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Abstract: The biggest problem facing air protection in Poland is the high levels of suspended
particular matter concentrations. Air monitoring reports show that air quality standards, related to
PM10 and PM2.5 concentrations, are exceeded every year in many Polish cities. The PM2.5 aerosol
fraction is particularly dangerous to human and animal health. Therefore, monitoring the level of
PM2.5 concentration should be considered particularly important. Unfortunately, most monitoring
stations in Poland do not measure this dust fraction. However, almost all stations are equipped with
analyzers measuring PM10 concentrations. PM2.5 is a fine fraction of PM10, and there is a strong
correlation between the concentrations of these two types of suspended dust. This relationship can
be used to determine the concentration of PM2.5. The main purpose of this analysis was to assess the
accuracy of PM2.5 concentration prediction using PM10 concentrations. The analysis was carried out
on the basis of long-term hourly data recorded at several monitoring stations in Poland. Artificial
neural networks in the form of a multilayer perceptron were used to model PM2.5 concentrations.

Keywords: air monitoring; air quality modeling; particular matter; PM2.5; concentration; prediction;
regression models; multilayer perceptrons

1. Introduction

Air pollution is considered as one of the main factors affecting the human population
and the environment. Air pollution may cause various reactions in organisms, including
mental health disorders [1,2]. It can cause negative changes in the human respiratory and
circulatory systems, even when concentrations do not exceed permissible levels [3–8]. It
was found that air pollution can negatively affect the economy [9–12]. Air pollution can
also reduce crop yields in agriculture [13,14].

It should be highlighted that in many European countries, the levels of particulate
matter (PM10), NO2, O3, and benzo(a)pyrene (B(a)P) concentrations still exceed the permis-
sible limits [15]. The World Health Organization estimates that many millions of people
die prematurely due to poor air quality [16]. Once the pollutants are emitted into the
air, it is impossible to stop them. If the pollutants enter the atmosphere, they contribute
to the deterioration of air quality in the emission vicinity, and by spreading, they can
have negative effects hundreds and thousands of kilometers from the point of emission.
Therefore, air pollution is treated as a global threat, and emission reduction strategies are
implemented in many countries. The control and reduction of anthropogenic emissions are
now recognized as keys to good global air quality in the future.

The main gaseous pollutants are O3, SO2, NOx, CO, and volatile organic compounds
(VOCs). Atmospheric air is a multiphase system. The gas phase is the dominant phase, but
there are also dispersed solid and liquid particles in the air, i.e., aerosols. Small aerosols
can remain suspended in the air for long periods [17]. Therefore, to assess air quality,
not only should the concentration of toxic gases be tested, but also the content of toxic
compounds in the suspended aerosols, labelled as PM10. PM10 aerosols adsorb particularly
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dangerous contaminants, such as PAHs and heavy metals, on their surface. Similar to
the EU, routine air pollution monitoring in Poland includes examination of the levels of
benzo(a)pyrene and four heavy metals (Pb, Cr, Ni, and Cd) in PM10 particles [18]. In recent
years, air monitoring systems have been introducing the measurement of a finer fraction
of particulate matter, of particle sizes not exceeding 2.5 µm, called PM2.5. The impacts
attributable to exposure to PM2.5 in Europe have been presented in annual reports. These
assessments are based on two different mortality endpoints: premature death and years
of life lost (YLL) [19]. In Poland, PM2.5 concentrations constantly exceed the permissible
limits and cause over 40,000 premature deaths annually [15].

The need to model air pollutant concentrations is usually associated with the problem
of supplementing missing data in measurement sets from air monitoring stations [20–23].
The relationships between the measured pollutants’ concentrations are used for modeling.
Meteorological parameters can also be useful, if available. The concentrations of primary
pollutants are correlated because they come from the same emission sources, e.g., from fuel
combustion processes. If the goal of modeling is to predict measurement gaps, regression
techniques are typically used. In the past, multivariate regression models were built
according to the procedures of classical statistics [24]. Currently, artificial intelligence
methods are used more and more often, because they allow for a deeper exploration
of knowledge hidden in measurement sets [25]. In this group of models, models using
artificial neural networks (ANNs) are very popular [26–34]. With the rapid development of
artificial intelligence, deep learning techniques are increasingly used in big data analytics
to solve various classification and regression problems for air pollution prediction [25,35].
For example, deep learning models based on convolutional neural networks are useful
for processing historical air pollution data with spatiotemporal correlations [36,37]. In
recent years, various variants of recurrent neural networks (RNNs) have been intensively
developed, such as the original recurrent neural networks (original RNN), gated recurrent
units (GRUs), long short-term memory (LSTM), read-first LSTM (RLSTM), and long short-
term memory neural network extended (LSTME) [25]. These types of neural networks
allow us to extract temporal correlation in raw data; therefore, they are often used to
create forecasts.

The biggest problem facing air protection in Poland is the high suspended particular
matter concentrations. The air monitoring reports show that air quality standards, related
to PM10 and PM2.5 concentrations, are exceeded every year in many Polish cities [15,38].
The PM2.5 aerosol fraction is particularly dangerous to human and animal health. Therefore,
monitoring the level of PM2.5 concentrations should be considered particularly important.
Unfortunately, most monitoring stations in Poland do not measure this fraction of aerosol.
However, almost all stations are equipped with analyzers measuring PM10 concentrations.
PM2.5 is a fine fraction of PM10, and there is a strong correlation between the concentrations
of these two types of suspended dust [39,40]. This relationship can be used to determine
the concentration of PM2.5. The main purpose of this study was to assess the accuracy of
PM2.5 concentration prediction using PM10 concentrations. The analysis was carried out
on the basis of long-term hourly data recorded at several monitoring stations in Poland.
Artificial neural networks in the form of a multilayer perceptron were used to model hourly
PM2.5 concentrations.

2. Materials and Methods
2.1. Air Monitoring Stations

Data from 6 automatic air monitoring stations located in Poland from the cities of
Jelenia Gora, Lublin, Plock, Radom, Kedzierzyn-Kozle, and Olsztyn were used in the study.
The criterion for selecting the stations was the availability of the results of measuring
the concentrations of basic air pollutants, including PM10 and PM2.5. At the six selected
stations, concentrations of PM10, PM2.5, O3, SO2, NOx, and CO were recorded throughout
or almost throughout the 2015–2021 measurement period.
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The locations of the stations are shown in Figure 1. The stations were managed by the
Chief Inspectorate of Environmental Protection in Poland. All selected stations were the
background type, located in urban areas. Table 1 contains the basic information about the
air monitoring stations.
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Figure 1. Location of the chosen automatic air monitoring stations in Poland.

Table 1. Basic information about the air monitoring stations [41].

Air Monitoring
Station Address International

Code
Geographical

Coordinates, WGS84 Station Type Area Type

Jelenia Gora 6 Oginskiego Str. PL0585A Φ 50.913433
λ 15.765608 background city

Lublin 13. Obywatelska Str. PL0507A Φ 51.259431
λ 22.569133 background city

Plock 28 Mikolaja Reja Str. PL0136A Φ 52.550938
λ 19.709791 background city

Radom 1 Tochtermana Str. PL0138A Φ 51.399084
λ 21.147474 background city

Kedzierzyn-Kozle 5 Boleslawa Smialego Str. PL0218A Φ 50.349608
λ 18.236575 background city

Olsztyn 16 Puszkina Str. PL0175A Φ 53.789233
λ 20.486075 background city

2.2. Air Monitoring Data

In this study, hourly values of CO, SO2, PM10, PM2.5, O3, and NOx concentrations,
recorded in the years 2015–2021, were used. The data were provided by the Chief In-
spectorate of Environmental Protection in Poland. The air monitoring data were officially
validated data. We selected stations where both PM10 and PM2.5 concentration measure-
ments were obtained in the period 2015–2021.

The following symbols were used to describe the time series (variables): D, numeric
day; H, numeric hour; CO, hourly average of CO concentration (mg/m3); SO2, hourly aver-
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age of SO2 concentration (µg/m3); PM10, hourly average of PM10 concentration (µg/m3);
PM2.5, hourly average of PM2.5 concentration (µg/m3); O3, hourly average of O3 concentra-
tion (µg/m3); and NOx, hourly average of NOx concentration (µg/m3).

2.3. Temporal Variables’ Transformation

The date in numerical form was prepared to replace the date with a value ranging
from 0 to 1. For the first day of the year (1 January), a value of 1 was assumed, and for the
middle date of the year (2 July), a value of 0. In the first half of the year, the numeric date
value decreased proportionally from 1 to 0. In the second half of the year, the numeric date
value increased proportionally from 0 to 1.

The hour was also converted to a numerical value ranging from 0 to 1. For midnight
(24.00), a value of 0 was assumed, and for the middle of the day (12.00), a value of 1. In the
first half of the day, the numerical hour value proportionally increased from 0 to 1. In the
second half of the day, the numerical hour value proportionally decreased from 1 to 0.

2.4. Data Preparation

Only those annual measurement series whose completeness exceeded 85% were
included in the analysis. If this condition was not met, data from the entire year were
removed so that the analyzed data evenly covered all seasons of the calendar year. Cases
with incomplete measurements were removed from the data set. A few cases where the
registered concentrations of pollutants had negative values were also removed. Only
cases for which all measured concentration values were present in a given measurement
hour were selected for further analysis. Table 2 shows the completeness of time series for
individual monitoring stations after removing cases with missing data.

Table 2. Completeness of the time series after removing cases with missing data, 2015–2021.

Completeness of the Annual Series

Air Monitoring
Station

Total Number of
Observations (Cases)

2015
%

2016
%

2017
%

2018
%

2019
%

2020
%

2021
%

2015–2021 1

%

Jelenia Gora 56,362 85.1 90.9 86.8 94.6 93.6 95.6 96.2 91.8
Lublin 39,336 - - 88.9 91.7 88.4 92.5 87.2 89.8
Plock 51,169 - 98.6 99.2 90.9 98.8 98.4 97.7 97.3

Radom 57,568 92.1 89.3 96.1 97.6 95.8 98.0 87.8 93.8
Kedzierzyn-Kozle 23,838 - 88.9 - 90.8 - - 92.1 90.6

Olsztyn 41,126 - - 87.2 91.5 96.7 96.3 97.5 93.8

1 The completeness of the series was assessed only for the years covered by the analysis.

Table 3 presents a statistical description of the concentrations measured at individual
air monitoring stations, only for complete cases. Among the selected stations, the highest
maximum concentrations of particulate matter PM2.5 occurred at the measuring stations in
Lublin, Jelenia Gora, Radom, and Kedzierzyn-Kozle, while the lowest occurred in Plock
and Olsztyn.

Table 3. Statistical description of measured variables at the air monitoring stations, 2015–2021.

Air Monitoring
Station

Statistical
Parameter

CO
mg/m3

SO2
µg/m3

PM10
µg/m3 PM2.5 µg/m3 O3

µg/m3
NOx
µg/m3

Jelenia Gora

Minimum value 0.012 0.0 0.1 0.1 0.0 0.0
Maximum value 4.169 83.3 407.7 375.9 194.3 426.3

Mean 0.399 5.0 26.8 21.0 52.8 15.9
Standard deviation (SD) 0.275 4.6 28.8 26.6 33.4 17.7

Lublin

Minimum value 0.000 0.0 0.3 0.2 0.0 0.0
Maximum value 5.323 56.9 496.0 438.0 176.1 766.7

Mean 0.354 4.8 28.7 21.7 45.7 29.7
Standard deviation (SD) 0.276 3.1 23.6 20.8 27.7 34.6
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Table 3. Cont.

Air Monitoring
Station

Statistical
Parameter

CO
mg/m3

SO2
µg/m3

PM10
µg/m3 PM2.5 µg/m3 O3

µg/m3
NOx
µg/m3

Plock

Minimum value 0.110 0.0 0.7 0.1 0.3 0.3
Maximum value 3.313 322.8 346.9 167.6 177.3 838.1

Mean 0.354 3.6 27.0 18.9 49.3 20.1
Standard deviation (SD) 0.160 6.6 18.7 15.1 25.8 22.0

Radom

Minimum value 0.090 0.0 1.2 0.1 0.1 0.8
Maximum value 6.246 76.4 449.3 302.3 174.3 947.8

Mean 0.418 3.0 32.6 23.7 46.0 31.6
Standard deviation (SD) 0.269 3.8 25.9 21.2 27.7 34.5

Kedzierzyn
-Kozle

Minimum value 0.064 0.2 0.8 0.2 0.0 0.4
Maximum value 2.561 56.1 296.5 264.1 175.2 389.0

Mean 0.387 6.2 32.3 24.5 45.7 23.5
Standard deviation (SD) 0.248 4.7 26.6 23.5 32.1 24.3

Olsztyn

Minimum value 0.061 0.0 0.7 0.5 0.0 0.0
Maximum value 3.102 55.7 251.0 138.4 144.0 411.3

Mean 0.332 4.5 21.4 15.9 48.9 17.8
Standard deviation (SD) 0.156 3.2 15.9 12.7 25.7 21.1

Figure 2 shows the variability in PM2.5 concentration at the considered air monitor-
ing stations.
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Figure 2. Distribution of PM2.5 concentrations at various air monitoring stations in 2015–2021.

2.5. Regression Models (Design)

Modeling was carried out using the module Artificial Neural Networks in the STA-
TISTICA program, version 13.3, TIBCO Software Inc., Palo Alto, CA, USA. The multilayer
perceptron (MLP) architecture was used to create the regression models. It was assumed
that each multilayer perceptron consisted of 10 neurons in one hidden layer. During net-
work initialization, the data set was randomly divided into three subsets: the training
(50% of cases), validation (25% of cases), and test (25% of cases) subsets. The classifica-
tion of cases did not change in the network learning process. The number of all cases in
the sets is given in Table 2 as the total number of observations. The Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm was used in the learning process. This algorithm is
dedicated to numerical optimization [42]. The mathematical foundations of the algorithm
were formulated by mathematicians in 1970 [43–46].

In order to avoid overfitting during the training of the network, in addition to the
training set, a test set was used, in accordance with the validation procedure implemented
in STATISTICA Automatic Neural Networks [47]. Test data were used to evaluate the
progress of the network as the network was trained. The neural network was optimized in
relation to the training data during the learning process. Stopping the network training
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process early enough prevented overfitting and maximized the degree of generalization. In
each successive cycle, the applied early stopping technique carried out the learning process
in accordance with the following procedure [47]:

1. Feed the network data from the training data set.
2. Calculate the prediction (network outputs).
3. Calculate of the difference between the predicted and actual values of the output

according to the data, using the error function.
4. Repeat steps 1 and 2 until all input—output pairs from the training data set are exhausted.
5. Use a learning algorithm to correct the neuron weights to obtain a smaller prediction error.
6. Input all cases from the test data to the network input, obtain the prediction, compare

it with the appropriate values of the data outputs, and calculate the network error.
7. Compare the network error received with the error received in the previous cycle.

If the error decreased, learning is continued in the next cycle, otherwise the process
was stopped.

The validation data were not used in the network learning process. The network error
was calculated for these data after training was complete. If the validation error did not
significantly differ from the test error, then it was considered that the network generalized
the data structure well.

STATISTICA Automatic Neural Networks scaled the input and output variables using
a linear transformation according to extreme values in the data, so that all values fall within
the range (0,1).

The learning process was limited to 300 epochs. The activation function in the hidden
neurons was logistic, but this function for the output was linear. The single output (PM2.5)
of each MLP model was taken from the same time step as the predictors. The network
was randomly initiated using the Gaussian method. The initial weights were normally
distributed with a mean of 0 and a variance of 1. The sum of squares (SOS) was assumed as
the error function. SOS was the sum of the squared distances between predicted and actual
values. Each prediction was made 5 times, each time with different randomly selected
initial weights and with a different division of cases into subsets. The most accurate of the
5 created models was selected for the study. The other models were rejected. Accuracies
of models were assessed by calculating the MEA and RMSE together for the cases from
the three subsets (training, test, and validation). The created networks slightly differed in
the modeling error. They had the same structure, but differed in terms of input and output
weights of individual neurons.

Regression models were created for each monitoring station, in which the PM2.5
concentration was the output (explained variable), while the input data (explanatory
variables) were entered in the following variants:

I. D, H→ (MLP 2-10-1, Figure 3a);
II. D, H, PM10 → (MLP 3-10-1, Figure 3b);
III. D, H, PM10, CO→ (MLP 4-10-1, Figure 3c);
IV. D, H, PM10, CO, SO2, O3, NOx → (MLP 7-10-1, Figure 3d).

Figure 3 shows the architecture diagrams of a multilayer perceptron with 10 neurons
in one hidden layer for subsequent variants of the explanatory variables.

For comparison, using the linear regression method of least squares, PM2.5 concentra-
tion was modeled for the variant with only one predictor—PM10. The Multiple Regression
module in the STATISTICA TIBCO Software Inc program was used for modeling. The
results were models called LINEAR.



Atmosphere 2023, 14, 96 7 of 19

Atmosphere 2023, 14, 96 7 of 20 
 

 

III. D, H, PM10, CO  (MLP 4-10-1, Figure 3c); 

IV. D, H, PM10, CO, SO2, O3, NOx  (MLP 7-10-1, Figure 3d). 

Figure 3 shows the architecture diagrams of a multilayer perceptron with 10 neurons 

in one hidden layer for subsequent variants of the explanatory variables. 

  
(a) (b) 

  
(c) (d) 

Figure 3. Architecture diagrams of the multilayer perceptrons with ten neurons in a single hidden 

layer. The diagrams for various variants of explanatory variables: (a) D, H; (b) D, H, PM10; (c) D, H, 

PM10, CO; (d) D, H, PM10, CO, SO2, O3, NOx. 

For comparison, using the linear regression method of least squares, PM2.5 concentra-

tion was modeled for the variant with only one predictor—PM10. The Multiple Regression 

module in the STATISTICA TIBCO Software Inc program was used for modeling. The 

results were models called LINEAR. 

2.6. Assessment of the Approximation Error 

The mean absolute error (MAE) and root mean squared error (RMSE) values, which 

were calculated on the basis of the discrepancies between the actual and predicted values, 

were used to assess the accuracy of the regression models obtained. The formulas for cal-

culating individual errors are shown in equations 1 and 2. 

MAE: 

MAE =
1

n
∑|xi − yi|

n

i=1

 (1) 

RMSE: 

 

D 

H 
PM2.5 

The inputs 

The hidden layer 

The output 

 

The inputs 

The hidden layer 

The output 

D 

H 

PM10 

PM2.5 

 

The inputs 

The hidden layer 

The output 

D 

H 

PM10 

CO 

PM2.5 

 

The inputs 

The hidden layer 

The output 

D 

H 

PM10 

CO 

NOx 

SO2 

O3 

PM2.5 

Figure 3. Architecture diagrams of the multilayer perceptrons with ten neurons in a single hidden
layer. The diagrams for various variants of explanatory variables: (a) D, H; (b) D, H, PM10; (c) D, H,
PM10, CO; (d) D, H, PM10, CO, SO2, O3, NOx.

2.6. Assessment of the Approximation Error

The mean absolute error (MAE) and root mean squared error (RMSE) values, which
were calculated on the basis of the discrepancies between the actual and predicted values,
were used to assess the accuracy of the regression models obtained. The formulas for
calculating individual errors are shown in Equations (1) and (2).

MAE:

MAE =
1
n

n

∑
i=1
|xi − yi| (1)

RMSE:

RMSE =

√
∑n

i=1(xi − yi)
2

n
(2)

where n is the number of cases, y is the predicted concentrations, x is the real concentrations,
and i is the case number.

2.7. Verification of Models

In order to verify the usefulness of the obtained MLP neural network models for
modeling current concentrations of PM2.5, trial modeling was carried out for several daily
episodes from 2022. The MLP 7-10-1 and MLP 3-10-1 models trained on historical data
(2015–2021) from the considered air monitoring station were used for prediction. Trial mod-
eling was performed to answer the question of whether it is possible to use neural networks
trained on historical data to model PM2.5 concentration in a later measurement period.
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In order to assess the quality of prediction in extreme conditions, the modeling error
was calculated for selected cases of very low (≤1.0 µg/m3) and very high (≥100.0 µg/m3)
PM2.5 concentrations. In addition, the universality of the obtained neural models was
verified by using one of the trained networks to model PM2.5 concentrations at other air
monitoring stations.

3. Results
3.1. Annual and Diurnal Courses of PM2.5 and PM10 Concentrations

Based on the time series used in the analysis, statistical courses of PM2.5 and PM10
concentrations in the annual cycle were calculated for each air monitoring station. The
results were shown in Figure 4. The courses indicated that the lowest concentrations of
suspended particulate matter appeared in May–September. In the typical winter months of
January and February, concentrations of particulate matter reached the highest values.
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Figure 4. Annual courses of PM2.5 and PM10 concentrations at the monitoring stations in: (a) Jelenia
Gora; (b) Lublin; (c) Plock; (d) Radom; (e) Kedzierzyn-Kozle; (f) Olsztyn.
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Figure 5 shows the daily courses of PM10 and PM2.5 concentrations. The courses
indicated that the lowest concentrations of suspended particulate matter appeared at noon
and in the afternoon hours. In the evening and at night, the concentrations of particulate
matter reached the highest values at all monitoring stations.
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Figure 5. Diurnal courses of PM2.5 and PM10 concentrations at the monitoring stations in: (a) Jelenia
Gora; (b) Lublin; (c) Plock; (d) Radom; (e) Kedzierzyn-Kozle; (f) Olsztyn.

3.2. Preliminary Analysis of Correlations

A correlation analysis was performed for air pollutant concentrations at individual
air monitoring stations. The analysis was performed to find the best predictors for PM2.5
concentrations. The Pearson’s correlation coefficients were presented in the Table 4. For all
the analyzed stations, the highest correlation coefficient in relation to PM2.5 concentration
occurred for PM10 concentration, which was slightly lower for CO concentration. These
two predictors were used to create models in variants II and III (see Section 2.5). Because
all concentration variables had relatively high coefficients in relation to PM2.5, in the full-
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dimensional variant, in addition to time variables, all concentration variables were used
(variant IV in Section 2.5.).

Table 4. Pearson’s correlation coefficient for variables registered at the air monitoring stations,
2015–2021.

Air Monitoring
Station CO SO2 PM10 PM2.5 O3 NOx

Jelenia Gora

CO 1.000
SO2 0.669 1.000

PM10 0.902 0.668 1.000
PM2.5 0.926 0.682 0.978 1.000

O3 −0.484 −0.258 −0.375 −0.434 1.000
NOx 0.743 0.570 0.711 0.708 −0.516 1.000

Lublin

CO 1.000
SO2 0.326 1.000

PM10 0.772 0.398 1.000
PM2.5 0.788 0.404 0.947 1.000

O3 −0.446 −0.145 −0.325 −0.440 1.000
NOx 0.750 0.220 0.585 0.547 −0.434 1.000

Plock

CO 1.000
SO2 0.118 1.000

PM10 0.768 0.145 1.000
PM2.5 0.827 0.148 0.923 1.000

O3 −0.520 0.000 −0.361 −0.501 1.000
NOx 0.738 0.083 0.497 0.483 −0.424 1.000

Radom

CO 1.000
SO2 0.546 1.000

PM10 0.863 0.636 1.000
PM2.5 0.885 0.652 0.945 1.000

O3 −0.485 −0.213 −0.431 −0.512 1.000
NOx 0.809 0.354 0.664 0.631 −0.455 1.000

Kedzierzyn-Kozle

CO 1.000
SO2 0.503 1.000

PM10 0.818 0.534 1.000
PM2.5 0.839 0.529 0.967 1.000

O3 −0.531 −0.152 −0.406 −0.463 1.000
NOx 0.711 0.309 0.621 0.608 −0.548 1.000

Olsztyn

CO 1.000
SO2 0.141 1.000

PM10 0.641 0.202 1.000
PM2.5 0.759 0.197 0.895 1.000

O3 −0.581 −0.071 −0.295 −0.479 1.000
NOx 0.744 0.141 0.565 0.561 −0.522 1.000

3.3. Results of Modeling PM2.5 Concentrations

For each variant of model, for individual air monitoring stations, modeling errors of the
PM2.5 concentration were separately calculated in relation to the actual PM2.5 concentration.
To assess the modeling accuracy, two error measures were calculated: MAE and RMSE.
A brief description of the models and the values of the prediction errors obtained for them
was presented in Table 5. MAE and RMSE error values for the neural models were also
graphically presented in Figure 6.
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Table 5. Values of approximation errors of PM2.5 concentrations in MLP models for 4 variants with
different numbers of predictors. For comparison, the results for linear regression models, called
LINEAR, were added.

Air Monitoring
Station Regression Model Explanatory Variable (Predictors) MAE

µg/m3
RMSE
µg/m3

Jelenia Gora

LINEAR PM10 3.92 5.53

MLP 2-10-1 D, H, 13.94 24.19
MLP 3-10-1 D, H, PM10, 3.25 4.72
MLP 4-10-1 D, H, PM10, CO 2.99 4.18
MLP 7-10-1 D, H, PM10, CO, SO2, O3, NOx 2.91 4.09

Lublin

LINEAR PM10 4.68 6.69

MLP 2-10-1 D, H, 11.90 20.12
MLP 3-10-1 D, H, PM10, 4.04 5.88
MLP 4-10-1 D, H, PM10, CO 4.01 5.74
MLP 7-10-1 D, H, PM10, CO, SO2, O3, NOx 3.61 5.30

Plock

LINEAR PM10 3.70 5.78

MLP 2-10-1 D, H, 8.67 12.88
MLP 3-10-1 D, H, PM10, 2.68 4.06
MLP 4-10-1 D, H, PM10, CO 2.46 3.66
MLP 7-10-1 D, H, PM10, CO, SO2, O3, NOx 2.23 3.36

Radom

LINEAR PM10 4.40 6.94

MLP 2-10-1 D, H, 11.23 18.10
MLP 3-10-1 D, H, PM10, 3.36 5.68
MLP 4-10-1 D, H, PM10, CO 3.16 5.01
MLP 7-10-1 D, H, PM10, CO, SO2, O3, NOx 2.80 4.39

Kedzierzyn-
Kozle

LINEAR PM10 4.04 5.98

MLP 2-10-1 D, H, 13.66 21.05
MLP 3-10-1 D, H, PM10, 3.68 5.51
MLP 4-10-1 D, H, PM10, CO 3.60 5.30
MLP 7-10-1 D, H, PM10, CO, SO2, O3, NOx 3.22 4.73

Olsztyn

LINEAR PM10 3.42 5.66

MLP 2-10-1 D, H, 7.76 11.21
MLP 3-10-1 D, H, PM10, 2.04 3.29
MLP 4-10-1 D, H, PM10, CO 2.00 3.21
MLP 7-10-1 D, H, PM10, CO, SO2, O3, NOx 1.78 2.88

For comparison, the results of the linear regression models, called LINEAR, were
added. The correlation between PM10 and PM2.5 concentrations was so strong that simple
linear models exploring only the PM10 concentration provided reasonable prediction
accuracy. Using nonlinear neural models, the modeling error could be significantly reduced.

For all stations, exceptionally large prediction errors were obtained for the simplest
neural models (variant I), in which the predictors were only time variables D and H.
A very significant increase in modeling quality was observed for models in variant II,
in which one of the predictors was the PM10 variable. PM10 emerged as the most im-
portant explanatory variable. The addition of CO concentration variable to the model
inputs (MLP 4-10-1 models) resulted in a few percent improvement in the accuracy of the
approximation. Including all available concentration variables in the model inputs (MLP
7-10-1 variants) reduced the modeling error to a slight extent.
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Figure 6. MAE and RMSE values for PM2.5 concentration prediction by means of MLP neural network
models depending on the predictors used (variants I, II, III, and IV): (a) Jelenia Gora, (b) Lublin,
(c) Plock, (d) Radom, (e) Kedzierzyn-Kozle, and (f) Olsztyn air monitoring stations.

Scatterplots were used to compare the modeled and observed values of PM2.5 concen-
trations at individual automatic air monitoring stations (Figure 7). The results were shown
for the most accurate models, with seven explanatory variables (variant IV: MLP 7-10-1).
The scatterplots also showed perfect fit lines (blue lines: y = x) and regression lines (red
lines). Linear regression equations and determination coefficients were also calculated.
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Figure 7. Scatterplots of predicted and observed PM2.5 concentrations for the models MLP 7-10-1:
(a) Jelenia Gora air monitoring station model (best linear fit y = 0.977x + 0.451, R2 = 0.976); (b) Lublin
air monitoring station (best linear fit y = 0.942x + 1.303, R2 = 0.944); (c) Plock air monitoring sta-
tion (best linear fit y = 0.952x + 0.909, R2 = 0.951); (d) Radom air monitoring station (best lin-
ear fit y = 0.956x + 1,057, R2 = 0.957); (e) Kedzierzyn-Kozle air monitoring station (best linear fit
y = 0.962x + 0.929, R2 = 0.960); (f) Olsztyn air monitoring station (best linear fit y = 0.951x + 0.785,
R2 = 0.949).

3.4. Verification of Models

To evaluate the quality of prediction in extreme conditions, the modeling error was
calculated for selected cases of very low (≤1.0 µg/m3) and very high (≥100.0 µg/m3) PM2.5
concentrations. The results were presented in Table 6. The modeling errors calculated for
extremely high PM2.5 concentrations were always much higher than those calculated for
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the full range of concentrations. This effect can be explained by the specifics of the neural
network learning algorithm. Without preprocessing the input data, the model better fit the
concentration levels it saw most often in the training process, i.e., the most common cases.
Cases of extremely high concentrations were under-represented, and the fit of the model to
them was worse. The situation was different in the range of the lowest concentrations. The
MAE and RMSE values in modeling very low concentrations could be even lower than the
values of these errors estimated for the entire range of concentrations. The effects described
above were noted in other studies, in which errors of the same model were analyzed in
different concentration ranges of the modeled pollutant. It was stated that the application
of one neural network to the entire concentration range resulted in different prediction
accuracies in various concentration subranges [33,34]. It was proven that the prediction
quality can be improved if one neural network model is replaced with several models
(submodels) adapted to specific concentration subranges [48]. It should be noted that the
percentage share of PM2.5 in PM10, at extremely high concentrations of PM2.5, was very
high and exceeded 80% at all air monitoring stations.

Table 6. Modeling errors and some statistics in the extreme low and high ranges of PM2.5 concentra-
tions at different air monitoring stations (variant MLP 7-10-1).

Air Monitoring
Station

Extreme
Concentration

Threshold

Number
of Cases

PM2.5/PM10
Ratio

%

MAE
µg/m3

RMSE
µg/m3

Jelenia Gora
≤1.0 314 34.2 3.81 4.39
≥100.0 1346 91.6 6.35 7.97

Lublin
≤1.0 55 25.2 4.64 5.12
≥100.0 440 89.6 8.41 11.65

Plock
≤1.0 46 30.5 2.15 2.17
≥100.0 155 80.6 6.33 8.54

Radom
≤1.0 33 18.7 1.94 1.98
≥100.0 729 84.9 12.47 15.92

Kedzierzyn-Kozle ≤1.0 48 30.9 3.53 3.89
≥100.0 428 88.8 8.11 10.23

Olsztyn ≤1.0 14 63.2 1.32 2.51
≥100.0 24 90.0 10.88 14.13

In order to verify the usefulness of the obtained neural models for modeling the
concentration of PM2.5, three different daily episodes that occurred at various air monitoring
stations in 2022 were selected. PM2.5 concentration modeling was carried out using the
models trained on historical data from the same air monitoring station. Models of the MLP
7-10-1 and MLP 3-10-1 types were used for modeling. Episodes with different levels of
PM2.5 concentrations were selected for the study: in Olsztyn on 26 July 2022, in Plock on
26 July 2022, and in Jelenia Gora on 12–13 November 2022.

Figure 8 shows the daily courses of the actual and modeled PM2.5 concentrations for
the chosen episodes. The values of RMSE were calculated for both variants of the models:
MLP 7-10-1 and MLP 3-10-1. The obtained results of the modeling errors for the individual
episodes were comparable to the errors obtained when training neural networks. For the
measuring station in Olsztyn, the RMSE error of prediction with the MLP 7-10-1 model
was even lower. During this episode, the RMSE value was 1.4 µg/m3, and during network
training, it was 4.0 µg/m3. During the episode in Plock, the RMSE value for the MLP 7-10-1
model was 3.7 µg/m3, and during training of this network, it was 3.1 µg/m3. In the case of
the episode at the station in Jelenia Gora, the modeling error was 3.6 µg/m3, while during
network training, it was 3.9 µg/m3. The MLP 3-10-1 models proved to be less accurate than
the MLP 7-10-1 models, but their accuracy should also be considered acceptable.
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Figure 8. Daily courses of the observed and modeled PM2.5 concentrations during the selected episodes:
(a) Olsztyn on 26 July 2022 (MLP 7-10-1: RMSE = 1.41 µg/m3; MLP 3-10-1: RMSE = 1.20 µg/m3); (b) Plock
26 September 2022 (MLP 7-10-1: RMSE = 3.73 µg/m3; MLP 3-10-1: RMSE = 6.22 µg/m3); (c) Jelenia Gora
on 12–13 November 2022 (MLP 7-10-1: RMSE = 3.55 µg/m3; MLP 3-10-1: RMSE = 4.01 µg/m3).

The results of the trials allowed us to confirm the usefulness of the considered models
for the prediction of current PM2.5 concentrations when the PM10 concentrations are known.

The concept of building predictive models presented in this article has some limitations.
Trained neural networks were addressed for specific air monitoring stations. Each of
the generated models had its own specificity, but they were also partly universal. The
universality of the obtained neural models was verified by using one of the trained networks
to model PM2.5 concentrations at other air monitoring stations. In order to predict PM2.5
concentrations at the monitoring stations in Jelenia Gora, Lublin, Radom, Kedzierzyn-Kozle,
and Olsztyn, a model trained on data from the monitoring station in Plock was used. The
obtained approximation errors were presented in Table 7. Analyzing the error values, it
can be concluded that the accuracy of prediction using the “borrowed” model was lower
than that of models dedicated to specific monitoring stations. MAE and RMSE values for
the borrowed models were not very high; they are comparable to analogous prediction
errors of simpler models, such as LINEAR or MLP 3-10-1. Borrowed models could be used
at stations where there are no historical PM2.5 measurements.
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Table 7. Approximation error values of PM2.5 concentrations obtained using the neural network
trained on data from Plock.

Air Monitoring Station MAE
µg/m3

RMSE
µg/m3

Jelenia Gora 3.67 8.12
Lublin 4.36 7.94
Radom 3.16 5.62

Kedzierzyn-Kozle 4.08 7.15
Olsztyn 2.21 3.41

4. Discussion and Conclusions

MLP modeling of PM2.5 concentrations using only time variables D and H (variant I)
was burdened with a large error and did not give satisfactory results. However, compared
with the naïve mean model, this kind of model has some advantages. In a naïve model that
takes the mean as the modeling result for each case, the RMSE value would be equivalent
to the standard deviation value in the set of real PM2.5 concentrations. For MLP 2-10-1
models, the RMSE values at individual stations ranged from 12.0 to 24.0 µg/m3, meanwhile,
the standard deviations in the PM2.5 concentration sets had higher values: from 13.6 to
26.4 µg/m3. The RMSE prediction error was always lower than the standard deviation.
This means that by using time variables, we could generate a model that was more accurate
than the mean model.

The introduction of the PM10 concentration as an additional input in the MLP 3-10-1
models (variant II) significantly improved the modeling quality. The RMSE values for the
models of this variant were in the range of 3.8–6.0 µg/m3. It should be emphasized that
PM10 concentrations were very strongly correlated with PM2.5 concentrations (correlation
coefficients ranged from 0.858 to 0.978). Expanding the models by adding successive
predictors (variants III and IV) made it possible to slightly reduce the level of RMSE
modeling error to the range of 3.1–5.4 µg/m3.

A summary of modeling errors RMSE and some statistics on PM2.5 and PM10 concen-
trations was presented in Table 8. The answer to the question regarding what determines
the modeling error is not obvious. The models were obtained, and the modeling errors were
estimated for data sets from six different air monitoring stations in Poland. It is usually
assumed that the correlations between the dependent variable and the predictors are crucial
in regression models. This regularity was not unequivocally confirmed in the obtained
results. At the station in Jelenia Gora, with the highest correlation coefficient between PM10
and PM2.5 concentrations (r = 0.978), the modeling error was not the lowest. At the station
in Olsztyn, with the lowest correlation coefficient between PM10 and PM2.5 concentrations
(r = 0.858), the modeling error was not the highest. Additionally, the comparison of mean
and standard deviation values, as well as the share of the PM2.5 concentration in the PM10
concentration, did not lead to clear conclusions. It should be assumed that each of the
listed factors may have a partial impact on the modeling quality, and none of them is the
dominant factor.

The main purpose of this study was to evaluate the accuracy of PM2.5 concentration
prediction using PM10 concentrations. Such a prediction method could be used to model
PM2.5 concentrations in situations where the actual measurement was not performed,
e.g., during a failure of the PM2.5 analyzer. The results of other measurements must be
available, including, above all, the measurement of PM10 concentration. We also found
that a trained neural network for a specific air monitoring station could be used to predict
PM2.5 concentrations at another station. Such prediction was less accurate because it was
burdened with an additional error resulting from the mismatch between the model and
the station.
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Table 8. Summary of modeling results: modeling errors and statistics on PM2.5 and PM10 concentra-
tions for different air monitoring stations.

Air Monitoring
Station

PM10, µg/m3 PM2.5, µg/m3 PM2.5/PM10
Ratio, %

r-Pearson
PM2.5/PM10

RMSE, µg/m3

Mean SD Mean SD MLP 3-10-1 MLP 7-10-1

Jelenia Gora 26.8 28.8 21.0 26.6 73.7 0.978 4.72 4.09
Lublin 28.7 23.6 21.7 20.8 73.7 0.947 5.88 5.30
Plock 27.0 18.7 18.9 15.1 68.1 0.923 4.06 3.36

Radom 32.6 25.9 23.7 21.2 69.9 0.945 5.68 4.39
Kedzierzyn-Kozle 32.3 26.6 24.5 23.5 72.3 0.967 5.51 4.73

Olsztyn 21.4 15.9 15.9 12.7 74.6 0.895 3.29 2.88

The most important conclusions that result from the conducted analysis are as follows:

1. In order to obtain a low PM2.5 prediction error using the MLP models, it is enough to use
the date and time in numerical form and the PM10 concentration as explanatory variables.

2. Including more explanatory variables slightly increases the accuracy of the MLP
regression model.

3. Neural regression models trained on archival data can be successfully used to model
current PM2.5 concentrations.

4. The level of prediction error may be influenced by various factors: correlation coeffi-
cient between PM10 and PM2.5 concentrations, levels of the aerosol concentrations,
their variability, and the share of the PM2.5 concentration in the PM10 concentra-
tion. The strength of the correlation between PM10 and PM2.5 concentrations is not a
dominant factor.

We are aware of the limitations of the proposed methodology. The accuracy of the
models can be improved by including additional predictors, in particular meteorological
parameters. They are generally available at air monitoring stations. Future research should
take into account meteorological conditions, as they determine the dispersion of pollutants
in the air and, consequently, their concentration. Another equally important research goal
should be an attempt to create a universal model that can be applied at any air monitoring
station. For modeling, we used the software available in the Statistica 13.3 package, which
partially operated in automatic mode. It can be assumed that some improvement in the
quality of modeling can be obtained by using more steerable software that will allow to
better control the network training process.
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