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Abstract: (1) Background: Acute myocardial infarction (AMI) imposes a great burden on global
health. Few studies have demonstrated the effects of valley concentration of air pollutants on AMI
hospital admissions. (2) Methods: Hospitalizations for AMI from 1 May 2014 to 31 December 2019
were analyzed. Generalized additive models (GAM) were used to quantify the exposure–response
association between the hourly peak, mean, and valley concentration of six air pollutants and AMI
hospital admissions. Stratification analyses were conducted to identify the susceptible population.
(3) Results: Hourly peak, mean, and valley concentrations of PM2.5, PM10, SO2, NO2, and CO
were significantly associated with AMI hospital admissions. Each 10-unit increase in the hourly
valley concentration of them led to 0.50% (0.35–0.66%), 0.44 % (0.32–0.56%), 0.84% (0.47–1.22%),
1.86% (0.73–3.01%), and 44.6% (28.99–62.10%) excess risk in AMI hospital admissions, respectively.
In addition, the effects of hourly valley concentration were larger than mean and peak concentrations.
The effects in the female or older than 65 groups were larger than that in the male or younger than
65 groups. (4) Conclusions: PM2.5, PM10, SO2, NO2, and CO exposure contributed to increased
AMI hospital admissions. Hourly valley concentration might be a more potent indicator of adverse
cardiovascular events. Females and individuals older than 65 were more susceptible to ambient air
pollutant exposure.

Keywords: acute myocardial infarction; air pollutants; China; hospital admission; generalized
additive models

1. Introduction

Cardiovascular disease is one of the significant causes of mortality all over the
world [1]. It included the ischemic heart disease, stroke, and so on. Ischemic heart disease
and stroke were the leading causes of disability-adjusted life years in the over-50 group
in 2019 [2]. The estimated age-standardized death rate of ischemic heart disease remains
increasing in many areas such as South, East, and Southeastern Asia [3]. Acute myocardial
infarction (AMI) is one of the cardiovascular diseases with high disability and death rates.
It imposes a huge burden on the global economy. For example, the total estimated annual
cost of AMI was over 84 billion dollars in 2016 in the United States according to a study
with a sample of over 320,000 AMI patients [4]. The AMI total estimated expense was over
1.178 billion dollars in 2012 in the South Korea [5]. Studies in the United Kingdom, China,
and Brazil showed similar results [6–8]. In a word, the disease and economic burden of
AMI are substantial.

Air pollution is one of the most important global topics and health problems [9]. It
can affect nearly all the people on the planet and every organ in the body [10,11]. Air
pollution is the most significant environmental risk factor for morbidity and mortality and
causes considerable harm to human health [12]. For example, particulate matter expo-
sure mediated increased risk of a wide spectrum of chronic diseases [13–15]. The World
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Health Organization estimates that the harmful effects of outdoor air pollution result in
over 4 million deaths each year [16]. Previous literature suggested that both particulate
(diameter < 2.5 mm (PM2.5), diameter < 10 mm (PM10)) and gaseous (sulfur dioxide (SO2),
nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3)) air pollutants had adverse
impacts on cardiovascular diseases [17]. However, most of the studies established the
effects of mean or peak concentration of air pollutants. Valley concentration represents an
important metric of air pollution and a potential indicator for pollution control, but little
has been investigated. In this study, we aimed to test the impact of six air pollutants on AMI
hospitalization, with the larger perspective to identify efficient indicators for susceptible
populations to provide data support for the formulation of prevention policies. To achieve
the study objectives described above, we set the study population to AMI hospital admis-
sions in Beijing between 1 May 2014 and 31 December 2019. At the same time, the exposure
indicators were designated as the hourly peak, mean, and valley concentration of six air
pollutants (PM2.5, PM10, SO2, NO2, O3, CO). The generalized additive model (GAM) was
used as the main statistical method, and the confounding factors such as meteorological
factors were adjusted in the statistical model in the meantime. The stratification analysis
and sensitivity analysis were also conducted to find out the susceptible population and test
the robustness of our findings. We found that PM2.5, PM10, SO2, NO2, and CO exposure
contributed to increased AMI hospital admissions. Hourly valley concentration might be a
more potent indicator of adverse cardiovascular events.

2. Materials and Methods
2.1. Data Gathering

We analyzed AMI hospital admissions before the COVID-19 pandemic in Beijing,
China, given its established impact on cardiovascular disease [18–20]. Data from 1 May 2014
to 31 December 2019 were obtained from the Beijing Municipal Health Commission In-
formation Center. Anonymous clinical and residential information was collected. The
10th revision of the International Classification of Diseases provided the definition of
AMI (ICD-10: I21-22). The data included the hourly concentration of both the particulate
(PM2.5, PM10) and gaseous air pollutants (SO2, NO2, O3, CO) from 35 air pollutant moni-
toring stations in Beijing. The hourly peak, mean, and valley concentration were defined as
maximum, mean, and minimum of the hourly average concentration of the air pollutants
in one day, respectively.

Data on potential confounding factors were also extracted. Influenza was indepen-
dently linked to a higher risk of AMI according to prior research [21], and meteorological
factors had an adverse effect on cardiovascular diseases [21–24], so the influenza endemic,
daily mean temperature, and relative humidity were regarded as the confounding factors
and were adjusted in our statistical model. When the positive rate of influenza virus isola-
tion in any given week exceeded 20% of the highest weekly positive rate in the observation
season in the north of China, it was defined as the influenza endemic (IF) [25,26], based on
the data provided by the Chinese National Influenza Center [27]. The China Meteorological
Administration provided the daily mean temperature and relative humidity. In addition,
public holidays (PH) and day of the week (DOW) were linked to different behavioral
patterns, so they were also included in the model. They were determined by the website of
Central People’s Government of the People’s Republic of China [28].

2.2. Statistical Analysis

This study used the method of Lin et al., so the relevant description partly repro-
duces their wording [29]. We used the generalized additive model (GAM) to quantify the
exposure–response association between the hourly peak, mean, and valley concentration of
six air pollutants and AMI hospital admissions. The quasi-Poisson distribution was used to
control the overdispersion in daily AMI hospital admissions [29,30]. The nonliner smooth
functions were used to exclude the effects of temperature and relative humidity as well
as the long-term trend and seasonality in daily AMI hospital admissions. The degrees of
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freedom (df) were set to 3 for the mean temperature and relative humidity and 6 per year
for the time to control the long-term trend and seasonality. As mentioned above, the IF, PH,
and DOW were also regarded as confounding factors and adjusted in the statistical model
in the meantime. We used the abbreviations (e.g., PM2.5 peak, PM2.5 mean, and PM2.5 valley)
to represent the hourly peak, mean, and valley concentrations of PM2.5. The detailed main
model is shown below:

log[E(Yt)] = α + s(Time, d f = 6 per year) + s(Temperature, d f = 3) + s(Humidity, d f = 3) +
β0 ∗ Pollutant + β1 ∗ DOW + β2 ∗ IF + β3 ∗ PH

E(Yt) is the expected daily number of AMI hospital admissions on day t, and s indi-
cates the smooth function. d f is the degree of freedom. α is the model intercept, and β is the
regression coefficient. Humidity and Temperature refer to the relative humidity and mean
temperature on day t, respectively. Time refers to the time to adjust for long-term trends
and seasonality. Pollutant refers to the hourly peak, mean, or valley concentration of six
kinds of air pollutants. DOW, IF, and PH are the indicators for day of the week, influenza
epidemic status and public holiday. R (ver. 4.1.1) software was used for all statistical
analyses, and the two-sided p-value < 0.05 was used to determine statistical significance.

To find out the susceptible population to the health effects of air pollutants, we
conducted the stratification analysis with different gender subgroups (male, female) and
different age subgroups (age < 65, age ≥ 65). Previous studies showed that the influences
of air pollutants had lag effects, so we adjusted our model with different lag structures
from lag 0 day (LAG0, the current day of the AMI hospital admissions) to lag 3 days (LAG3,
three days before the AMI hospital admissions) [31]. We also adjusted our model with
different multiday average lag structures from LAG01 (moving averages from the current
day to 1 day ago) to LAG03 (moving averages from the current day to 3 days ago) to control
the potential misalignment of the single lag day exposure [32].

In addition, sensitivity analyses were performed using various degrees of freedom in
the model to test the robustness of our findings. The degree of freedom of the Temp and
Humidity were changed to 5, and the Time was changed to 8 per year.

3. Results
3.1. Descriptive Analysis

A total of 124,765 AMI hospitalizations were analyzed. Among them, 86,581 (69.40%)
were male, and 57,760 (46.30%) were younger than 65 years old. On average, there were
60.24 admissions per day, comprising 27.89 individuals younger than 65 years old. The
hourly mean concentration of PM2.5, PM10, SO2, NO2, O3, and CO were 64.60 µg/m3,
96.21 µg/m3, 45.26 µg/m3, 9.51 µg/m3, 1.01 mg/m3, and 59.38 µg/m3, respectively. The
mean daily temperature was 14.34 ◦C, and relative humidity was 51.14% during the study.
Table 1 details the AMI hospital admissions, air pollutants, and meteorological data.

3.2. Overall and Stratified Effects

Hourly peak, mean, and valley concentrations of the pollutants were all significantly
associated with AMI hospitalization, except for O3. Each 10-unit increase in the hourly
valley concentration of PM2.5, PM10, SO2, NO2, and CO led to 0.50% (95% CI: 0.35–0.66%),
0.44% (95% CI: 0.32–0.56%), 0.84% (95% CI: 0.47–1.22%), 1.86% (95% CI: 0.73–3.01%), and
44.6% (95% CI: 28.99–62.10%) excess risk in AMI hospital admissions among the total
population in the current day (LAG0). Hourly valley concentrations of PM2.5, PM10,
SO2, and CO had stronger effects compared to the hourly mean concentrations. Each
10 µg/m3 increase in hourly peak, mean, and valley concentration of PM2.5 led to 0.25%
(95% CI: 0.17–0.34%), 0.43% (95% CI: 0.3–0.55%), and 0.5% (95% CI: 0.35–0.66%) excess risk
in AMI hospitalization, respectively.
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Table 1. The baseline information of the AMI hospital admissions, air pollutants, and
meteorological data.

Variable Observation Days Mean ± SD Percentiles

Min P25 P50 P75 Max

Daily AMI count
Total 2071 60.24 ± 14.32 24 49 60 70 110
Age < 65 2071 27.89 ± 7.04 7 23 28 32 58
Age ≥ 65 2071 32.35 ± 9.54 8 25 32 39 68
Male 2071 41.81 ± 10.60 13 34 41 49 85
Female 2071 18.44 ± 5.72 4 14 18 22 41

Meteorological factors
Temperature (◦C) 2070 14.34 ± 11.21 −14.3 3.3 16.1 24.7 32.6
Relative humidity (%) 2070 51.14 ± 19.92 8 35 51 67 99

Air pollutants
PM2.5 valley (µg/m3) 2049 38.01 ± 43.79 2.45 10.25 23.56 48.06 400.43
PM2.5 mean (µg/m3) 2049 64.60 ± 57.58 4.31 25.80 48.25 83.34 439.81
PM2.5 peak (µg/m3) 2049 100.83 ± 81.16 6.03 45.19 78.91 131.20 640.57
PM10 valley (µg/m3) 2044 54.72 ± 49.61 2.00 20.19 38.85 74.32 471.43
PM10 mean (µg/m3) 2044 96.21 ± 68.42 5.63 50.06 79.17 122.17 830.72
PM10 peak (µg/m3) 2044 153.90 ± 116.42 8.80 86.28 125.62 185.20 1680.26
NO2 valley (µg/m3) 2050 27.26 ± 18.33 3.91 14.60 22.00 33.79 130.69
NO2 mean (µg/m3) 2050 45.26 ± 20.50 9.12 31.27 41.22 54.63 146.46
NO2 peak (µg/m3) 2050 66.95 ± 26.02 11.53 49.44 64.03 79.88 179.65
SO2 valley (µg/m3) 2050 5.24 ± 6.00 1.59 2.32 3.03 5.47 57.67
SO2 mean (µg/m3) 2050 9.51 ± 10.16 2.03 3.27 5.85 11.10 82.10
SO2 peak (µg/m3) 2050 16.24 ± 16.88 2.09 5.48 10.77 19.98 213.77
CO valley (mg/m3) 2026 0.65 ± 0.60 0.16 0.31 0.50 0.75 7.13
CO mean (mg/m3) 2026 1.01 ± 0.81 0.21 0.55 0.81 1.15 7.72
CO peak (mg/m3) 2026 1.48 ± 1.16 0.29 0.80 1.16 1.74 13.29
O3 valley (µg/m3) 2050 19.50 ± 16.79 1.71 6.57 14.09 27.57 156.70
O3 mean (µg/m3) 2050 59.38 ± 36.60 3.30 30.21 53.87 81.85 173.98
O3 peak (µg/m3) 2050 107.83 ± 65.78 4.21 59.59 91.00 153.38 334.32

Similar effects were found in the subgroups. All the pollutants had greater impacts
on females and individuals older than 65 years old. For example, each 10 µg/m3 increase
in hourly valley concentration of PM2.5 led to 0.41% (95% CI: 0.23–0.59%) excess risk in
females, as compared to 0.71% (95% CI: 0.44–0.98%) in their male counterparts; a 10 µg/m3

increase in hourly valley concentration of PM2.5 led to 0.69% (95% CI: 0.48–0.89%) excess
risk in individuals older than 65, as compared to 0.29% (95% CI: 0.07–0.52%) in their
younger counterparts. Table 2 shows the excess risk of AMI hospitalization related to
hourly peak, mean, and valley concentration of the six air pollutants in the current day
(LAG0) in the total population and different subgroups.

3.3. Lag Effect

Figure 1 shows the relationship between the excess risk of AMI hospital admissions
and the concentration of pollutants on different lag days. Maximum effects of PM2.5, PM10,
and CO occurred on LAG0 and diminished in the following days. Each 10-unit increase in
hourly valley concentration of PM2.5, PM10, and CO generated 0.5% (95% CI: 0.35–0.66%),
0.44% (95% CI: 0.32–0.56%), and 44.6% (95% CI: 28.99–62.1%) excess risk in AMI hospi-
talization in LAG0, respectively. Maximum effects of NO2 and SO2 occurred in LAG1.
Each 10 µg/m3 increase in hourly valley concentration of NO2 and SO2 generated 0.89%
(95% CI: 0.53–1.24%) and 2.51% (95% CI: 1.39–3.63%) excess risk in AMI hospital admis-
sions in LAG1, respectively. Concentrations of O3 were not associated with excess risks in
the lag days examined. The findings were consistent using the moving average lag days.
Figures S1 and S2 and Table S1 present the excess risk of AMI hospitalization related to
concentrations of pollutants in different lag days.

3.4. Sensitivity Analyses

Alternative df was used to adjust for temporal trends (df = 7 per year) and meteoro-
logical factors (df = 4 for relative humidity and daily mean temperature). As shown in
Supplementary Table S2, the results remained consistent. It meant that hourly peak, mean,
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and valley concentration of PM2.5, PM10, SO2, NO2, and CO were significantly associated
with the AMI hospital admissions, and the main models produced reliable results.
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total population in Beijing, China.

Table 2. The excess risk (%) and 95% confidence interval in AMI hospital admissions for per 10 units
increase in hourly peak, mean, and valley concentration of six kinds of air pollutants in the current
day (LAG0) among the total population and different subgroups in Beijing, China.

Variable Total Age < 65 Age ≥ 65 Male Female

PM2.5 valley 0.5 (0.35–0.66) 0.29 (0.07–0.52) 0.69 (0.48–0.89) 0.41 (0.23–0.59) 0.71 (0.44–0.98)
PM2.5 mean 0.43 (0.3–0.55) 0.32 (0.14–0.5) 0.53 (0.37–0.7) 0.34 (0.2–0.49) 0.62 (0.4–0.84)
PM2.5 peak 0.25 (0.17–0.34) 0.23 (0.11–0.35) 0.28 (0.17–0.39) 0.2 (0.1–0.3) 0.37 (0.23–0.52)
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Table 2. Cont.

Variable Total Age < 65 Age ≥ 65 Male Female

PM10 valley 0.44 (0.32–0.56) 0.23 (0.05–0.41) 0.64 (0.48–0.8) 0.37 (0.23–0.52) 0.61 (0.39–0.82)
PM10 mean 0.3 (0.21–0.39) 0.24 (0.11–0.37) 0.36 (0.24–0.48) 0.26 (0.15–0.36) 0.4 (0.24–0.55)
PM10 peak 0.11 (0.06–0.16) 0.11 (0.04–0.19) 0.12 (0.05–0.18) 0.09 (0.03–0.15) 0.16 (0.07–0.25)
NO2 valley 0.84 (0.47–1.22) 0.39 (−0.16–0.95) 1.25 (0.74–1.76) 0.48 (0.03–0.93) 1.66 (0.99–2.34)
NO2 mean 0.87 (0.54–1.2) 0.49 (0–0.97) 1.22 (0.77–1.67) 0.55 (0.16–0.95) 1.59 (0.99–2.18)
NO2 peak 0.7 (0.45–0.95) 0.37 (0.01–0.73) 1 (0.66–1.34) 0.44 (0.14–0.74) 1.27 (0.82–1.72)
SO2 valley 1.86 (0.73–3.01) 0.33 (−1.33–2.02) 3.09 (1.55–4.66) 0.4 (−0.97–1.79) 4.9 (2.88–6.95)
SO2 mean 1.05 (0.33–1.77) 0.34 (−0.71–1.4) 1.62 (0.65–2.6) 0.16 (−0.71–1.03) 2.92 (1.65–4.2)
SO2 peak 0.47 (0.05–0.9) 0.14 (−0.49–0.78) 0.74 (0.17–1.32) 0.06 (−0.46–0.57) 1.35 (0.6–2.11)
CO valley 44.6 (28.99–62.1) 20.89 (1.99–43.29) 69.6 (45.52–97.67) 26.53 (10.1–45.4) 93.66 (58.69–136.34)
CO mean 37.5 (25.37–50.8) 21.34 (5.83–39.14) 53.09 (35.21–73.33) 22.31 (9.32–36.83) 76.7 (50.35–107.67)
CO peak 23.64 (16.28–31.46) 18.2 (7.96–29.41) 28.34 (18.09–39.48) 15.69 (7.39–24.64) 42.61 (28.08–58.79)
O3 valley −0.34 (−0.74–0.06) 0.04 (−0.54–0.63) −0.68 (−1.24–−0.13) −0.06 (−0.55–0.42) −1.02 (−1.75–−0.29)
O3 mean −0.01 (−0.29–0.27) 0.06 (−0.34–0.46) −0.12 (−0.5–0.26) 0.2 (−0.13–0.54) −0.55 (−1.05–−0.05)
O3 peak 0.08 (−0.07–0.22) −0.04 (−0.24–0.17) 0.15 (−0.05–0.35) 0.12 (−0.05–0.3) −0.07 (−0.34–0.19)

4. Discussion

Beijing represents the industrialized city in Northern China. Our data showed that
higher hourly peak, mean, and valley concentrations of PM2.5, PM10, SO2, NO2, and CO
were associated with increased AMI hospitalization. Previous research from several geo-
logical fields supports the findings. A Belgian study showed that each 10 µg/m3 increase
in PM2.5 and NO2 during the 24 h preceding the event led to 5.1% and 2.8% increased risk
of the hospital admissions of ST-elevation myocardial infarction (STEMI) [33]. Zeynab et al.
found that increased PM2.5 exposure (48 h before admission) was related to the increased
risk of the hospital admissions of STEMI [34]. An American study estimated that each
10 µg/m3 increase in the 2-day averaged PM2.5 concentration contributed to the 1.22%
(95% CI: 0.62, 1.82%) increase in myocardial infarction death [35]. A Chinese study includ-
ing 151,608 myocardial infarction deaths in Hubei province from 2013 to 2018 found that
each 10 mg/m3 increase in NO2 exposure delivered a 1.46% (95% CI: 0.76–2.17%) increase
in myocardial infarction mortality [17]. Yusef et al. indicated that 2.7% (95% CI: 1.1–4.2%)
of AMIs were attributable to daily mean SO2 levels over 10 µg/m3 [36]. Other studies
reported results differently. For example, a study in Eastern Massachusetts described that
each 10 ppb increase in ozone led to an 8.28% (95% CI: 0.66%, 16.48%) increase in deaths
from cardiovascular diseases [37]. No significant association was found between the PM2.5,
PM10, SO2, CO and the increased risk of myocardial infarction according to the research
in England and Wales [38]. Inflammation, imbalanced autophagy, and oxidative stress
might contribute to the potential mechanism [39]. For instance, a panel study showed that
short-term exposure to PM10 and PM2.5 resulted in a proinflammatory state and elevated
von Willebrand factor (vWF) [40]. Particulate matter impaired autophagy by inducing
lysosomal disequilibrium [41].

However, it is worth noting that most of previous studies tended to use the daily mean
concentration of air pollutants as the exposure indicators, and a few studies used the hourly
peak concentration of air pollutants. The related literature about the association between
the hourly valley concentration of air pollutants and AMI hospital admissions was absent,
to our knowledge. Our study showed that the effects of hourly valley concentration were
larger than the hourly mean concentration and that the effects of hourly mean concentration
were larger than the hourly peak concentration. The findings were consistent with the
results of the previous literature, though few in number. For example, a 10 µg/m3 increase
in daily mean concentration of PM2.5 at lag03 led to 1.56% (95% CI: 0.91%, 2.21%) excess
risk, and a 10 µg/m3 increase in the hourly peak concentration of PM2.5 at lag03 led to
1.15% (95% CI: 0.67%, 1.63%) increase for total cardiovascular diseases [29]. However,
some studies reported conflicting results. For example, the peak concentrations of NO2
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were significantly associated with the nonaccidental mortality in lag04 and lag05, while no
significant association was found in daily mean concentrations of NO2 [42]. Our results
indicated that the hourly valley concentration of air pollutants might be a better exposure
indicator than the mean or peak concentration. Therefore, we suggest that hourly valley
concentration of pollutants might be a better exposure indicator and a more practical target
for environmental intervention. Further studies about it are needed in the future.

In the stratified analyses, we found that the effects in the female group were larger than
those in the male group. This is probably because women have narrower airways, higher
airway responsiveness [43], and higher lung deposition of fine particles in comparison to
men [44]. Therefore, women might be more vulnerable to exposure to air pollution. Our
results also showed that the effects in the people over the age of 65 were larger than the
people under the age of 65. This is probably because the older people tend to suffer from
multiple underlying medical conditions and seem to be more sensitive to air pollution
as the antioxidant status is decreased in old age [45–47]. In addition, decreased heart
rate variability is associated with cardiac autonomic dysfunction, and it is a predictor of
cardiovascular risk [48]. Prior studies have shown that PM2.5 exposure would decrease the
heart rate variability in elderly people [49] and increase it in the young people [50].

There are several strong points in the study. First of all, this is the first study to explore
the association between hourly valley concentration of six kinds of air pollutants and AMI
hospital admissions to our knowledge. Secondly, our study covered all the secondary and
tertiary hospitals in Beijing during the period from 1 May 2014 to 31 December 2019, and
there were over 120,000 AMI hospital admissions recorded in the study. A long study time
and large sample size could obtain more reliable and accurate research results. Last but not
least, the effect of age, gender, and lag days were explored in our research, which could be
conducive to identifying vulnerable populations and provide a theoretical foundation in
policy making for AMI prevention in Beijing. However, there are also several limitations
study in our study. Firstly, exposure data of meteorological factors and air pollutants
were obtained from fixed sites provided by the government sectors, and we lacked the
individualized exposure data. Therefore, many potential risk factors that could influence
the AMI hospital admissions such as social-economic status, complication, and medication
situation were not included. Moreover, we only studied the Beijing area, so our results
might not be applicable to other areas.

5. Conclusions

The hourly peak, mean, and valley concentration of PM2.5, PM10, SO2, NO2, and CO
were significantly positively associated with the AMI hospital admissions. The effects
of hourly valley concentration were larger than the hourly mean or peak concentration.
Furthermore, the effects in the female or older than 65 groups were larger than those in the
male or younger than 65 groups.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/atmos14010027/s1, Table S1 The excess risk (%) and 95% confidence interval
in AMI hospital admissions for per 10 units increase in hourly peak, mean and valley concentration of
six kinds of air pollutants in different lag days among the total population in Beijing, China; Figure S1.
The excess risk (%) and 95% confidence interval in AMI hospital admissions for per 10 units increase in
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