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Abstract: Obtaining precise and detailed precipitation data is crucial for analyzing watershed hydrol-
ogy, ensuring sustainable water resource management, and monitoring events such as floods and
droughts. Due to the complex relationship between precipitation and geographic factors, this study
divides the entire country of China into eight vegetation zones based on different vegetation types.
Within each vegetation zone, we employ a seasonally adjusted Extreme Random Trees approach to
spatially downscale GPM (Global Precipitation Measurement) satellite monthly precipitation data.
To validate the effectiveness of this method, we compare it with kriging interpolation and traditional
global downscaling methods. By increasing the spatial resolution of the GPM monthly precipitation
dataset from 0.1◦ to 0.01◦, we evaluate the downscaled results and validate them against ground-level
rain gauge data and GPM satellite precipitation data. The results indicate that the partitioned area
prediction method outperforms other approaches, resulting in a precipitation dataset that not only
achieves high accuracy but also offers finer spatial resolution compared to the original GPM precip-
itation dataset. Overall, this approach enhances the model’s capability to capture complex spatial
features and demonstrates excellent generalization. The resulting higher-resolution precipitation
dataset enables the creation of more accurate precipitation distribution maps, providing data support
for regions lacking hydrological information. These data can be used to analyze seasonal precipitation
patterns and reveal differences in precipitation across different seasons and geographic regions.

Keywords: spatial downscaling; precipitation; vegetation regions; GPM

1. Introduction
1.1. Background Introduction

Precipitation is one of the fundamental meteorological elements on Earth, with far-
reaching effects on both natural ecosystems and human societies. The accuracy and preci-
sion of precipitation data are critically important in diverse fields, from agriculture and
urban planning to water resource management and disaster preparedness. Moreover, the
temporal and spatial distribution of precipitation not only regulates the functioning of
the Earth’s surface water cycle [1–3], but also serves as foundational data for research
in areas such as climate science, hydrology, and ecology. The rapid and accurate collec-
tion of high-precision precipitation data holds great significance. While the acquisition of
precipitation data relies on ground-based meteorological stations, the extensive area and
complex terrain of China, combined with limitations posed by topography and scarcity
of meteorological instruments, lead to a sparse and uneven distribution of monitoring
stations [4]. In some areas, complete and continuous multi-year precipitation data are
lacking, making it challenging to obtain actual observed precipitation information [5].
Satellite remote sensing, with its extensive coverage, continuous observations, and high
spatiotemporal resolution, offers a valuable means of obtaining precipitation data [6–9].
Presently, satellite remote sensing precipitation products have become an essential resource
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for acquiring spatial precipitation data. Nonetheless, due to sensor limitations and obser-
vational resolution constraints, remote sensing precipitation data often suffer from low
spatial precision. The original remote sensing precipitation data fall short of meeting the
high-precision, high-resolution data requirements in hydrology. While efforts have been
made to enhance precipitation monitoring accuracy, mainly through multiple regression
models, physical models [10–16], and some high-resolution numerical models, their preci-
sion remains limited and inadequate for practical applications. To address this issue and
enhance the precision and accuracy of remote sensing precipitation data, there is a need to
engage in downscaling studies.

1.2. Traditional Downscaling Methods

Traditional methods for spatial precipitation estimation typically involve using statis-
tical downscaling models and interpolation techniques such as Thiessen polygons, inverse
distance weighting, and ordinary kriging to estimate ground-based rain gauge data [17–19].
These methods primarily consider precipitation information from nearby stations. How-
ever, due to the spatial heterogeneity of precipitation, researchers have started integrating
additional data to improve spatial precipitation estimation [20–22]. For instance, when
employing kriging with drift for spatial precipitation estimation, incorporating elevation
information can enhance precision [23]. Some researchers have used partial least squares
regression analysis to establish regression models based on latitude, longitude, elevation,
terrain impact, and shading [24], for estimating the spatial distribution of annual and
seasonal precipitation in the Tibet region [25]. Others have incorporated NDVI (normalized
difference vegetation index) [26] data to enhance interpolation accuracy in sparsely popu-
lated rain gauge areas [27–29]. Nonetheless, due to the sparse and uneven distribution of
rain gauge stations, obtaining spatial distribution information for precipitation becomes
challenging when station numbers are insufficient. Xu and colleagues [30] combined the
optical and physical properties of clouds with the relationship to precipitation to construct
an efficient GWR downscaling model, providing high-resolution daily precipitation data
for the Three Rivers Source region. Haji-Aghajany [31] used a combination of the statistical
downscaling model (SDSM) and artificial neural networks (ANNs) with Global Navigation
Satellite System (GNSS)-based functional tropospheric tomography to extract humidity
indices and improve the resolution of precipitation data during wet months. However,
the GNSS-based functional tropospheric tomography technique is operationally complex
and costly, and not all regions have readily available GNSS data, which may limit the
applicability of the method. Zhang [32] developed a hybrid statistical downscaling model
that combines bias correction and Bayesian model averaging to improve the accuracy of
downscaling methods, making it better suited for predicting extreme weather conditions.
However, this method is more complex to implement and operate, requiring highly special-
ized skills to configure and manage such a complex model. Additionally, the hybrid model
demands a substantial quantity of input data, which may make it challenging to apply in
remote areas.

1.3. Machine Learning Downscaling Methods

In recent years, machine learning algorithms have gained prominence in downscal-
ing [33–35]. They excel at capturing the complex relationship between precipitation and
the surface, effectively avoiding overfitting, and demonstrating robust generalization capa-
bilities [36]. Jing [37], using the random forest (RF) algorithm, employed the normalized
difference vegetation index (NDVI), land surface temperature (LST), and digital eleva-
tion model (DEM) data to obtain 1 km resolution tropical rainfall measuring mission
(TRMM) [38] satellite products in northeastern China. Zhang [39] simulated TRMM data
for the upstream basin area of the Three Gorges using support vector machines, considering
the connections between TRMM, vegetation index, and topography. Chen [40], based on
GPM data, compared the performance of four models—univariate regression, multivariate
regression, random forest, and support vector machine—in semi-arid to arid regions. The
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results indicated that machine learning-driven methods outperformed parameter regres-
sion approaches in precipitation prediction. Sharifi [41] conducted downscaling simulations
on GPM data for northern Australia using neural networks. Machine learning models used
in traditional global downscaling methods typically need to consider complex relationships
among multiple factors and variables, which may make it challenging to adapt to changes
in precipitation distribution caused by different geographic regions, resulting in limited
fitting accuracy and relatively poor generalization performance in large-scale study areas.

Given the limited ability of traditional global downscaling models to generalize ef-
fectively, especially when confronted with variations in spatial precipitation distribution
resulting from different geographical regions [42,43], this study introduces an approach to
partition the research area into eight vegetation zones based on vegetation types. Within
each of these vegetation zones, we utilize the Extreme Random Trees method for spatially
downscaling GPM monthly precipitation data. To evaluate the efficacy of this approach, we
conduct a comparative analysis with predictions made using the Extreme Random Trees
model without the vegetation zone division, as well as with outcomes obtained through
kriging interpolation. The validation process includes a comparison of the downscaled
results with ground-level rain gauge data and the original GPM precipitation dataset. The
purpose of this paper is to improve downscaled precipitation research by addressing the
issue of weaker model generalization due to differences in spatial precipitation distribution
in different geographical regions. This aims to provide precipitation data having higher
spatial accuracy for related fields.

2. Materials and Methods
2.1. Data Collection
2.1.1. GPM Satellite Precipitation Data

The Global Precipitation Measurement (GPM) satellite [44], a joint endeavor between
NASA (U.S. National Aeronautics and Space Administration) and JAXA (Japan Aerospace
Exploration Agency), furnishes high-quality global precipitation data. Equipped with
multiple advanced instruments dedicated to observing precipitation, the GPM satellite
facilitates the dissemination of precipitation information characterized by high spatiotem-
poral resolution. For the purposes of this study, the GPM data used are sourced from the
Data Center of NASA’s Goddard Space Flight Center (https://disc.gsfc.nasa.gov/datasets?
keywords=GPM&page=1 (accessed on 15 March 2023)). These datasets encompass monthly
precipitation records for the year 2019, with a spatial resolution finely tuned to 0.1◦ × 0.1◦.
To access this information, the data are conveniently formatted in netCDF with the file
extension “.nc”.

2.1.2. National Vegetation Zoning Data

The spatial variation highlighted by vegetation zoning can reveal the consistency in
the distribution of vegetation and its connection with the environment [45–47]. Vegetation
has close correlations with environmental factors such as precipitation, temperature, topog-
raphy, and soil [48]; in particular, the dominant factor is precipitation, which exhibits strong
correlations and relative uniformity in its spatial distribution. Essential ecological-climatic
indicators, including precipitation sum, seasonal distribution, and warmest and coldest
month temperatures, often roughly match or correspond to the distribution of vegetation
types [49,50]. Within identical vegetation type regions, these inherent natural geographic
elements are interlinked, inadvertently creating a partitioning of natural geographic com-
ponents through vegetation zoning [51–53]. Notably, geomorphic units frequently coincide
with vegetation types and divisions, particularly in vast mountain ranges and plateaus.
The peripheries of these geographic attributes commonly delineate climatic zones, impact-
ing the movement and growth of plant species, and thus often serving as boundaries for
vegetation zoning. Consequently, segmentation based on vegetation types can also aid in
subdividing various terrains within the study area [54]. This study is primarily focused on
downscaling GPM satellite precipitation data. Dividing the study area according to vegeta-
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tion regions can offer a better understanding of the interrelation between precipitation and
geographic elements within the region [55,56]. As a result, the division of the study area in
this research hinges on vegetation regions. As shown in Figure 1, the vegetation zoning
data employed in this study are sourced from the 1:1 million vegetation map provided by
the Resource and Environment Science Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn (accessed on 15 March 2023)). The entire country is partitioned into
eight regions, delineated by specific vegetation types and geographic traits in designated
areas. These regions encompass the cold temperate coniferous forest, temperate coniferous
deciduous broad-leaved mixed forest, warm temperate deciduous broad-leaved forest, sub-
tropical evergreen broad-leaved forest, tropical monsoon rainforest, rainforest, temperate
grassland, temperate desert, and the cold vegetation region of the Qinghai–Tibet Plateau.
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2.1.3. Basic Geographical Data

The meteorological station data, obtained from the daily-scale dataset of the China
Meteorological Data Sharing Service System (http://data.cma.cn/ (accessed on 15 March
2023)), encompassed daily precipitation records spanning January to December 2019 across
the nation. The dataset included a total of 2423 operational meteorological stations, and
their geographical distribution is shown in Figure 2. Primarily, this study relied on this
dataset to perform correlation analysis. The selection of environmental factors plays a
pivotal role in shaping the quality of downscaling outcomes. Drawing from the conclusions
of multiple researchers [57–59], it has been firmly established that the factors exerting the
most significant influence on precipitation are NDVI and DEM. Given China’s expansive
geography and the noteworthy variations in temperature and humidity among diverse
vegetation regions [60], this experiment integrated a range of environmental data. This
encompassed a DEM sourced from the National Basic Geographic Information Database
(http://www.gscloud.cn (accessed on 15 March 2023)), along with temperature (TEM),
humidity, and NDVI. Temperature (TEM) and humidity data were acquired from the
Climate Research Unit and the WorldClim dataset, while NDVI data were synthesized on a
monthly basis from the MODIS MOD13A product. All of the aforementioned data shared a
spatial resolution of 1 km × 1 km. This study centers its attention on the downscaling of
GPM satellite precipitation data at a spatial resolution of 10 km × 10 km. Consequently, all
supplementary data underwent resampling to a 10 km resolution, facilitated by the monthly
average methodology. Following this, the processed supplementary data underwent
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correlation analysis in conjunction with GPM satellite precipitation data for the purpose of
the study.
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2.2. Model Selection

The Extreme Random Trees technique, an advanced iteration of decision trees and
a derivation from random forest, presents itself as an ensemble learning methodology.
Compared to other machine learning models, Extreme Random Trees demonstrate excel-
lent feature reduction capabilities. In precipitation downscaling tasks, they can effectively
manage a large number of input attributes such as NDVI, DEM, temperature, and humid-
ity without requiring extensive dimensionality reduction preprocessing. This technique
excels in revealing the influences of multiple independent variables (X1, X2,. . ., Xn) on the
dependent variable Y [61,62]. Within the context of our investigation into precipitation
downscaling, we introduced environmental factors such as NDVI, DEM, temperature, and
humidity, while assigning GPM satellite precipitation as the response variable to construct a
downscaling model. Given the data organization, the Extreme Random Trees model aligns
seamlessly with our research objectives. Taking into account the complex arrangement of
precipitation data, the Extreme Random Trees model emerges as a fitting choice. Due to the
complex temporal and spatial variations in precipitation data, coupled with the intricacies
of prediction, traditional machine learning models may tend to overfit noise. However, the
Extreme Random Trees model introduces additional randomness during the node splitting
process by randomly selecting an attribute from the full attribute set. This approach aims to
enhance the diversity of the model, reduce the risk of overfitting to training data, and more
effectively capture nonlinear relationships within the dataset. Furthermore, the construc-
tion process of the Extreme Random Trees model can be easily parallelized, meaning it can
efficiently utilize multi-core processors or distributed computing resources, speeding up
the model training process, especially when dealing with large-scale data. Consequently,
this elevates the model’s flexibility and resilience.

In summary, the Extreme Random Trees method augments the model’s randomness
and diversity by infusing randomness into the feature selection and threshold determi-
nation processes. This amplified randomness helps reduce variability and mitigate the
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potential risk of overfitting. While maintaining a high degree of accuracy, this technique
also boasts sturdy data mining capabilities and a proficiency in accurately capturing non-
linear relationships. This model demonstrates strong robustness against outliers and noisy
data, thus ensuring a higher level of stability. It is well equipped to unveil the complex
interactions among environmental factors and precipitation. Within the framework of our
study on precipitation downscaling, the Extreme Random Trees method demonstrates
commendable classification accuracy.

2.3. Experimental Process

The spatial downscaling method is based on the relationship between precipitation
and surface features. The fundamental idea behind downscaling is to first simulate the rela-
tionship between precipitation and surface features at coarser resolutions and then use this
relationship, along with higher-resolution surface feature data, to obtain higher-resolution
precipitation estimates [63]. Given the vast geographical expanse of China and the distinct
spatiotemporal distribution patterns of precipitation, which exhibit significant variations
across regions and seasons, downscaling models often struggle when not accounting for
the temporal and spatial differences of precipitation. This can lead to poor generalization
ability of the models. Vegetation zoning, on the other hand, can reveal the regularities
of geomorphic units and vegetation distribution, and their close relationships with en-
vironmental factors such as precipitation in both time and space. Essentially, vegetation
zoning divides natural geographical elements, including precipitation- related factors and
different terrains. Exploring the relationship between precipitation and environmental
factors within different vegetation regions can greatly enhance the model’s fitting accuracy.
In comparison to traditional downscaling methods, this study takes into account spatial
heterogeneity in vegetation growth and precipitation. Building upon previous downscaling
approaches, the study proposes dividing the study area into 8 vegetation regions. For each
season, data mining is performed separately for these 8 vegetation regions to establish the
relationship between precipitation and surface features. The specific steps of the novel
downscaling method proposed in this study are as follows:

(1) Detecting and eliminating outliers and missing values from the original 1 km resolu-
tion NDVI, DEM, temperature, and humidity datasets. Due to the sufficient amount
of data, a very small number of outliers can be removed from the images.

(2) Resampling the 1 km resolution NDVI, DEM, temperature, and humidity data and
co-locating them with GPM satellite precipitation data. In this step, GPM satel-
lite precipitation data are projected onto the WGS84 projection with a resolution of
10 km × 10 km. Therefore, by averaging all 1 km resolution surface feature data
within each 10 km pixel, they are resampled to 10 km. Finally, the resampled 10 km
resolution NDVI, DEM, temperature, humidity, and other surface feature data are com-
bined with GPM satellite precipitation data values for the same location to generate
data samples.

(3) According to the downloaded vegetation zoning data of China, the generated 10 km
resolution data samples are divided into 8 vegetation regions. Within each vegetation
region, they are further divided by four seasons: spring, summer, autumn, and winter.
This yields a total of 32 training samples: 8 regions × 4 seasons.

(4) Using GPM satellite precipitation data as the target and the 10 km resolution NDVI,
DEM, temperature, humidity, and other surface feature data as inputs, Extreme Ran-
dom Tree models are established separately for each of the 4 seasons and
8 regions.

(5) The 1 km resolution NDVI, DEM, temperature, humidity, and other surface feature
data are input into the relationships obtained in step (4), resulting in high-resolution
monthly precipitation predictions (Pre1km) for each vegetation region.

(6) Residual correction is a necessary step in data-driven downscaling methods, which
corrects the predicted precipitation. The monthly precipitation predictions (Pre1km)
obtained in step (5) for each region are resampled to 10 km precipitation data using a
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mean-based method. The model’s residuals are obtained by subtracting the original
GPM data from the resampled 10 km precipitation data.

(7) Using kriging interpolation, the residuals generated in step (6) are interpolated to
a spatial resolution of 1 km, and the interpolated residuals are added back to the
Pre1km results generated in step (5) to obtain the final precipitation results. This step
is performed using ArcGIS (Version: 10.7) software.

(8) According to the distribution of meteorological stations in China, the locations of
the stations are selected as sample points, and corresponding predicted values and
observed values are extracted for accuracy evaluation.

A flowchart is provided in Figure 3 to illustrate the main steps of the new
downscaling algorithm.
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2.4. Evaluation Metrics

In this study, three evaluation metrics [64] were employed to assess the established
models: mean absolute error (MAE), root mean square error (RMSE), and coefficient
of determination (R2). Firstly, the corrected prediction results were compared with the
actual observed data and analyzed to assess the accuracy of the machine learning models.
Secondly, the reliability of the method was evaluated by comparing the correlation between
the predicted precipitation results before and after partitioning regions with the original
GPM data.

RMSE =

√
1
M∑M

i=1(Prei −Obsi)
2 (1)

MAE =
1
M∑M

i=1|Prei −Obsi| (2)
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R2 = 1− ∑M
i=1(Obsi − Prei)

2√
∑M

i=1

(
Obsi −Obs

)2
(3)

where M represents the number of meteorological stations; Obsi denotes the observed
precipitation data at the i-th meteorological station location; Prei represents the estimated
GPM satellite precipitation data at the i-th meteorological station location; Obs are the mean
values of the observed precipitation data and the estimated GPM satellite precipitation
data, respectively.

3. Results
3.1. Downscaling Model Accuracy Evaluation

In this study, using the Chinese region as a case study, we extensively addressed
the challenge of inadequate model generalization stemming from disparate data distri-
butions due to diverse meteorological characteristics, geographical settings, and seasonal
fluctuations within the study area. The study area was systematically partitioned based on
vegetation types and seasonal variations. The precision of the models trained and validated
within each vegetation region and season is exhibited in Table 1, providing a comparative
analysis with the original GPM precipitation data. A prominent observation from Table 1 is
that the majority of model coefficients of determination (R2) surpass 0.9, with an average
R2 value of 0.927. The highest average R2 value is 0.944, while the lowest reaches 0.905. This
unequivocally underscores the heightened dependability of models trained through this
approach across both relatively humid and arid seasons. The R2 values for certain areas are
approximately 0.85. Figure 4 illustrates the values of R2 and RMSE for each season in the
eight regions. The warm–temperate deciduous broad-leaved forest region in central and
eastern China achieved the most notable R2 value during the winter season. Located in the
central and eastern parts of China, this region experiences dry winter conditions, character-
ized by low air humidity and comparably modest rainfall. The absence of overestimation
in regions with lower precipitation post-segmentation substantiates the model’s robust
fitting performance. On the contrary, the R2 value is lowest in the boreal and temperate
coniferous forest region. This is primarily due to its location in northeastern China, where
precipitation is lower, and the station distribution is sparse, resulting in limited validation
data points, which in turn affects the accuracy of the results. Nevertheless, the R2 value
still reaches 0.821, validating the model’s capability to predict regions with elevated pre-
cipitation. RMSE encapsulates information from MAE, making it more sensitive to errors.
Regions with higher RMSE values are predominantly concentrated in the southeastern and
southern parts of China. These areas encounter relatively humid conditions throughout
the year, characterized by substantial precipitation, and are susceptible to the impact of
coastal typhoons due to their proximity to the coastline. The substantial disparity between
maximum and minimum precipitation values contributes to larger RMSE values. However,
the overall precision remains relatively high.

Table 1. The accuracy of downscaling models for various seasons within each research region.

Region
Spring Summer Autumn Winter

R2 MAE
(mm)

RMSE
(mm) R2 MAE

(mm)
RMSE
(mm) R2 MAE

(mm)
RMSE
(mm) R2 MAE

(mm)
RMSE
(mm)

1 0.930 0.285 0.441 0.940 5.595 8.025 0.821 18.857 33.659 0.960 1.469 2.046
2 0.975 1.042 2.003 0.977 5.542 8.996 0.929 14.199 25.273 0.968 1.558 2.416
3 0.950 1.236 2.322 0.952 3.986 7.048 0.938 10.470 18.147 0.985 1.628 2.895
4 0.878 12.106 26.279 0.963 13.125 19.758 0.932 17.134 26.570 0.942 5.972 10.355
5 0.921 7.071 13.352 0.956 16.725 22.213 0.928 24.207 29.024 0.954 7.140 11.239
6 0.869 0.793 1.640 0.975 3.846 5.745 0.941 9.845 15.632 0.946 1.506 2.852
7 0.932 0.696 1.344 0.871 5.291 7.716 0.929 3.907 5.619 0.913 1.313 2.530
8 0.902 1.777 3.999 0.915 9.921 15.552 0.825 14.110 19.792 0.857 4.196 7.244

Mean 0.92 3.126 6.423 0.944 8.004 11.88 0.905 14.091 21.715 0.941 3.098 5.197
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By contrasting the anticipated precipitation outcomes with the observed informa-
tion from meteorological stations, the precision and functionality of the model can be
comprehensively and objectively assessed, directing model enhancement and practical
applications. In this study, the initial GPM precipitation data, predictions before division,
and predictions after division were separately juxtaposed with the genuine station data.
As depicted in Figure 5, it can be noted that in comparison to the station data, the R2 for
GPM precipitation data is 0.861, while conventional global downscaling techniques only
attain an R2 of 0.625. Despite achieving spatial downscaling, this approach encounters
low accuracy, implying limited model adaptability. In contrast, the technique proposed
in this article attains an R2 of 0.824 in projected outcomes. Even after reducing the spatial
resolution of GPM satellite precipitation data from 10 km to 1 km, it still maintains a high
level of accuracy. Comparing Figure 5A,D with reference to the station data, it can be
observed that the difference in R2 between our experimental results and the original GPM
data is 0.037, the difference in MAE is 2.46, and the difference in RMSE is 4.386. As shown
in Figure 5, it can also be seen that the method proposed in this paper for downsizing by
partitioning the region performs better than kriging interpolation and global downscaling
methods. On the whole, the recommended approach of downscaling based on vegetation
categories, partitioned areas, and seasons displays exceedingly high precision and robust
generalization capability.

3.2. Downscaling Results and Analysis

Our objective is to achieve spatial downscaling of the GPM satellite precipitation data
with a spatial resolution of 1 km, ensuring that the final prediction outcomes demonstrate
a high level of accuracy in comparison to the GPM data, thereby making them suitable
for widespread application. Therefore, within this context, we conduct a comparative
analysis between the GPM data, predictions made without partitioning, predictions made
with partitioning, and results after residual correction. As illustrated in Table 2, without
partitioning, the model’s R2 stands at a mere 0.738, accompanied by a RMSE of 45.916.
This substantial error arises from the expansive land area of China, leading to notable
disparities in precipitation patterns due to varying conditions. For instance, the northern
region experiences pronounced seasonal effects and remains relatively arid throughout the
year, while the southern and coastal areas are significantly impacted by monsoons, resulting
in higher humidity levels. Conventional downscaling methods trained the model without
adequately accounting for regional climatic attributes, terrain characteristics, and other
influential factors, consequently leading to subpar model generalization in specific areas.
As highlighted in Table 2, the results of kriging interpolation for downscaling show R2,
MAE, and RMSE values of 0.891, 11.480, and 29.017, respectively, compared to the original
GPM data. While the downscaled results are superior to those of the global downscaling
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method, kriging interpolation has certain limitations when dealing with large-scale data,
and its downscaled results are not as good as those achieved by the method proposed in
this paper. The implementation of the approach proposed in this paper yields a marked
enhancement in accuracy. The downscaled outcomes closely align with the original GPM
satellite precipitation data, showcasing an R2 of up to 0.949, and MAE and RMSE of 8.887
and 20.175, respectively. With the foundation of achieving spatial downscaling, all metrics
have reached elevated levels. These findings suggest the advantageous role of residual cor-
rection in the downscaling method introduced in this study. Figures 6–9 display the spatial
downscaling results for each month of 2019, comparing GPM satellite precipitation data,
the kriging interpolation method, the traditional downscaling method, and the method
proposed in this study. From Figures 6–8, it can be observed that the traditional global
downscaling method tends to underestimate precipitation. However, Figure 9 reveals that
in November and December, the traditional global downscaling method tends to overesti-
mate precipitation. Figures 6–9 collectively demonstrate that both kriging interpolation
and our proposed regional downscaling method consistently align well with the original
GPM data throughout the year. However, the results obtained from our proposed method
exhibit higher accuracy, as they do not show significant overestimation or underestimation
of precipitation. The data quality obtained through this method is superior, enhancing the
spatial resolution of GPM data.
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Table 2. Estimates of accuracy between GPM satellite precipitation data and downscaled results
using different methods.

Unallocated Area Prediction Kriging Interpolation Results after Residual Correction

R2 0.738 0.891 0.949
MAE (mm) 23.245 11.480 8.887
RMSE (mm) 45.916 29.017 20.175
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4. Conclusions

This paper introduces an innovative approach that involves segmenting the study area
based on vegetation types and seasonal variations. Subsequently, independent modeling
is applied to downscale the GPM satellite monthly precipitation dataset from 10 km to
1 km. By utilizing ground observation data from within China, we evaluate and compare
the performance of this downscaling technique with established traditional algorithms.
Furthermore, a meticulous analysis is conducted against the original GPM data. Drawing
upon the findings of this study, the following conclusions are drawn:

(1) By partitioning the study area based on months and vegetation elements, the Extreme
Random Trees algorithm outperforms the global downscaling method used in tra-
ditional downscaling algorithms, as well as kriging interpolation, in precipitation
downscaling. Compared to the original method, the proposed approach in this paper
exhibits superior performance. This indicates that geographic location, vegetation
type, and season have significant value in calibrating satellite precipitation amounts
during downscaling of satellite precipitation datasets.

(2) In the process of downscaling using satellite precipitation data, we discovered that
in southeastern and southern China, including warm–temperate deciduous broad-
leaved forests, subtropical evergreen broad-leaved forests, and tropical monsoon
rainforests, regions characterized by high temperatures and abundant rainfall, and
susceptible to typhoon influence, the GPM satellite precipitation data tend to overesti-
mate actual precipitation. Conversely, in western and northern China, including cold–
temperate coniferous forests, temperate mixed forests of coniferous and deciduous
trees, temperate deserts, temperate grasslands, and the cold alpine vegetation of the
Qinghai–Tibet Plateau, regions with relatively low precipitation, lower temperatures,
lower soil humidity, and faster water evaporation, the GPM satellite precipitation
data tend to underestimate actual precipitation. When an appropriate regression
model is applied to regress the satellite precipitation dataset, the accuracy of the
original satellite precipitation dataset significantly influences the performance of the
downscaling algorithm.

(3) Residual correction is a crucial step in the execution of our proposed downscaling
algorithm. As evidenced by the results, downscaled results after residual correction
are superior to those without residual correction. Therefore, in future downscal-
ing research, attention should be given to residual correction when utilizing our
proposed method.

In summary, the strategy of segmenting predictions according to vegetation categories
and corresponding months has improved the accuracy of fitting precipitation to complex
spatial characteristics and showcases a robust ability for generalization. This provides
valuable perspectives for other investigations involving downscaling. The data from 2019
are representative and generalizable in our study because they cover various climatic and
precipitation patterns, and the total precipitation does not show significant variations
compared to other years. In our research, we extensively analyzed the data from that
year to ensure that our experimental results are highly accurate and possess a degree of
generalizability. This gives us reason to believe that our experimental approach is not only
applicable to 2019 but also to some extent to other years. Furthermore, our regional down-
scaling approach is designed to address the underlying relationships among geographic
factors and has been carefully optimized, leading us to believe it possesses a certain level
of generality. We plan to consider expanding our research to other years in the future
to comprehensively assess the performance and stability of our method. Moreover, this
study primarily emphasized environmental factors associated with precipitation, including
NDVI, DEM, temperature, and humidity. Subsequent investigations might contemplate the
integration of additional environmental factors, such as wind speed and soil moisture, to
offer a more comprehensive elucidation of precipitation patterns. Furthermore, forthcom-
ing studies will consider broadening the geographical scope to encompass a wider array of
regions. The ongoing exploration of classification methodologies and criteria for achiev-
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ing geographically coherent zones will persist to attain a finer-grained delineation of the
study area.
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25. Jia, S.F.; Zhu, W.; Lű, A.; Yan, T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in

the Qaidam Basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [CrossRef]
26. Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewsk, B.; Lima, M.; Kausrud, K.L. The Normalized Difference Vegetation

Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [CrossRef]
27. Ji, T.; Liu, R.; Yang, H.; He, T.; Wu, J. Spatial Downscaling of Precipitation Using Multi-source Remote Sensing Data: A Case

Study of Sichuan-Chongqing Region. J. Geo-Inf. Sci. 2015, 17, 108–117.
28. Zhang, Q.; Shi, P.; Singh, V.P.; Fan, K.; Huang, J. Spatial downscaling of TRMM-based precipitation data using vegetative response

in Xinjiang, China. Int. J. Climatol. 2017, 37, 3895–3909. [CrossRef]
29. Nicholson, S.E.; Farrar, T.J. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid

Botswana. I. NDVI response to rainfall. Remote Sens. Environ. 1994, 50, 107–120. [CrossRef]
30. Xu, C.; Liu, C.; Zhang, W.; Li, Z.; An, B. Downscaling and Merging of Daily Scale Satellite Precipitation Data in the Three River

Headwaters Region Fused with Cloud Attributes and Rain Gauge Data. Water 2023, 15, 1233. [CrossRef]
31. Haji-Aghajany, S.; Amerian, Y.; Amiri-Simkooei, A. Function-Based Troposphere Tomography Technique for Optimal Downscaling

of Precipitation. Remote Sens. 2022, 14, 2548. [CrossRef]
32. Zhang, Q.; Li, Y.P.; Huang, G.H.; Wang, H.; Li, Y.F.; Liu, Y.R.; Shen, Z.Y. A novel statistical downscaling approach for analyzing

daily precipitation and extremes under the impact of climate change: Application to an arid region. J. Hydrol. 2022, 615, 128730.
[CrossRef]

33. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement Learning: A Survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
34. Dietterich, T.G. Machine-learning research. Ai Mag. 1997, 18, 97.
35. Bonnet, S.M.; Evsukoff, A.; Rodriguez, C.A. Precipitation Nowcasting with Weather Radar Images and Deep Learning in Sao

Paulo, Brasil. Atmosphere 2020, 11, 1157. [CrossRef]
36. Yan, X.; Chen, H.; Tian, B.; Sheng, S.; Wang, J.; Kim, J.-S. A Downscaling–Merging Scheme for Improving Daily Spatial Precipitation

Estimates Based on Random Forest and Cokriging. Remote Sens. 2021, 13, 2040. [CrossRef]
37. Jing, W.L.; Zhang, P.Y.; Jiang, H.; Zhao, X. Reconstructing Satellite-Based Monthly Precipitation over Northeast China Using

Machine Learning Algorithms. Remote Sens. 2017, 9, 781. [CrossRef]
38. Chiu, L.S.; Shin, D.B.; Kwiatkowski, J. Earth Science Satellite Remote Sensing; Springer: Berlin/Heidelberg, Germany, 2006.
39. Zhang, X.X.; Liu, G.D.; Wang, H.T.; Li, X.D. Application of a Hybrid Interpolation Method Based on Support Vector Machine in

the Precipitation Spatial Interpolation of Basins. Water 2017, 9, 760. [CrossRef]
40. Chen, F.H.; Wu, S.; Cui, P.; Cai, Y.; Zhang, Y.; Yin, Y.; Liu, G.; Ouyang, Z.; Ma, W.; Yang, L.; et al. Progress and prospects of applied

research on physical geography and the living environment in China over the past 70 years (1949–2019). J. Geogr. Sci. 2021,
31, 3–45. [CrossRef]

41. Sharifi, E.; Saghafian, B.; Steinacker, R. Downscaling Satellite Precipitation Estimates With Multiple Linear Regression, Artificial
Neural Networks, and Spline Interpolation Techniques. J. Geophys. Res. Atmos. 2019, 124, 789–805. [CrossRef]

42. Immerzeel, W.W.; Rutten, M.M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative response on the
Iberian Peninsula. Remote Sens. Environ. 2009, 113, 362–370. [CrossRef]

43. Jing, W.L.; Yang, Y.P.; Yue, X.F.; Zhao, X.D. A Comparison of Different Regression Algorithms for Downscaling Monthly
Satellite-Based Precipitation over North China. Remote Sens. 2016, 8, 835. [CrossRef]

44. Tan, M.L.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. [CrossRef]
45. Zhang, J.Y.; Dong, W.J. Impact of land cover/use change on regional climate over China. J. Grad. Sch. Chin. Acad. Sci. 2007, 24, 5.

https://doi.org/10.1016/S0022-1694(02)00110-5
https://doi.org/10.1016/j.rse.2018.06.004
https://doi.org/10.1007/BF00889887
https://doi.org/10.1080/02693799508902045
https://doi.org/10.1155/2013/237126
https://doi.org/10.3390/rs12030398
https://doi.org/10.1002/(SICI)1097-0088(199807)18:9%3C1031::AID-JOC303%3E3.0.CO;2-U
https://doi.org/10.1029/WR018i004p00947
https://doi.org/10.1016/j.rse.2011.06.009
https://doi.org/10.3354/cr00936
https://doi.org/10.1002/joc.4964
https://doi.org/10.1016/0034-4257(94)90038-8
https://doi.org/10.3390/w15061233
https://doi.org/10.3390/rs14112548
https://doi.org/10.1016/j.jhydrol.2022.128730
https://doi.org/10.1613/jair.301
https://doi.org/10.3390/atmos11111157
https://doi.org/10.3390/rs13112040
https://doi.org/10.3390/rs9080781
https://doi.org/10.3390/w9100760
https://doi.org/10.1007/s11442-021-1831-2
https://doi.org/10.1029/2018JD028795
https://doi.org/10.1016/j.rse.2008.10.004
https://doi.org/10.3390/rs8100835
https://doi.org/10.3390/rs9070720


Atmosphere 2023, 14, 1489 16 of 16

46. Wu, F.; Zhan, J.; Su, H.; Yan, H.; Ma, E. Scenario-Based Impact Assessment of Land Use/Cover and Climate Changes on Watershed
Hydrology in Heihe River Basin of Northwest China. Adv. Meteorol. 2015, 2015, 410198. [CrossRef]

47. Chen, F.; Liu, Y.; Liu, Q.; Li, X. Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity. Int. J. Remote
Sens. 2014, 35, 3074–3093. [CrossRef]

48. Nzabarinda, V.; Bao, A.; Xu, W.; Uwamahoro, S.; Udahogora, M.; Umwali, E.D.; Nyirarwasa, A.; Umuhoza, J. A Spatial and
Temporal Assessment of Vegetation Greening and Precipitation Changes for Monitoring Vegetation Dynamics in Climate Zones
over Africa. Int. J. Geo-Inf. 2021, 10, 129. [CrossRef]

49. Danandeh, M.A.; Nourani, V. Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff
Modelling. Water Resour. Manag. 2018, 32, 2665–2679. [CrossRef]

50. Zeng, N.; Neelin, J.D.; Lau, K.M.; Tucker, C.J. Enhancement of Interdecadal Climate Variability in the Sahel by Vegetation
Interaction. Science 1999, 286, 1537–1540. [CrossRef]

51. Chang, H. A vegetation-climate classification system for global change studies in China. Quat. Sci. 1993, 2, 157–173.
52. Zhou, G.; Wang, Y. Global change and climate-vegetation classification. Chin. Sci. Bull. 2000, 45, 577–585. [CrossRef]
53. Lin, H.L.; Feng, Q.S.; Zhang, Y.J. Spatial-Temporal Dynamics of Potential Grassland Vegetation in China under the Global Climate

Change Scenarios. In Proceedings of the Workshop of Sustainable Grassland Management in China & Australia, Bruce, Australia,
23 December 2021.

54. Gebregiorgis, A.S.; Hossain, F. Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for
Hydrologic Model Simulation. IEEE Trans. Geosci. Remote Sens. 2012, 51, 704–718. [CrossRef]

55. Xia, T.; Wang, Z.J.; Zheng, H. Topography and Data Mining Based Methods for Improving Satellite Precipitation in Mountainous
Areas of China. Atmos. 2015, 6, 983–1005. [CrossRef]

56. Wang, W.; Sun, L.; Cai, Y.; Yi, Y.; Yang, W.; Yang, Z. Evaluation of multi-source precipitation data in a watershed with complex
topography based on distributed hydrological modeling. River Res. Appl. 2021, 37, 1115–1133. [CrossRef]

57. Chen, T.; Liu, X.Y.; Liu, X.; Li, X.; Liu, J. Spatial downscaling of monthly precipitation based on TRMM satellite in Ya’an. IOP Conf.
Ser. Mater. Sci. Eng. 2020, 794, 012007. [CrossRef]

58. Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its
relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [CrossRef]

59. Richard, Y.; Poccard, I. A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa.
Int. J. Remote Sens. 1998, 19, 2907–2920. [CrossRef]

60. Sun, H.Y.; Wang, C.Y.; Niu, Z.; Bu, A.; Li, B. Analysis of the Vegetation Cover Change and the Relationship bgtween NDVI and
Environmental Factors by Using NOAA Time Series Data. J. Remote Sens. 1998, 2, 210–216.

61. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
62. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844.
63. Xu, S.; Wu, C.; Wang, L.; Gonsamo, A.; Shen, Y.; Niu, Z. A new satellite-based monthly precipitation downscaling algorithm

with non-stationary relationship between precipitation and land surface characteristics. Remote Sens. Environ. 2015, 162, 119–140.
[CrossRef]

64. Shen, Z.; Yong, B. Downscaling the GPM-based satellite precipitation retrievals using gradient boosting decision tree approach
over Mainland China. J. Hydrol. 2021, 602, 126803. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2015/410198
https://doi.org/10.1080/01431161.2014.902550
https://doi.org/10.3390/ijgi10030129
https://doi.org/10.1007/s11269-018-1951-3
https://doi.org/10.1126/science.286.5444.1537
https://doi.org/10.1007/BF02886031
https://doi.org/10.1109/TGRS.2012.2196282
https://doi.org/10.3390/atmos6080983
https://doi.org/10.1002/rra.3681
https://doi.org/10.1088/1757-899X/794/1/012007
https://doi.org/10.1080/01431160119381
https://doi.org/10.1080/014311698214343
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1016/j.rse.2015.02.024
https://doi.org/10.1016/j.jhydrol.2021.126803

	Introduction 
	Background Introduction 
	Traditional Downscaling Methods 
	Machine Learning Downscaling Methods 

	Materials and Methods 
	Data Collection 
	GPM Satellite Precipitation Data 
	National Vegetation Zoning Data 
	Basic Geographical Data 

	Model Selection 
	Experimental Process 
	Evaluation Metrics 

	Results 
	Downscaling Model Accuracy Evaluation 
	Downscaling Results and Analysis 

	Conclusions 
	References

