance overall operational
efficiency. Such advancements contribute not only to meeting clean energy targets but also
to driving economic and environmental sustainability in the broader context of renewable
energy adoption. Due to the reduction of the model’s contribution, it has broad applica-
bility to several grouping display tasks, including content analysis, music identification,
and speech recognition. It may also be successfully delivered to continuous frameworks or
inserted frameworks due to its small size and productivity. It will need further investigation
to determine why the Attention ANN cell fails to successfully coordinate the execution of
the General ANN cell on some data-sets.

9. Conclusions

The ability to reduce conventional energy usage and emissions, both of which are
viewed as crucial factors in the current environment, makes wind speed prediction essential
for renewable energy dispatching. The efficiency of wind energy might be greatly increased
by accurate wind speed predictions.

This research plans and investigates strategies for predicting wind speed using short-
term wind speed predictions. This study suggests the two-stage disintegration approach
combined with short-term wind speed anticipating. The prediction system comprises data
preparation, optimization, and deep learning prediction strategies.

This model aids in the prediction of data every ten minutes. Here, the model’s perfor-
mance may significantly improve wind energy efficiency. RMSE, MSE, and R2 metrics are
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recycled to prognoses the imminent value of wind speed accurately. In this instance, data
from the Turkish SCADA system are utilized, and the dataset is considered for training and
testing purposes to validate the performance of the model. Exogenous parameters such as
wind direction, LV active power, and theoretical power curve are plausible approaches for
calculating short-term wind speed. The MSE, RMSE, and R2 values indicate how effectively
the model predicts the wind speed value in the future.
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