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Abstract: The machine learning algorithm based on multiple-input multiple-output linear regression
models has been developed to describe PM2.5 and PM10 concentrations over time. The algorithm
is fact-acting and allows for speedy forecasts without requiring demanding computational power.
It is also simple enough that it can self-update by introducing a recursive step that utilizes newly
measured values and forecasts to continue to improve itself. Starting from raw data, pre-processing
methods have been used to verify the stationary data by employing the Dickey–Fuller test. For
comparison, weekly and monthly decompositions have been achieved by using Savitzky–Golay
polynomial filters. The presented algorithm is shown to have accuracies of 30% for PM2.5 and
26% for PM10 for a forecasting horizon of 24 h with a quarter-hourly data acquisition resolution,
matching other results obtained using more computationally demanding approaches, such as neural
networks. We show the feasibility of using multivariate linear regression (together with the small
real-time computational costs for the training and testing procedures) to forecast particulate matter
air pollutants and avoid environmental threats in real conditions.

Keywords: machine learning; multivariate linear regression; time series forecasting; forecasting;
particulate-matter; environmental data analysis

1. Introduction

Air pollution is one of the largest environmental concerns presently affecting people
across the world (in developed and developing countries alike). The World Health Organi-
zation (WHO) estimates that there were 3.7 million premature deaths globally in 2012 due
to air pollution [1–3]. Ambient air pollutants are diverse and varied; however, of all the
contaminants, a few stand out as the most dangerous to human health, such as particulate
matter (PM), ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide. Particulate
matter consists of fine particles from organic and inorganic sources with aerodynamic
diameters smaller than 10µm (PM10) and 2.5µm (PM2.5); it is produced by on-road and
off-road vehicles, with contributions from power plants, industrial boilers, incinerators,
petrochemical plants, aircraft, ships, and so on, depending on the locations and prevailing
winds [4]. Due to their small sizes, ≤10µm (PM10) and ≤2.5µm (PM2.5), these fine parti-
cles are able to penetrate deep into the lungs and be absorbed into the bloodstream, causing
damage to the organism [1,3,5–7]. The level of damage they can cause varies depending
on the concentration and type [1,8,9]. Given the nature of their absorption, they mostly
cause damage to the respiratory system, although the cardiovascular and neurological
systems can also be affected [10–13]. Some of the less severe short-term effects include
irritation of the mucous areas, such as the eyes, nose, and throat; effects could also include
headaches and nausea, which disappear with time. However, chronic exposures to high
levels are also linked to more serious conditions and can cause upper respiratory infections,
such as bronchitis and emphysema [1,8]. Regarding long-term effects, PM exposure is also
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linked to chronic respiratory diseases (e.g., asthma and lung cancer) [10], cardiovascular
ailments [11,14], and brain damage [12].

Considering the danger posed by particulate matter, it is necessary to survey and
monitor the ambient levels in the atmosphere [3,15]. However, since particulate matter is
an extremely heterogeneous mixture, it becomes very difficult to measure and quantify
(see, e.g., References [16,17]). This task was made easier by standardizing fine particles
with diameters equal to or smaller than 10µm as the official measure of ambient particle
pollution [18]. Moreover, the increase in emissions and recognition of the heightened
dangers of fine particles with an average diameter equal to or smaller than 2.5µm made
it necessary to also pay attention to these particles [3,19,20]. Considering these facts,
the ability to accurately predict and forecast PM10 and PM2.5 values is of great interest to
public health because it would reveal ambient levels of pollutants and enable the general
population to take preventive actions.

The traditional approach to forecasting environmental variables implies the construc-
tion of deterministic models, which require extensive knowledge of parameters, such as air
current flows, particle diffusion, and relevant chemical reactions [21]. The drawbacks of
these approaches lie in the data acquisition and model construction processes. Moreover,
usable data for all necessary parameters are hard to collect, and even if the necessary data
are available, the algorithm construction and refinement process are lengthy, demanding,
and often produce inaccurate models given to the chaotic nature of the atmosphere [22].

The development and application of data-driven algorithms (e.g., machine learning
(MLA)) applied to the forecasting of pollutants have increased substantially in recent years,
becoming quantitative alternatives to time series [8,23–26]. The advantage of these types of
algorithms is that they are capable of capturing and finding the underlying patterns hidden
in data; thus, they could be used for forecasting without the need for any prior assumptions.
This means that not only is the model building process less demanding than that of the
traditional approach but also that the model applications to new data are more straight-
forward and extremely fast [25,26]. Cabaneros et al. [27] conducted an extensive review
on air pollution forecasting using artificial neural networks, while Kalajdjieski et al. [28]
used multi-modal data and deep neural networks to generative approaches enhanced
with standard data augmentation methods for handling imbalanced datasets. Many other
references can be found in the literature regarding MLA, e.g., References [29–38].

Despite the MLA’s popularity, the results achieved are not conclusive and are usually
computationally costly even with graphical unit processing acceleration [39]. Therefore,
the air pollution forecast remains an important and active area of research, where high-
quality outcomes and fast schemes are key to limiting the exposure to pollution [40] and
having the ability to handle imbalanced datasets and exploit multimodal data [41]. This
work proposes a robust and simple algorithm based on linear regressions methods with
enough viability to accurately forecast near-future PM10 and PM2.5 concentrations and is
capable of being taught in the framework of machine learning with minimal computational
costs. The main novelty is that the algorithm, being regression-based, is fast-acting and
allows for faster forecasts without the requirement of demanding computational power. It
is also simple enough that it can self-update, by introducing a recursive step that utilizes
newly measured values and forecasts to continue to improve itself. Linear regression meth-
ods are labeled as simple machine learning algorithms [42]. Due to their simplicity, many
publications focus their applications in many fields. Juneng et al. [43], used 10 predictor
variables in the logarithmic scale to study the PM10 concentrations over Malaysia based on
multi-station and multi-properties. They reported that 35–50% of the PM10 variations can
be explained by these variables. Ng et al. [44] also studied the Malaysian PM10 concentra-
tions with multiple linear regression and regression with time series error models obtaining
17% of MAPE. Shams et al. [45] employed artificial neural networks and multiple linear
regression models for predicting SO2 concentrations using seven input variables. The low
value of R2 = 0.708 shows the limitation of a simple application of the linear regression
method. In turn, Okkaoglu et al. [46] reported a detailed study on daily PM10, periodicity,
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and the harmonic regression model, attempting to capture the hidden periodicity of the
time series. They rely on the use of periodograms having the requirement of a stationary
series achieving a high degree of precision on annual concentrations. For the periodograms,
they employed a trigonometric series and Fourier analysis. Bai et al. [47] carried out a
thorough review (see also Reference [46]) on air pollution forecasts based on statistical
forecasting methods, artificial intelligence methods, and numerical forecasting methods.
They have also reported hybrid models that may improve the forecast accuracy.

2. Data and Methods

The PM10 and PM2.5 datasets employed in this work were obtained from the Coper-
nicus Atmosphere Monitoring Service [48] (CAMS), reported on an hourly basis from
1 October 2016 to 30 September 2017 for 40.192169 N –8.414162 W location. The geograph-
ical coordinates correspond to a location in the central part of Portugal, although any
location could have been employed in the present study. The dataset from CAMS is of the
ENSEMBLE type [49,50]; it gathered information from eight European models and calcu-
lated via a median value approach [51]. These products generally yield better performances
than the individual model products both for the forecast and analysis. For the particular
case, the 0 km of altitude (surface level) and the analysis batches were chosen since they
were validated, while no other sources of data were employed.

Before training the MLA with the dataset, a preliminary analysis of the data showed
the need for pretreatment, see the flowchart in Figure 1. First, the dataset was not balanced
in terms of size consistency with gaps, which made it impossible to properly use the time
series forecasting model based on machine learning principles. Since the data gap number
and sizes were short and scarce, a piecewise linear interpolation model [52] was employed
to overcome the dataset limitation. This simple model connects the two known adjacent
points, (x1, y1) and (x2, y2), with a straight line and allows determining a set of i values
in-between them:

yi = y1 + (xi − x1)
y2 − y1

x2 − x1
(1)

A major issue in the case of data inference is that balancing the dataset cannot lead to
changes in the time series properties, compromising the analytics of the training, testing,
and forecast. To confirm that the data set properties have been maintained after the
balancing procedure, the Dickey–Fuller [53] test for stationary was applied to the original
data set and on the continuous data set

yt − yt−1 = (ρ− 1)yt−1 + ut (2)

where yt is the testing variable, t is the time index, ut is the error term, and ρ is the test
coefficient. In the case of ρ > 0.05, the series is non-stationary, with a limiting value of
1 being completely non-stationary. The greater the difference between zero and ρ− 1 is,
the greater the certainty with which the series can be called stationary. This also allowed
to check for the time-series stationarity since any regression MLA can only be applied to
stationary data [54]. If it is not stationarity, a detrending process has to be conducted before
being able to train the MLA. Only after these steps can the training process of the MLA
take place. Note that it is a common assumption in most time series methods that the data
must be stationary [46]. Even if regression methods do not have assumptions regarding
data stationarity, ensuring that data used in this study are stationary, they will facilitate
future comparisons with works that utilize non-regression methods.
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Figure 1. Data processing flowchart and algorithm application.

The core of the proposed algorithm is the machine-learning component. For a simple
and robust forecast, it is necessary that the model be trained effectively in a short compu-
tational time. In this particular case, the multiple-input multiple-output linear regression
model was selected. It is based on the fact that it does not have the drawbacks of multiple
linear regression models, such as the accumulation of errors along the forecasting horizon
in recursive models and the conditional independence assumption in direct models. In con-
trast to traditional single-output learning, multi-output learning can concurrently predict
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multiple outputs. The outputs can be of various types and structures, and the problems
that can be solved are diverse. These models are based on vector-valued functions, such as

Y(i)[yt+1, ..., yt+H ] = X(i)(yt, ..., yt−d+1) · C(d+1)×i + wH×i (3)

where Y and X are the output and input vectors, respectively, for a forecast of H steps ahead
using d input values where i represents the size of the training set, or, in other words, the
total number of equations for which the coefficients matrix, C, will be minimized via a
least-squares approach. Finally, w is the noise matrix [24,55–57].

The optimization procedure was carried out by minimizing the sum of the square
elements on the diagonal of the residual sum of squares and cross-product matrices [58])

C = (X′X)−1(X′Y) (4)

which gives the least possible trace for the coefficients matrix as well as minimizes the
generalized variance of the system. The final coefficients can be stored in a simplified vector
equation similar to Equation (3) alongside the input vector in order to produce the forecasts

Y[yt+1, . . . , yt+H ] = X(yt, . . . , yt−d+1) · C (5)

In this work, the methods and models were implemented in the Python programming
language aimed at forecasting a total of 24 steps ahead, H = 24, using the same number
of input values, d = 24. The structure of the MLA is reported in Algorithm 1. The full set
of data consisted of a total of 8784 data points, from which 80 % have been employed for
training and cross-validation and the remaining 20 % for testing, as suggested by Pareto’s
principle [59]. From the 6980 data points used for training, a ten-fold-winner-takes-all
cross-validation process was employed [60,61]. As seen in the Algorithm 1 construction,
this was conducted by splitting that portion of the data into ten equal random parts, using
nine to train the model and the remaining one to validate it. This process was repeated ten
times, always changing the validation segment. Afterward, the iteration that yielded the
best results was replicated and tested on the remaining 1804 data points that comprised the
test set. The testing process was carried out three times on the same set but with different
start and end points to account for variations of the model and to add statistical meaning
to the results [24].

The performance of the model was evaluated using the mean average percentage error
(MAPE), which is the standardized approach to demonstrate the prediction accuracy of a
forecasting method in the statistics and machine learning theory [26,62]. It is given by:

MAPE =
100
N

N

∑
i=1

∣∣∣∣Xi − Xforecast,i

Xi

∣∣∣∣ (6)

where Xi is the actual value and Xforecast,i is the corresponding forecast value for a data set
of size N, while the multiplication by 100 is converted to a percentage. Beyond the MAPE
criteria, a qualitative analysis of the results was conducted by checking the coherence
between the real and forecasted values in predicting the correct hazard level. This was
conducted by counting the number of measured values that crossed the threshold between
hazard levels and converting the count into percentages and afterward doing the same with
the forecasted values. The disparity between the values allowed for a comparative analysis.
Another aspect that was explored was the seasonality extraction or seasonal decomposition
and the effects on model performance [24]. This was carried out by smoothing the original
data set, considering a weekly and monthly signal repetition that generated two extra data
sets. These new data sets disregarded any noise by considering only the overall trend of
the data and the seasonal effects.
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Algorithm 1: Multiple-input multiple-output linear regression algorithm.
Input : Full balanced dataset X size N
begin

Ntrain = Int(0.8× N)

X(1)
train ←− Split.RAND(X, size = Ntrain)

X(1)
test ←− Xtrain ∩ X

X(2)
train = X(1)

train

X(2)
test = X(1)

test

p←− Dickey–Fuller(X(2)
train)

if (p > 0.05) then
X(2)

train non-stationary

X(3)
train ←− Savitzky–Golay.Filter(X(2)

train)

X(3)
train stationary

else
X(2)

train stationary
end

end
for k = 0 to n = 10 do

for i = 0 to n = 10 do
X(i,1)

train ←− Split.RAND(X(1)
train, size = N/10)

X(i,2)
train ←− Split.RAND(X(2)

train, size = N/10)

X(i,3)
train ←− Split.RAND(X(3)

train, size = N/10)

LinearRegression(X(i,1)
train)

LinearRegression(X(i,2
train)

LinearRegression(X(i,3)
train)

MAEP(i,1) ←− LinearRegression.Predict(X(2)
train)

MAEP(i,2) ←− LinearRegression.Predict(X(i,2)
train)

MAEP(i,3) ←− LinearRegressionPredict(X(i,3)
train)

end
bestModel(k) ←− min(MAEP(i,j))

end
bestModel←− bestModel(k)

Output : H = 24; d = 24

Xforecast[yt+1, . . . , yt+H ]←− XbestModel[yt, . . . , yt−d+1]

3. Results and Discussion

In this section, we present the results of the forecasted data. Note that by the construc-
tion of the algorithm, both original and deseasonalized data sets are empirically considered
as stationary since the Dickey–Fuller test was performed and the Savitzky–Golay [63] filter
applied in case of non-stationarity of the subset. The outcomes from the applications on the
undecomposed time series are the primary focus and serve as the comparison for results
involving the decomposed time series. In all cases, the computational cost was ∼10 min of
real-time for the complete process in a non-GPU-accelerated one-core process, showing the
simplicity of the method in the training and validation steps.
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3.1. Original Data

The results of the MLA application on the original data without any kind of seasonality
extraction are shown in Figure 2 for the third test iteration. The results of PM10 forecasting,
shown by time evolution and correlation diagrams, are in very good agreement between
input (real) and predicted values, suggesting that the model is able to cope with the
complexity of the pollutant over time and fast concentration variation. The correlation
diagram shows that the majority of the points follow the bisector line, while the linear fit is
indistinguishable from the bisection. This assessment seems to be further supported by the
comparison of the forecast values alongside the real values over the cumulative time scale.
The two lines are indistinguishable within the scale, showing that the global trend of the
MLA also follows the input data. For a more quantitative analysis, the error is also reported
with the cumulative timeline. The mean MAPE value for all three testing iterations is of
26.6% and individual errors are mostly small except in a few situations, which correspond
to inflection points of the original signal.
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Figure 2. Dispersion, concentration, and error over time dependencies for the third test iteration
of forecasting without seasonality decomposition. Dispersion plots: R2 = 0.933 for PM10 and
R2 = 0.920 for PM2.5.

An additional parameter for the present analysis is related to the health hazard ranges
of PM25 and PM10 pollutants. The limiting values reported by the European Environmental
Agency [64] for the moderate air quality index is 25µg m−3 for PM2.5 and 50µg m−3 for
PM10. Although the reported value is for 24 h exposure, it was used instantaneously,
cast now as a typical value. Since the hazard level is closely related to the impact of the
pollutant, overestimation of the forecast may lead to false positives or false negatives if
underestimated. It is quite surprising that, from a strictly qualitative perspective, only a
single point was forecast outside the first hazard level (false positive) of 50µg m−3 (see
Figure 2, the dashed color line in the PM10 over time).

For the PM2.5 forecast, a similar trend to PM10 was also observed in Figure 2, an ex-
pected behavior since it is well known that the PM2.5 and PM10 are highly correlated
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variables [65] and share the same physical–chemical sources [66]. The spread of the data
along the correlation diagram is more visible but still shows a high degree of forecast
consistency. Quantitatively, the calculated MAPE is 31.5 %, a value somewhat larger than
the one of PM10, while only 0.7 % are false positives above the hazard level. The general
trend shows that the forecast values are in good agreement with the real values along the
same cumulative time and the largest individual error measurements, such as in PM10,
due to the inflection points of the time series. It is interesting to see that the two largest
values (above 100%) are sudden variations in the PM2.5 concentration, which cannot be
accounted by our model. Note that no value was removed from the complete data set
and no attempt was made to check statistical or experimental outliers. If these points
were actually outliers and could have been removed from the dataset, MAPE values ∼20%
would have been obtained.

3.2. Seasonal Decomposed Data

The performance of the MLA algorithm can also be quantified for the seasonal de-
composed data, in a similar analysis to the one carried out for the original data. Figure 3
shows the results for the MLA using the weekly decomposed data while the analogous
plots in Figure 4 correspond to the results for the application on monthly averaged data.
Both sets have been obtained, as stated previously, by applying a third degree polynomial
Savitzky–Golay filter [63]. It is interesting to note that in the case of weekly decomposition,
a higher value of the mean MAPE at the third iteration was found when compared to the
original data: 39.7% for PM10 and 33.4% for the case of PM2.5. In contrast, the monthly
seasonality treatment gave a mean MAPE at the same level of the original data: 27.0%
and 31.8% for PM10 and PM2.5. Such behaviors in the case of the weekly seasonality data
were due to the averaging of the full 7 days that diminished the structure of the small data
inflections, leading to a more difficult accommodation of the trend by the linear model (see
the errors associated with the real values in Figure 3). The correlation diagram found in
Figure 2 corroborates our findings, with the major differences occurring for higher concen-
tration values, in which the moving window average filters were smoothed out in the MLA
model. For the case of the monthly decomposition, the data after the moving average filters
had smaller fluctuations of lower concentrations allowing more accurate forecasts of the
pollutants. The weekly averaged data for PM10 showed a perfect health hazard coherence
prediction, showing no false-positives in opposition to the monthly averaged.

The PM2.5 forecasting yielded statistical results in-line with those of PM10 with weekly
and monthly decompositions. Both correlation plots indicate that the model achieves a good
description of the data, while the error is approximately below 30%. In this case, the season
decomposition did not bring major discrepancies when compared to the original data
due to the fact that the PM2.5 series had negligible seasonal variation. From a qualitative
perspective, the health hazard level prediction reached 98.1 and 98.4 for the weekly and
monthly decomposed signals, respectively, with the number of false-positives being less
than 1%. Prior to the comparative statistical analysis, the results using the time series data
set with different levels of seasonal decompositions were in good agreement with each
other, yielding similarly good results with MAPE values near the 30 % margin.
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Figure 3. Dispersion, concentration, and errors over time dependencies for the third test iteration of
forecasting without seasonality decomposition with weekly seasonality decomposition. Dispersion
plots: R2 = 0.917 for PM10 and R2 = 0.909 PM2.5.
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Figure 4. Dispersion, concentration, and errors over time dependencies for the third test iteration of
forecasting without seasonality decomposition with monthly seasonality decomposition. Dispersion
plots: R2 = 0.932 for PM10 and R2 = 0.917 PM2.5.



Atmosphere 2022, 13, 1334 10 of 13

3.3. Statistical Analysis

Table 1 shows a summarizes the statistical results obtained by the application of the
MLA developed in this work. It shows the standard deviations of the iteration MAPE values.
These values are of great importance because they can be used as tie-breaking criteria to
choose the best model outcomes. Comparing PM10 forecasts, the MLA using weekly
decomposed data yielded the highest MAPE value, 32.3 %, and with a very high standard
deviation between measurements, 6.53%. Such behavior indicates that the model is unstable
between iterations. Between the applications of the original and monthly decomposed data,
MAPE values were similar, and despite the original being slightly lower, 26.6 %, its standard
deviation was also higher, 0.24%. Weighting these two aspects, both these applications were
viable, the choice of the model was based on accuracy and coherence. PM2.5 forecasting
had a similar analysis. Weekly decomposition led to standard deviations of very high (2.23)
testing iterations, which made it doubtful regarding coherence. Between the original and
the monthly decomposed data set, results were similar and the MAPE was lower for the
original, 31.5 %, while the standard deviation was lower, 0.9, for the monthly decomposed
data. Moreover, for the weekly decomposition results between iterations, the MAPE in this
case increased nearly 30% between the three testing iterations. Since the dataset between
iterations was randomly chosen to force a strong validation of the MLA, the moving
window average may have led a more complex concentration variation overtime than
could not be accounted by the linear-regression.

Table 1. Summary of the MLA results for PM10 and PM2.5 for the three iteration validations. The
probability for the false positives and respective coherence for the health hazard levels defined by
EEA [64] are also shown. All values (except for standard deviation (SD)) are in percentages.

Original
Data

Weekly
Decomp.

Monthly
Decomp.

PM10

MAPE

iter. 1 26.8 27.2 27.3
iter. 2 26.6 30.0 27.0
iter. 3 26.3 39.7 27.0
mean 26.6 32.3 27.1

SD 0.2 6.5 0.2

hazard
level

coherence 99.9 100 99.9
false

positives 0.06 - 0.06

PM2.5

MAPE

iter. 1 32.5 29.7 32.8
iter. 2 31.3 33.8 31.6
iter 3 30.7 33.4 31.1
mean 31.5 32.3 31.8

SD 0.9 2.2 0.9

hazard
level

coherence 98.5 98.1 98.4
false

positives 0.8 1.0 0.8

4. Conclusions

In this work, it has been presented a simple but robust machine learning algorithm
for the forecast of PM10 and PM2.5 concentrations. The developed MLA was able to
predict PM10 and PM2.5 variations coherently; a replication of the results could easily be
achieved to account for proper statistical meaning. The algorithm may also be employed in
other variables since the training can be carried out in a simple and fast way with minimal
computational resources. The mean MAPE calculated had a typical value of 30% for both air
pollutants, with the best results obtained for training with the original data. The application
of the weekly decomposition method to the PM10 original data used to remove seasonality
worsened the results by approximately 6%. Since the goal was to forecast near-future
events, the weekly seasonality removed important trends, i.e., hourly increasing traffic,
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by smoothing out the data. For PM2.5, all of the testing iterations produced accurate results.
In both cases, the health hazard coherence was around 98% with false positives less than
1% of the overall data. Multi-step time-series forecasting is an ambitious approach due
to the uncertainties of predictions for large forecasting horizons [67,68]. Linear regression
machine learning algorithms are among the most widely used to address these problems
given that they are versatile and easy to implement. Substantiated by the knowledge that
approaches based on multivariate regression are shown to regularly be better than those
based on multiple regression, an attempt at forecasting PM10 and PM2.5 variations in the
atmosphere using a multi-output MLA can be used for a fast warning system.
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