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Abstract: The Weather Research and Forecasting (WRF) mesoscale meteorological model is used to
dynamically downscale data from the Goddard Institute for Space Studies (GISS) atmospheric general
circulation model (GCM) CMIP5 version (Model E2-R) over Europe at a 0.25◦ grid size resolution, for
the period of 1951 to 2010. The model configuration is single nested with grid resolutions of 0.75◦ to
0.25◦. Two 30-year datasets are produced for the periods of 1951–1980 and 1981–2010, representing
the historic and current periods, respectively. Simulated changes in climate normals are estimated
and compared against the change derived from the E-OBS gridded dataset at 0.25◦ spatial analysis.
Results indicate that the model consistently underpredicts the temperature fluctuations observed
across all subregions, indicative of a colder model climatology. Winter has the strongest bias of all
seasons, with the northeastern part of the domain having the highest. This is largely due to the
land–atmosphere interactions. Conversely, spring and summer have the lowest regional biases, owing
to a combination of low snow cover (relative to winter) and milder radiation effects (as opposed to
summer). Precipitation has a negative bias in most cases, regardless of the subregion analyzed, due
to the physical mechanism employed and the topographic features of each region. Both the change
in the number of days when the temperature exceeds 25 ◦C and the change in the number of days
when precipitation exceeds 5 mm/day are captured by the model reasonably well, exhibiting similar
characteristics with their counterpart means.

Keywords: WRF; downscaling; central Europe; climate normals

1. Introduction

Climate change has drawn worldwide attention in the past several years due to its
numerous implications for our way of life [1]. Earth system (ESMs) and global circulation
models (GCMs) remain the scientific community’s primary instruments for forecasting
future climatic conditions [2,3]. Both, however, are inefficient for replicating small-scale
variability since they presently handle spatial analyses of about 70–400 km. Furthermore,
ESMs and GCMs do not adequately address vegetation variability, complicated terrain,
and coastlines, all of which are critical elements of the physical system that influence
climate shifts on a local or regional scale. To effectively address smaller scales, dynamical
downscaling techniques are currently being used for processing and refining large-scale
projections of ESM or GCM outputs. This is accomplished by extrapolating the impacts of
large-scale climate processes to regional or local scales [3,4].

A series of dynamical downscaling initiatives, such as PRUDENCE [4–8], ENSEMBLES [9–11],
and EURO-CORDEX [12–15], assess the performance and credibility of climate mod-
els over the European region. These studies focus on model calibration, using histori-
cal data and generating future climate multi-model projections to aid in the creation of
decision-making strategies.
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At a grid resolution of 50 km, the PRUDENCE project ensemble performed
15 regional climate simulations [12] focusing on surface temperature in addition to continen-
tal precipitation, primarily during winter and summer [December–January–February (DJF),
June–July–August (JJA)], though the transition seasons of March–April–May (MAM) and
September–October–November (SON) were also considered. Primary systematic model
biases vary between models and regions. Near-surface air temperature and precipitation
data from 1961 to 1990 present a warm bias in the extreme seasons and a trend to cold
biases in the transition seasons. During summer, there is a higher agreement between
observed and modelled levels of inter-annual variability, with a clear indication that most
of the simulated temperature fluctuation is higher than observed, whereas precipitation
variability is more aligned with observations.

Afterward, within the ENSEMBLES project, a set of 13 Regional Climate Models
(RCMs), completed two sets of experiments for the period of 1961–2000, with horizontal
resolutions of 50 and 25 km, respectively [16–20], and focusing on winter and summer
weather regimes. The four North Atlantic weather regimes used were the Atlantic Ridge,
the Blocking pattern, the Greenland Anticyclone, and the Zonal. All RCMs accurately
recreate the long-term means of the observation’s broad scales, in addition to the mean
frequency of occurrence of weather regimes and the mean persistence values. The models
deteriorate on large scales on day-to-day timescales. As an overall conclusion, the RCMs are
trustworthy enough for climate timescale studies, mean behavior, inter-annual variability,
trends, and scenarios of climatic change.

The Copernicus Climate Change Service (C3S) fostered the recent progress in the
number of simulations performed, following the past publications of the EURO-CORDEX
simulations [14,21]. Eight different GCMs provided the boundary conditions to eleven
RCMs, creating a total of fifty-five new simulations at ~0.11◦ grid spacing, filling the
EURO-CORDEX GCM-RCM matrix [22–24]. Results indicate that despite certain biases,
models accurately recreate the recent historical climate, which is variable-dependent. It is
highlighted that single climate change realizations do not suffice when attempting to find
the best or worst pair of a GCM and an RCM, as performance is highly region- and variable-
dependent [25,26]. The model ensemble has general systematic biases, and simulations
have collective differences from observational data. Except for southeastern Europe, the
models’ median output is usually cooler and wetter than observations across Europe,
with the differences usually within observational uncertainties. RCMs do not significantly
improve GCM mean biases.

Models’ ability to simulate observable contemporary climate variability is frequently
used to assess the level of confidence in climate change projections. Examining the accuracy
with which a model assesses changes in climatic factors, such as temperature and precipi-
tation, that have occurred over the course of the last several decades across Europe is an
intriguing task, given that RCM outputs are still subject to climate model errors originating
from the structure of the RCM itself, as well as from the initial and boundary conditions
provided by the driving GCM/ESM [27,28]. However, there are relatively few studies
investigating the ability of downscaled GCM climatological data by RCMs (i.e., GCM
coupled to an RCM model) to reproduce climate change impacts or long-range temperature
and precipitation trends and extremes over climatically and topographically diverse large
domains like Europe. The aim of this study is to analyze the ability of a combination
of GCM-RCM models, namely NASA Goddard Institute for Space Studies (GISS) GCM
ModelE2, and WRFv4.0 ARW to replicate the observed bias and temporal variability and
reproduce the impact of climate change on critical meteorological parameters, such as
temperature and precipitation, that has already taken place. A comparison study against
observations from the E-OBS over Europe is performed at a spatial resolution of 0.25◦ and
for a period of 60 years. The analysis conducted here identifies regions of Europe where
large biases occur and investigates the reasons causing them. Thus, the results of this work
contribute to a better understanding of how the downscaled GISS GCM ModelE2 data from
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WRF can capture the variability imposed by climate change on critical (for our everyday
life) meteorological parameters, and may have implications for planning studies.

2. Materials and Methods
2.1. The Earth System Model

At a horizontal resolution of 2◦ × 2.5◦ latitude and longitude, a CMIP5 (Climate
Model Intercomparison Project #5) version of NASA GISS ModelE2-R (with Russell ocean
model [29,30], hereafter ModelE2) [31–34] is used to simulate the historic and present
climate from 1880 to 2010. ModelE2’s standard vertical resolution consists of 40 layers with
a model top pressure of 0.1 hPa. Vertical discretization is performed using terrain-following
sigma coordinates up to 150 hPa, with constant pressure layers above that. Surface is
divided into four categories: open water (which includes lakes and seas), ice-covered
water (which includes lake ice and sea ice sections), ground (which includes bare soil and
vegetation parts), and glaciers. Each category may be subdivided into more categories
(e.g., fractions of burned area, plant type, snow cover, melt pond fraction over sea ice, etc.).
The land surface model follows Schmidt et al., [31] with improvements introduced by the
Ent Terrestrial Biosphere Model [35]. Vegetation is classified into 10 distinct categories, each
with its own spectral and masking depth features, and explicit dependence of vegetation
spectral albedos on leaf area index and solar zenith angle. Each grid box can have many
plant types allocated to it. For vegetated regions, the model uses a parameterization to
account for the relative contribution of transpiration and soil evaporation. The model’s tem-
perature estimates considers both seasonal and diurnal solar cycles. Among the processes
considered are emissions, transport, chemical transformation, and deposition of several
chemical tracers. Sea surface temperatures (SST) are calculated online using the dynamic
Russell ocean model that is coupled to the GCM. Large-scale and convective cloud covers
are predicted, and precipitation is generated whenever supersaturated conditions occur. A
mass flux cumulus parameterization, as originally presented by Del Genio and Yao [36] and
stratiform clouds, following Del Genio et al. [37] are also considered, with improvements
introduced by Kim et al. [38,39].

2.2. The Regional Climate Model

The latest version of the Weather Research and Forecasting (WRF v4.0 ARW, - https:
//www2.mmm.ucar.edu/wrf/users/download/get_source.html, accessed on 16 June 2022,
hereafter WRF) model [40–42], a next-generation mesoscale numerical weather prediction
system, is employed here for dynamically downscaling the outputs from ModelE2. WRF
has been widely used in the past for adapting large scale data to regional or local scales and
on many occasions for studies relevant to climate and atmospheric research, demonstrating
a very good refining ability (e.g., [43–48]).

2.3. Observational Data

The simulated climate data are evaluated using reanalysis-gridded daily data from
the E-OBS dataset [45,46,49–53] that are based on the European Climate Assessment &
Dataset (ECA&D) project station observation data (https://www.ecad.eu/download/
ensembles/download.php#datafiles, (accessed on 16 June 2022)) for the entire European
region. The dataset covers the area: 25 N–71.5 N × 25 W–45 E and the period back to
1950, providing gridded fields of 0.1◦ and 0.25◦ grid spacing in regular latitude/longitude
coordinates. E-OBS data have been used for evaluation purposes over the European region
on several occasions previously (e.g., [13,17,47,48,54–58]). WRF monthly mean temperature
and precipitation outputs were compared against the corresponding ensemble mean of
daily data after calculating the monthly means of the regular 0.25◦ grid version of the
E-OBS v20.0e observational dataset.

Notwithstanding the use of the E-OBS database, there are a few known drawbacks
associated both with the spatial coverage of its network stations and the reliability of data
in regions with sparseness of stations, impacting the severity of daily temperature extremes

https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://www.ecad.eu/download/ensembles/download.php#datafiles
https://www.ecad.eu/download/ensembles/download.php#datafiles
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(e.g., [17,52,59–61]) and causing potential underprediction of total precipitation [62], partic-
ularly in mountain ranges and snowy segments [63]. Yet, since E-OBS has a high-density
station network with strong temporal coverage throughout Europe, it was chosen for our
analysis as these inherent deficiencies would have no effect on the comparison to our
calculated values.

2.4. Modelling Setup and Approach

ModelE2 simulations begin in 1880, i.e., prior to the onset of considerable human
forcing and climate change. The primary driver of climate change during this era (up
to 2010) has been changes in the composition of the atmosphere, most notably growing
concentrations of greenhouse gases (GHG) and aerosols. Ice-core data are used to predict
GHG concentrations up to 2010 [64].

WRF is then used in a double nesting configuration over Europe to increase the ESM
output spatial analysis for a detailed estimation of the climate change impact in the region.
WRF simulations are conducted for the years 1951 to 2010, thus establishing two 30-year
periods, i.e., 1951 to 1980 and 1981 to 2010, which represent the historic and current climate,
respectively. Domain grid size resolutions are 0.75◦ for the parent and 0.25◦ for the nested
domain. The domain covers the entirety of Europe. Additionally, to analyze the trends
per region the Christensen and Christensen [7] subdomains are also considered in our
analysis: 1. British Isles (BI), 2. Iberian Peninsula (IP), 3. France (FR), 4. Mid-Europe (ME),
5. Scandinavia (SC), 6. Alps (AL), 7. Mediterranean (MD), and 8. Eastern Europe (EE).
Figure 1 portrays the model’s spatial configuration, the domain’s map factor, which is ideal,
in addition to the subdomains considered.

Figure 1. Domain setup (a) WRF model domains at 0.75◦ and 0.25◦ grid size resolutions (b) WRF
domain map factor, (c) the subregions considered, where 1. BI, 2. IP, 3. FR, 4. ME, 5. SC, 6. AL,
7. MD, 8. EE.
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The nests are one-way interactive for preserving the climatological features of the
GCM and inhibiting feedback of the inner to the outer domain. In the vertical direction,
the model uses 40 layers. The ModelE2 data are used as initial and lateral boundary
conditions for the parent domain. The lateral boundary conditions are updated every 6 h
(4 times per day).

A spin-up time of 1 year is used, as a compromise between using long or no spin-up
period, to allow a more realistic development of snow cover in addition to soil moisture and
temperature adjustments. It should be highlighted that modelling studies employing no
spin-up time and a variety of spin-up periods (e.g., [65]) observed no significant impact on
the results obtained. The modelling setup is like the one used in the WRF EURO-CORDEX
framework [13,45], using the WSM-5 microphysics scheme [66], the RRTMG radiation
scheme [67], the YSU PBL scheme [68], the Kain-Fritsch (KF) convective scheme [69], and
the NOAH land surface scheme [70].

Evaluation of modelling outputs, aside from the direct grid to grid comparison with
E-OBS data, is also performed using climate normals, according to the WMO guidelines [71]
for both historic (1951–1980) and current (1981–2010) time periods and from both simulated
(ModelE2-WRF) and observed data (E-OBS reanalysis). Climate variables used in this study,
related to temperature and precipitation, are presented in Table 1.

Table 1. Climate normals.

Temperature
Mean temperature

Days/month with mean temperature over 25 ◦C

Precipitation
Mean precipitation

Days/month with precipitation over 5mm

Mean values are derived by the mean of the monthly normals for the years concerned.
For the “days per month” parameters, the number of days during which an event occurs
(or a threshold is exceeded) are converted to a percentage of the number of days for which
observations were made, since some months might have missing observations. Afterward,
the percentage is converted back to days per month as suggested by the WMO. The two
climate change datasets generated, one derived from the ModelE2-WRF model’s output
and the other from the E-OBS dataset, are then compared. Observed (E-OBS) climate
change results and the related model bias (E-OBS—Model) are presented for the entire
European domain and the subdomains selected as well.

To determine the statistical significance of discrepancies between models and data, we
compute t (two-independent sample t test) as follows:

t =
Xo − Xm√

σ2
o −σ2

m
n

where Xo and Xm are the monthly means of observations and model outputs, respectively,
σo and σm are the related standard deviations, and n is the sample size that equals to 360 for
the whole time slice and to 90 on a seasonal basis. If t > 1.98, the simulated and observed
values are regarded significantly different at the 95% confidence level.

3. Results
3.1. Temperature
3.1.1. Mean Temperature Change and Bias

The model reproduces both the observed climatological patterns and the cycle of mean
temperature, capturing all the basic features. This points to the very good representation
of all processes governing the climatology of surface temperature by the modelling setup.
As observed in Figure 2a, the observed change in mean surface temperature is uniformly
positive for the majority of the European domain, except for Southeastern Europe. This is
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also the case for the simulated change that took place (Figure 2b). The observed change in
mean surface temperature is greater, but very close to the simulated one, implying that the
forcing fields (i.e., ModelE2 data) are only slightly cooler than the observed (E-OBS) change.

Figure 2. Mean surface temperature change between current (1981–2010) and historic (1951–1980)
periods (a) Observed (E-OBS) (b) Model bias (E-OBS—Model).

This is also confirmed by the domain mean values of Table 2, which summarizes the
observed temperature change between current (1981–2010) and historic (1951–1980) time
slices over the entire European domain and regionally, where the 30-year observed mean
warming is 0.7 ◦C while the simulated one is 0.5 ◦C, leading to a model bias, defined as the
difference between observed and modelled values, of 0.2 ◦C.

Table 2. Observed temperature change between current (1981–2010) and historic (1951–1980) period
and the model bias (E-OBS—Model) for the entire European domain and the subregions examined.
Units are in ◦C.

Area Observed Temperature Change between
Current and Historic Periods Model Bias

EUROPE 0.7 0.2
BI 0.5 0.1
IP 0.8 0.4
FR 0.7 0.3
ME 0.7 0.2
SC 0.7 0.2
AL 0.7 0.3
MD 0.5 0.3
EE 0.6 0.2

With respect to regional accuracy, the model was able to capture reasonably well
both the significant characteristics and the magnitude of mean surface temperature change
observed. For all subdomains there is a positive bias (underestimation of warming),
compared to E-OBS. The largest bias is observed over IP and MD. The magnitude of the
bias can be attributed, in large part, to the topographical characteristics of each region and
to the uneven station network that characterizes the E-OBS dataset, with a significantly
greater number of stations across BI, ME, AL, and SC than in the southern and eastern parts
of the domain.

Seasonally, we obtain a more detailed view concerning the model’s simulation capabil-
ities. Beginning with spring, a warming is observed over most of the domain, except the
regions of Romania and Turkey (Figure 3a, left panel). The domain mean warming is 0.9 ◦C,
the largest seen among all seasons, for the examined periods. The surface temperature
increase intensifies as we move to the northern–northeastern part of the domain, where
a maximum increase of 1.4 ◦C is observed. The model reproduces the observed during
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spring surface temperature changes. The simulated bias (Figure 3a, right panel) is negative
at the north, pointing to a slight temperature change overestimation by the model, and
turns positive at the southern part of Europe (slight temperature change underestimation).
The bias though is rather small for all subregions considered ranging between 0.0 for ME
and SC and 0.4 for MD (Table 3), while the simulated mean domain bias is 0.1 ◦C.

Figure 3. Seasonal mean surface temperature changes observed (E-OBS, left panels) and the related
model biases (E-OBS—Model, right panels) between current and historic periods for (a) spring
(MAM), (b) summer (JJA), (c) autumn (SON), and (d) winter (DJF).
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Table 3. Same as Table 2 but for each season separately.

Spring Summer Autumn Winter

Area

Observed
Temperature

Change between
Current and

Historic Periods

Model
Bias

Observed
Temperature

Change between
Current and

Historic Periods

Model
Bias

Observed
Temperature

Change between
Current and

Historic Periods

Model
Bias

Observed
Temperature

Change between
Current and

Historic Periods

Model
Bias

EUROPE 0.9 0.1 0.6 0.3 0.4 0.1 0.8 0.6
BI 0.6 0.1 0.6 0.1 0.3 0.0 0.5 0.3
IP 0.8 0.2 1.1 0.8 0.6 0.3 0.5 0.3
FR 0.8 0.1 1.1 0.6 0.6 0.1 0.5 0.3
ME 1.0 0.0 0.9 0.3 0.4 0.0 0.7 0.4
SC 1.0 0.0 0.3 0.1 0.3 0.1 1.2 0.8
AL 0.7 0.2 1.1 0.4 0.4 0.1 0.5 0.5
MD 0.6 0.4 0.9 0.3 0.4 0.1 0.2 0.3
EE 1.0 0.2 0.5 0.1 0.1 0.1 0.8 0.6

Summer observed change (Figure 3b, left panel) has negative to zero values at the far
north while being positive for the rest of the map, apart from Romania and the eastern
shores of the Mediterranean. Temperature change becomes more significant moving from
the east to the west. Model simulated summer temperature change has a similar spatial
pattern, as can be inferred form the bias presented (Figure 3b, right panel). The bias is
positive all over the domain, having higher values in the west–southwest, and much smaller
values from middle east–east end and the northern part. Summer average domain increase
was 0.6 ◦C, while the simulated bias was 0.3 ◦C (Table 3). The largest underestimation of
temperature increase is observed over IP and FR (Table 3). The general tendency of the
model towards lower temperatures during summer compared to E-OBS could be attributed
to the combination of the NOAH LSM with the RRTMG radiation scheme.

Autumn observed a mean temperature change between the two time slices exhibiting
the lowest values among the seasons, with an intense decrease over Romania (Figure 3c,
left panel) up to −1 ◦C. Spatially, the model combination reproduced the observed changes
(Figure 3c, right panel) over all subregions (Table 3), exhibiting excellent closure. The
average domain warming for this season was 0.4 ◦C, whereas the model presented a
positive bias of 0.1 ◦C to the simulated one.

Winter actual change (Figure 3d, left panel) presents a similar spatial pattern to spring,
with greater values observed over the northeast part of the domain and a decrease over
the Balkan-Turkey region. The domain average observed warming is 0.8 ◦C, close to the
spring average warming. Simulated bias (Figure 3d, right panel) is larger at the northern
part of the domain and decreases as toward the south. It should be highlighted that the
regions characterized by the largest degree of winter bias are SC and EE, coinciding in
space with the regions presenting the largest spread in temperature change. This finding
is also confirmed by other studies [45]. This spatial pattern of increased bias over the
Alps and Northeastern Europe has also been documented in WRF climate forecasts of
winter temperature (e.g., [45,65]). This behavior is attributed to the role of snow cover in
cooling the surface via snow albedo and snow emissivity feedbacks [8], and the issues
of WRF to address surface temperature in snow-covered areas by overestimating surface
albedo [72,73].

It is clear from the analysis presented previously that the model consistently under-
predicts the temperature change variations observed across all subregions. This indicates
that a colder climatology introduced by the employed forcing fields has been assessed,
both in terms of seasonal averages and when comparing the entire length of current to
historic data. Except for IP, which has its strongest bias during summer, and EE, which has
its largest bias during autumn, the bulk of the subregions have their biases at their peak
during winter. Among all subregions, the highest bias is found over AL and MD, which is
largely caused by the land–atmosphere interactions. Contrarily, with respect to the smallest
biases, they are noted either in spring (FR, SC, EE) or in autumn (BI, ME AL, MD). This
behavior is driven by the combined effect of the lower snow cover during these seasons
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compared to winter that counterbalances the overestimation of surface albedo observed
during winter, and the milder effect of the radiation scheme as opposed to summer.

3.1.2. Days Per Month with Mean Temperature over 25 ◦C

Figure 4 depicts the observed (E-OBS) shift in the number of days for summer
(Figure 4a) that temperature exceeded 25 ◦C and the corresponding model bias (Figure 4b)
between current and historic years. During winter, spring, and autumn, the observed and
simulated magnitudes of the changes were nearly zero and are not presented here.

Figure 4. (a) Change in the number of days/month with mean temperature over 25 ◦C observed
(E-OBS) and (b) the related model bias (E-OBS—Model) between current and historic periods for
summer (JJA).

When observing the total 30-year mean change during summer, it is evident that both
datasets demonstrate a shift toward a greater number of warm days across the vast bulk
of southern Europe. The change declines to zero as we proceed north, with insignificant
negative values for the simulated change over Romania. The model underestimates the
number of days in most subregions examined, except for SC, AL, and BI, wherein the
results of the model highly correlate with the data.

Regionally, IP and MD have had the greatest increase in the number of days with
mean daily temperatures over 25 ◦C (9 days per summer season or year compared to the
historic average). The model bias is 2 days/year for IP while for MD it is 1 day/year.
Over AL an increase of 3 days/year is both observed and simulated. Milder changes were
observed over FR (1 day/year), ME (1 day/year), and EE (1 day/year). In each of these
instances, a bias of 1 day/year is observed. BI and SC, despite experiencing a warming,
did not exceed the threshold temperature, as is also the case for the model’s estimation.
NOAH LSM and RRTMG radiation schemes may have contributed to the model’s trend
toward lower summer temperatures than E-OBS.

3.2. Precipitation
3.2.1. Mean Precipitation

Mean daily precipitation change observed (Figures 5 and 6, left panels) presents a
north–south gradient, both when comparing current with historic years and on a seasonal
basis of current and historic years. Average rainfall in southern Europe and around the
Mediterranean has been decreasing over the study period. Conversely, an increase of up to
0.5 mm in daily precipitation is seen over the northern part of the domain. On average, a
domain-wide increase of 0.1 mm/day between current and historic years was observed
(Tables 4 and 5), both annually and seasonally, except in summer, when no change was
observed. The transition from the positive to the negative values depends on the season,
except in autumn, during which a mixed trend is found. Regionally, BI and SC received the
greatest rise in daily precipitation (0.2 mm/day, Table 4), while IP and MD experienced the
greatest reduction (−0.2 mm/day, Table 4) when comparing the two periods.
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Figure 5. Mean daily precipitation change between current (1981–2010) and historic (1951–1980)
periods (a) Observed (E-OBS) (b) Model bias (E-OBS-model).

Figure 6. Seasonal mean precipitation changes observed (E-OBS, left panels) and the related model
biases (E-OBS-model, right panels) between current and historic periods for (a) spring (MAM),
(b) summer (JJA), (c) autumn (SON), and (d) winter (DJF).
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Table 4. Observed precipitation change between current (1981–2010) and historic (1951–1980) period
and the model bias (E-OBS-model) for the entire European domain and the subregions examined.
Units are in mm/day.

Area Observed Precipitation Change between
Current and Historic Periods Model Bias

EUROPE 0.1 0.0
BI 0.2 0.0
IP −0.2 0.0
FR 0.0 0.0
ME 0.1 0.0
SC 0.2 0.0
AL −0.1 0.1
MD −0.2 0.0
EE 0.0 0.0

Table 5. Same as Table 4 but for each season separately.

Spring Summer Autumn Winter

Area

Observed
Precipitation

Change between
Current and

Historic Periods

Model
Bias

Observed
Precipitation

Change between
Current and

Historic Periods

Model
Bias

Observed
Precipitation

Change between
Current and

Historic Periods

Model
Bias

Observed
Precipitation

Change between
Current and

Historic Periods

Model
Bias

EUROPE 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0
BI 0.3 0.0 0.0 0.0 0.3 −0.1 0.3 0.0
IP −0.2 0.0 −0.1 0.0 0.0 0.0 −0.4 0.0
FR 0.2 0.1 −0.1 0.0 0.1 0.0 −0.1 0.0
ME 0.1 0.0 −0.1 0.0 0.2 0.0 0.2 0.0
SC 0.2 0.0 0.2 0.1 0.1 0.0 0.3 0.0
AL 0.0 0.0 −0.3 0.0 0.1 0.1 −0.2 0.1
MD −0.1 0.0 −0.1 −0.1 −0.1 0.0 −0.3 −0.2
EE 0.0 0.1 0.0 −0.1 0.1 0.0 0.0 0.0

The model captures all the climatological properties of precipitation, as can be con-
cluded from the estimated biases (E-OBS-model) presented (Figures 5 and 6, right panels).
The change in mean precipitation simulated by the models closely matches the observed
values, both domain-wide and regionally.

Addressing the variable per season, during spring, the average precipitation presents
a trend of reduction in the south and an increase to the north, except for the far east
area of the map (Russia) (Figure 6). The spring average observed domain increase was
0.1 mm/day (Table 5), equal to the simulated change. The model accurately generated the
spatial features of precipitation change observed except over the southeastern part of SC
(Norway) and over the northern part of EE where it underestimates the change; conversely,
over the northwestern part of SC, the model overestimates it. However, these incremental
biases cancel each other out, thus a total bias of 0.0 for SC is estimated. This behavior
can be attributed to the convective scheme employed that generated excess precipitation
over the mountainous region of Norway, followed by lower precipitation changes to the
east. A similar behavior has been reported by other studies as well over mountainous
regions [45,74,75], but for the summer season.

During summer, a significant reduction in precipitation has taken place, not only in
the south but also in the greater part of central Europe. Conversely, EE and SC faced a
notable increase in precipitation (Figure 6b, left panel). Modelling results are comparable
with observations. A small overestimation is noted for most of the European domain,
except for SC, in which an underestimation is noted (Figure 6b, right panel). In terms of
intensity, the model evidently projects a change of similar magnitude with the observation
for the entire domain. The summer domain average change was 0.0 mm/day, pointing to a
redistribution of precipitation over Europe for summer (Table 5).

In autumn, most of the coastal areas of the Mediterranean experienced a decrease in
precipitation, but a consistent north– south gradient pattern is not observed. Continental
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Europe experienced an increase, more intensely in its central part, Portugal, and Britain
(Figure 6c, left panel). The model simulated the changes well, presenting a positive bias
over the central part of FR, AL, and part of MD, and a negative bias over BI (Figure 6c, right
panel). Summer domain average increase was 0.1 mm/day, while the related simulated
bias was 0.0 mm/day.

During winter, the largest changes between current and historic years are observed.
Specifically, the winter observed change in average precipitation, indicating a significant
decrease across southern Europe, with the highest values among all seasons. There was also
a significant increase in the north, with BI and northern SC witnessing the greatest increases
in precipitation (Figure 6d, left panel). The changes simulated by the model captured
the observed patterns (Figure 6d, right panel). The actual domain average increase was
0.1 mm/day, with the related model bias being 0.0 mm/day. The largest positive bias is
noted over AL (Table 5), and the largest negative over MD.

From the analysis performed above, it becomes apparent that the positive or negative
model biases do not present a regionally systematic pattern. Nevertheless, a negative
bias is observed in most cases, independent of subregion examined. This is a known
problem of WRF simulations and has been reported in several studies, particularly when
the combination of KF and YSU schemes is employed [73,76]. Some discrepancies also
arise from the topographic characteristics of each region that formulate regional weather
patterns, indicating an important underlying reason for the deviations assessed.

3.2.2. Days Per Month with Mean Daily Precipitation above 5 mm

The number of days per month when the mean daily precipitation exceeded the
5 mm threshold is the final variable examined in this study. This threshold represents a
moderate but non-ignorable amount of precipitation. Observing the average observed
change that took place between the two 30-year periods (Figure 7a), there is a decrease
in the number of days for the central and southern parts of the domain, whereas an
increase can be observed in northern FR, ME, and the greater parts of BI and SC. Model
simulated bias, depicted in Figure 7b, indicates an insignificant deviation from observations
everywhere, revealing a significant skill in estimating changes above the targeted threshold.
Domain-wide, an increase of 2 days/year was observed. Regionally, there are regions
that faced a more intense change; SC faced the largest increase (6 days/year) followed
by BI (5 days/year). Milder was the increase over ME (2 days/year). Conversely, IP
experienced the sharpest decrease in the number of days with precipitation greater than
5 mm (6 days/year), followed by MD (5 days/year) and AL (4 days/year).

Figure 7. Mean change in the number of days/month with mean precipitation over 5 mm observed
(E-OBS, left panel) and the related model bias (E-OBS-model, right panel) between current (1981–2010)
and historic (1951–1980) periods (a) Observed (E-OBS) (b) Model bias (ModelE2-WRF).

On a seasonal basis, the change that occurred throughout springs (Figure 8a, left panel)
closely resembles the mean change observed between current and historic periods. The
shift zone between the positive and the negative change over the European domain is a
bit lower in spring compared to the annual one. Small differences are also located at the
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northeastern part of the map. Comparing the average spring seasons’ modification between
current and historic years, regionally, the number of days with precipitation exceeding
the 5 mm threshold increased the most in BI (2 days) followed by SC (1 day), FR (1 day)
and ME (1 day). In contrast, in IP there was a drop (2 days) in the number of days with
precipitation above the threshold; similar was the case for MD (1 day). The remaining
subregions exhibited an unimportant fluctuation (0 days), although locally variations may
exist. The model bias (Figure 8a, right panel) is 0 days/month everywhere, except EE,
where it estimates 1 day less change. Over SC, despite overestimating the change over
Norway and underestimating it over the remainder of the subregion, it provides a bias
of 0 days/year, replicating the behavior observed for mean precipitation in the 2–30-year
comparison. For the rest of the subregions, the bias ranges between 0 and 1 day/year.

Figure 8. Mean change in the number of days/month with mean precipitation over 5 mm observed
(E-OBS, left panels) and the related model biases (E-OBS-model, right panels) between current and
historic periods for (a) spring (MAM), (b) summer (JJA), (c) autumn (SON), and (d) winter (DJF).

As per summer, in every subregion, the number of days with mean daily precipitation
of more than 5 mm has declined (Figure 8b, left panel), except for SC, which has seen an
increase of 1 day. The most significant shift has occurred in AL, resulting in a total loss of
2 days as compared to the average of the historic summers. The decline is not significant in
IP, FR, ME, or MD (all subregions demonstrated a 1-day drop). There was a marginal rise
in some areas of BI, but the index did not experience any changes generally. The bias of the
model is displayed in the right panel of Figure 8b. Although the bias is characterized by
small regional fluctuations, in total, a bias of zero is estimated for all subregions, with a
profound trend of slight overestimation everywhere, except for most parts of SC.
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Along the same lines as the observed change in the mean amount of precipitation,
autumn does not display any particular spatial pattern (Figure 8c, left panel). According to
the observations, most of the Mediterranean’s coastal regions are experiencing a decline,
but southern Turkey, central Italy, Portugal, and Croatia are experiencing some occasional
increases. A significant increase has occurred in the eastern part of the domain. The
observations indicate that there is currently a 1-day increase over BI, IP, FR, ME, and SC in
comparison to historical years. Conversely, there has been a decrease of 1 day over MD.
Absence of change was observed in all other subregions. The model did a reasonably good
job of replicating the changes; however, it overestimated the modification over BI by 1 day
and equally underestimated it over AL. Once again, the greatest regional heterogeneity is
demonstrated in SC, although the observed variations cancel each other out. The observed
rise in mean domain values of change was 1 day, which coincides in magnitude with the
model’s assessment.

This variable’s observed winter change (Figure 8d, left panel) demonstrates a geo-
graphic pattern that is extremely close to its mean change; nevertheless, the transition zone
from positive to negative values is moved a bit further north. Both winter increase and
decrease of this variable demonstrate the highest values among all seasons, yet the overall
change throughout the domain is zero. IP, AL, and MD recorded the highest drop in the
number of days above the threshold (3, 2, and 2 days, respectively), whereas BI and SC
underwent the largest increase (2 days). The changes that were simulated by the model are
comparable to the changes that were observed, exhibiting a bias of zero in the majority of
subregions with the exception of ME and AL, where an underestimation of 1 day is found,
and MD, where an overestimation of 1 day is assessed.

4. Discussion and Conclusions

In this study, the ability of a combination of GCM-RCM models, namely NASA God-
dard Institute for Space Studies (GISS) GCM ModelE2 and WRFv4.0 ARW to replicate
the observed bias and temporal variability and reproduce the impact of climate change
on critical meteorological parameters that has already occurred was evaluated. The Euro-
pean domain was selected for this exercise. Examining the accuracy with which a model
replicates changes in climatic factors that have occurred over the course of the last several
decades is an intriguing task, given that RCM outputs are still susceptible to climate model
errors originating from the structure of the RCM itself, and from the initial and boundary
conditions provided by the driving GCM/ESM. Nonetheless, this exercise enables the
identification of regions where systematic biases exist and the examination of the under-
lying causes for this. A 60-year period was selected from 1951–2010, with the first half
representing the historic time slice and the latter the current time slice. Modeling biases for
mean temperature, mean precipitation, number of days that temperature exceeded 25 ◦C,
and number of days that precipitation exceeded the threshold of 5 mm, according to the
WMO guidelines, were compared against observations from E-OBS at a spatial resolution
of 0.25◦.

The analysis performed above makes it abundantly evident that the model underpre-
dicts the mean temperature changes found across all subregions consistently. This implies
that a colder climatology has been assessed, both with respect to seasonal averages and
when comparing the overall length of current to historic data, underlying the importance
of the driving model. Except for IP, for which the greatest bias is observed during summer,
and EE, for which the highest bias is noted during autumn, for most of the subregions the
greatest bias is simulated during winter. From them, the southern and eastern subregions
indicate the most bias when compared to the remainder of the areas, owing to interactions
between the land and the atmosphere. The smallest biases, conversely, are simulated either
in spring (FR, SC, EE) or in autumn (BI, ME, AL, MD). This tendency is mostly related
to the combined effect of the decreased snow cover throughout these seasons compared
to winter, which offsets the overestimation of surface albedo seen during winter, and the
softer influence of the radiation scheme as opposed to summer.
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Most of Southern Europe experiences an increase in the number of warm days (days
in which mean temperature exceeds 25 ◦C) during the summer months only. In most
subregions examined, the model underestimates the number of days, except for SC, AL,
and BI, where the model’s results closely match the data. The number of warm days
has increased the most in IP and MD (9 days/year) with an associated model bias of
2 days/year for IP, and 1 day/year for MD. A rise of 3 days/year is observed and modelled
over AL. Milder alterations of 1 day/year were found in FR, ME, and EE with the model
bias being about 1 day/year. BI and SC did not surpass the temperature threshold, as does
the model’s assessment. NOAH LSM and RRTMG radiation schemes may have contributed
to the model’s trend toward lower summer temperatures more than E-OBS.

With respect to mean precipitation, the positive or negative model biases do not indi-
cate a regionally regular trend. Regardless of the subregion studied, a negative bias is indi-
cated in most cases. This is a well known issue in WRF simulations and has been observed
in various studies, particularly when the KF and YSU schemes are used. Some inconsisten-
cies are also caused by the geographic characteristics of each region, which shape regional
weather patterns, implying an essential underlying cause for the variations observed.

With respect to the number of days per month that mean daily precipitation surpassed
5 mm, over the two time slices examined, the central and southern regions of the domain
saw fewer days, while northern FR, ME, and large parts of BI and SC saw more. The
model simulated bias is very small everywhere, indicating skill in estimating changes over
the specified threshold. Similarly, on a seasonal basis, model results were in all instances
comparable with observations, although unimportant regional variations may exist.

The results of this study were obtained focusing solely on two parameters, i.e., tem-
perature and precipitation. Further analysis incorporating parameters such as the cloud
properties and SSTs is left for a future study. Nonetheless, the preceding exercise empha-
sizes both the significance and the need for further observations, particularly from the
southern regions of the European domain, for more reliable evaluation studies.
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