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Abstract: The effect of water imbibition on characteristics of coalbed methane reservoirs, such as
permeability, gas occurrence state, and gas production, is controversial. According to the mechanism
of imbibition, gas and water distribution in blind pores is reconfigured during the fracturing process.
Therefore, a new comprehensive model of pore pressure and permeability, based on the perfect gas
equation and the weighted superposition of viscous flow and Knudsen diffusion, was established for
micro- and nanoscale blind pores during water drainage. Using the numerical simulation module
in the Harmony software, the effects of imbibition on coal pore pressure, permeability, and gas
production were analyzed. The results showed that (1) water imbibition can increase pore pressure
and reduce permeability, and (2) water imbibition is not always deleterious to gas production and
estimated ultimate reserve (EUR), when the imbibition is constant, the thicker water film is deleterious
to coalbed methane wells; when the thickness of water film is constant, more imbibition is beneficial
to gas production and EUR. This research is beneficial to optimize the operation of well shut-ins after
fracturing and provides methods for optimizing key parameters of gas reservoirs and insights into
understanding the production mechanism of coalbed methane wells.

Keywords: coalbed methane; micro- and nanoscale pores; imbibition; pore pressure; permeability;
gas production

1. Introduction

The production and ultimate reserve of coalbed methane wells are affected by the
imbibed fracturing fluid during the fracturing process [1], particularly the gas outflow from
micro- and nanoscale pores in the coal matrix. The reason for this phenomenon is because
micro- and nanoscale pores are dominant in coal [2,3]; they are an essential storage space
to maintain gas production in the middle and later periods [4], and the affected space to
generate high capillary pressure when encountering water.

The detailed process of the effect of fracturing fluid on coalbed methane production
can be expressed by the interaction of gas and water. During the fracturing process, a
portion of fracturing fluid can be imbibed into numerous micro- and nanoscale pores during
the crack propagation [5]; thus, the wellbore, fractures, and pore entrances connected to the
fractures are filled with fracturing fluid [6,7], and the adsorbed gas in the affected area will
be promoted to desorb into free gas, owing to the stronger adsorption capacity between
water and coal minerals [8]. Finally, free gas in through pores might be displaced out of
the pores [9], and free gas in blind pores may be compressed gradually due to the high
imbibition pressure [6]. During the drainage process, imbibed water in through pores
cannot be discharged only by formation compression [10]; imbibed water blocking the
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entrances of blind pores hinders gas output, which can be discharged by rock compression
and elastic expansion of gas [10,11]. However, water cannot be completely drained. A
film of water attaches to the inner surface of the rock and restricts the efficiency of the gas
flow [12,13]. Additionally, the production arrangement of imbibed water and inner gas in
micro- and nanoscale pores affects the flow efficiency in wellbores and fractures. If the gas
production rate is too low, the water retained in the wellbore cannot be removed effectively,
which results in liquid loading [14,15]. However, if the gas production rate is too high,
the conductivity of artificial fractures decreases rapidly and then generates several stress-
sensitive damaged areas where gas production efficiency will be prematurely limited [16].
However, the effect of fracturing fluid on coalbed methane reservoirs is controversial
because fracturing fluid imbibition has positive and negative effects on coalbed methane
reservoirs [17].

Negative effects of water imbibition on coal rock, such as the reduction of permeability,
fracture conductivity, and hardness, occur due to micro-cosmic physical and chemical reac-
tions between rock and water. Firstly, matrix permeability is reduced owing to water blocks
and clay swelling. Water in small pores cannot be discharged due to capillary pressure and
ion osmotic pressure [5], while swelling and movement of clay can reduce the effective
seepage area in micro- and nanoscale pores [18]. Bazin et al. [19] conducted experiments in
which water sensitivity was responsible for the large permeability reductions in tight gas
reservoirs. Chakraborty et al. [20] reported that in experiments, the effective permeability
of core plugs decreased by up to 99.5% of the initial permeability, owing to water blocks and
clay swelling. Zhang et al. [21] compared the detrimental effects of working fluids during
the drilling process on permeability. Tian et al. [22] analyzed the effect of water phase
trapping on gas flow in micro media through a visualized micromodel and found that
snap-off and circumfluous flow are the two major mechanisms that interrupt the bulk gas
flow and generate trapped gas. Secondly, fracture permeability and conductivity are also
reduced by water imbibition because fluid can reduce rock hardness [23]; therefore, prop-
pants are easily embedded into the coal matrix, resulting in the reduction of the fracture
width and causing permeability damage [24]. Zhou et al. [7] showed that water imbibition
reduces the hardness and causes fracture conductivity damage in various shale formation
samples because hydration weakens the jointing strength between mineral particles and
further destroys the original shale structure. Scholars [25,26] have found that the degrees
of reduction in the hardness levels are related to factors such as mineral composition [27],
temperature, fluid type, and water saturation. Imbibition is intensified by the creeping
behaviors of micro-fractures caused by clay swelling [2]; however, there is uncertainty
regarding whether intensified imbibition further decreases fracture conductivity. Moreover,
a water film is retained on the organic and inorganic pore walls [13] after water drainage,
because of the adsorption forces between coal minerals and water molecules, including van
der Waals forces, electrostatic forces, hydrogen bonds, and structural forces [28–31]. The
water film retained on the pore walls decreases the seepage area for gas flow [13], thereby
reducing gas phase permeability. Third, moisture in the porous system increases after water
imbibition, which can affect gas diffusion and bulk flow; in other words, a single-phase gas
flow with a low moisture degree is transformed into a two-phase flow, which is detrimental
to gas production [32].

However, water imbibition sometimes benefits unconventional methane production.
Statistics show that in some coalbed methane fields, water retention in reservoirs is pro-
portional to gas production [33,34], which illustrates that water imbibition can be both
detrimental or beneficial to reservoir performance. Firstly, methane occurrence is influ-
enced by water imbibition in the affected area [35]. Previous findings for the competitive
adsorption of water and methane molecules have verified that the adsorption capacity of
a coal surface is stronger for water than for methane [8,36,37]. Hu et al. [9] studied the
competitive adsorption of water and methane to analyze the law of imbibition effect on
the shale methane occurrence state and confirmed that water can promote the desorption
of adsorbed gas. Furthermore, the original free gas and increased free desorption gas
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are compressed by deep-going imbibition water in several blind pores, owing to the high
imbibition pressures [5,6,10]. Secondly, clay swelling can either block the seepage channels
(as aforementioned) or induce microfractures to improve the physical properties of coal,
such as pore volume and permeability, by allowing greater interaction between imbibition
water and coal and causing further dissipation of water blockage in some cases [38–40].
Gupta et al. [34] conducted laboratory tests and found that the imbibition of water induces
massive stress (as high as 17 psi), and increases the porosity of studied samples by up to 0.94
percent. Xu et al. [17] found that in a sample from the Horn River Basin, water imbibition
enhanced pore volume by up to 0.8 vol.% of the initial bulk volume. Bai et al. [23] found
that immersing shale in fracturing fluid decreased the elasticity modulus and Poisson’s
ratio by 85% and 54%, respectively; thus, many microcracks were induced within the shale.

In general, studies have mainly conducted qualitative analyses of the effect of imbi-
bition on either coal permeability or porosity or the occurrence of adsorbed gas, while
ignoring the comprehensive effect of imbibition on pore pressure and coalbed methane
production, owing to the complex mechanism of imbibition impaction. This study focuses
on micro- and nanoscale blind pores and establishes pore gas pressure and permeability
models for imbibed water drainage. Using a numerical simulation module in the Harmony
software, the effects of imbibition on coal pore pressure, permeability, and coalbed methane
well production were analyzed. Overall, this research provides insight into the production
mechanism of coalbed methane wells.

2. Effect of Fracturing Fluid on Pore System in Reservoir Matrix
2.1. Blind Pores Are Dominant in the Coal Matrix

The cursory ratio of through pores and blind pores in coal can be estimated by low
field nuclear magnetic resonance (LF-NMR). The experimental device is shown in Figure 1,
it consists of six parts: 1© liquid injection system; 2© LF-NMR; 3©manual pump of confining
pressure; 4© computer; 5© and 6©: imaging and sample processing system. The procedures
are: (1) The dried coal sample is saturated with water (pH = 7, the experimental liquid was
fluid with a 2 wt. % of KCl), and then it is tested with LF-NMR; (2) the saturated sample is
displaced by gas driving with constant confining pressure and increased driving pressures,
and then the displaced sample is tested with LF-NMR; (3) the displaced sample is then
rotated with HC-3018R centrifuge to strip the movable water, to obtain the sample with
residual water, the rotation speed is 8000 rpm, the duration is 3 h, and then the displaced
sample is tested with LF-NMR. The principles of the method are: (1) the porosity of the
through pore can be obtained through the T2 spectrum comparison of the saturated sample
and the displaced sample, the reason is that both the through pore and blind pore can suck
water into the sample test of water saturation, and only water in through pores can be
displaced during the gas driving test, the higher the displacing pressure, the more through
pores; (2) the effective porosity can be obtained through the T2 spectrum comparison of the
saturated sample and the sample with residual water, the difference between the effective
porosity and the porosity of the through pore is the porosity of the blind pore, the reason
is that the stripped water by centrifuge comes from the effective through and blind pores.
The experimental results are shown in Table 1.

The coal samples belong to bituminous coal with medium and high metamorphic
degrees, the vitrinite reflectance is 0.75%, the average value of fixed carbon is wt. 61%, and
the average value of ash property is wt. 19%. The porosities of through pores under the
displacing pressure of 4 MPa can be obtained in Table 1; they are, respectively, 48.34 vol.%,
40.43 vol.%, 49.97 vol.%. Although the water in through pores cannot be displaced com-
pletely by the displacing pressure of 4 MPa, it shows that blind pores are dominant in the
coal matrix.
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Figure 1. High temperature and high-pressure NMR visualization experimental platform
(MacroMR12-150H-l).

Table 1. Statistics of various water saturations by the LF-NMR test for coal samples from Dahe block,
Guizhou (confining pressure is 8 MPa, outlet pressure is 0.1 MPa).

Coal Sample Tested by Saturated
Samples

Tested by
Displaced

Samples (1 MPa)

Tested by
Displaced

Samples (2 MPa)

Tested by
Displaced

Samples (4 MPa)

Tested by the
Samples with

Residual Water

D-1 100 88.52 85.28 83.91 66.72
D-2 100 97.53 85.40 76.11 40.90
D-3 100 81.37 76.94 71.32 42.60

2.2. Effect of Fracturing Fluid on Pores System

Pumping pressure during the fracturing operation is bigger than fracturing pressure;
it can promote the fracturing water into these matrix pores and further influence the gas
occurrence. Pores affected by water imbibition in coal are classified into through pores and
blind pores (Figure 2). A through pore is defined as having two or more entrances that
connect cracks, and a blind pore is defined as having one entrance connected to a crack.

1. Influence of imbibition on blind pores.

One of the main reasons for the low permeability of coal is the presence of many blind
pores. When liquid invades the pore space from the opening of blind pores, the gas stored
in the pores is gradually compressed because of the increasing water saturation, which
increases the gas pressure in the blind pores (Type I in Figure 2). This theory can be verified
by one of the most commonly observed experimental phenomena: a coal core cannot be
saturated with all pores full of water.

2. Influence of imbibition on through pores.

Some gas is stored in hydraulic fractures as gas diffusion occurs within natural frac-
tures and discharged gas is displaced as the fracturing fluid is imbibed by the through
pores. The distribution of gas and water in the through pores is shown in Figure 2 and can
be classified into two types: Types II and III. Type II represents gas trapping and Type III
represents gas discharge. When the imbibition pressures at each end of a through pore are
not significantly different, the gas in the pore is blocked by the imbibed fracturing fluid at
both ends; when imbibition pressures at each end of a through pore differ substantially, the
gas in the pore is displaced out of the pores from the end with higher imbibition pressures.

According to this analysis, the gas–water distribution shows that some of the gas
in hydraulic fractures is from through pores, which can increase gas production in the
early period of the coalbed methane well. Gas stored in blind pores is one of the main
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sources that maintain production during the middle and later periods of a coalbed methane
well. The ratio of blind pores to through pores in coal is related to the degree of reservoir
hydraulic stimulation and natural fracture amount: the higher the fracture density, the
larger the proportion of through pores; by contrast, the smaller the fracture density, the
larger the proportion of blind pores. A large proportion of through pores benefits the early
production of coalbed methane wells.
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Figure 2. The influence of fracturing fluid imbibition on different types of pores (CA: compressed
area, IA: imbibition area).

3. Model Description and Construction

The main differences between the imbibition and drained states in blind pores are as
follows: (1) during the imbibition process, adsorbed gas in the affected area is desorbed
into free gas (Figure 3a); (2) during the drainage process, a uniform water film is retained
on the inner surfaces of the pores in the affected area (Figure 3b). The changes in pore size
and water film thickness during the imbibition and drainage processes were ignored in the
construction of the model.
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process. (b) Change in the gas–water state in blind pores during the drainage process.
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3.1. Effect of Imbibition on the Gas Pressure of Micro-Nano Blind Pores in Coal

During the drainage process, the only way to disturb the balance of the gas–water
pressure is to discharge the fracturing fluid out of the fractures. With the extraction of
water from fractures, gas in blind pores connected to the fractures expands to overcome
the drainage resistance that mainly occurs due to capillary pressure [41]; this gradually
displaces the imbibed water out of the pores [10], as shown in Figure 3b.

The amount of desorption of adsorbed gas due to imbibition in the affected area is [10],

Va = 2πrxτna (1)

The pore gas pressure, at the time when the fracturing fluid is drained and the gas is
about to be produced, is referred to as the maximum pore pressure observed immediately
after drainage (Figure 4).

Pcg =
Pg0r2L + 2ZRTnarx

(r− h)2x + r2(L− x)
(2)
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3.2. Effect of Imbibition on Coalbed Permeability

1. Effect of water imbibition on the pore diameter and Knudsen number.

Accounting for the thickness of the water film, the effective diameter d * of a circular
pore is:

d∗ = 2(r− h) (3)

Accounting for the water film, the Knudsen number Kn* in a circular pore [42] is:

Kn∗ =
λg

d∗
=

λg

2(r− h)
(4)

Accounting for the influence of imbibition on permeability, the mean free path of the
ideal gas, λ∗g, can be expressed as [43]:

λ∗g =
µg

Pcg

√
πZRT

2M
(5)

2. Effect of water imbibition on the weighting coefficient.

For circular pores, the frequency of the intermolecular collision ω∗c−m and the fre-
quency of the molecular-wall collision ω∗c−w [44] (allowing for the effect of the water film)
are:

ω∗c-m =
c

λ∗g
ρNπ(r− h)2dL (6)

ω∗c-w = 2π(r− h)
c
<ρNdL (7)

where the value of < is related to the number of space dimensions (that is, 2, 4, and 6 for
one-dimensional, two-dimensional, and three-dimensional spaces, respectively). The value
of < in this study was 4 [44].



Atmosphere 2022, 13, 1314 7 of 15

Therefore, the weighting coefficient for viscous flow dominated by intermolecular
collisions (f c-v) and the weighting coefficient for Knudsen diffusion dominated by molecule-
wall collisions (f c-Kn) through a circular pore are [45]:

f ∗c-v =
1

1 + Kn∗
(8)

f ∗c-Kn =
Kn∗

1 + Kn∗
(9)

3. Effect of water imbibition on total gas mass flux.

The viscous flow mass flux for gas in a circular pore can be expressed as [44]:

J∗c-vs = −
(d∗)2

32
PcgM

µgZRT
(1 + α∗Kn∗)(1 +

4Kn∗

1− bKn∗
)

dP
dL

(10)

When the boundary condition is the first-order slip flow, b = 0; when the boundary
condition is the second-order slip flow, b = 1. Rahmanian et al. [46] advised b = −1 after
molecular simulation. α* is expressed as:

α∗ = α0
2
π

tan−1(α1(Kn∗)χ) (11)

According to Beskok et al. [47], the relevant parameters in Equation (11) are α0 = 1.19,
α1 = 4, and χ = 0.4.

The Knudsen diffusion mass flux for gas in a circular pore can be expressed as [44]:

J∗c-Kn = −Cg
d∗

3

√
8ZM
πRT

Pcg

Z
dP
dL

(12)

Thus, the integrated mass flux in a circular pore is:

J∗c-T = J∗c-vs f ∗c-v + J∗c-Kn f ∗c-Kn

= −
[
(d∗)2

32
Pcg M

µgZRT
1+α∗Kn∗

1+Kn∗ (1 + 4Kn∗
1−bKn∗ ) +

d∗
3

Kn∗
1+Kn∗Cg

Pcg
Z

√
8ZM
πRT

]
dP
dL

(13)

Combining the influence of porosity, water saturation, and pore tortuosity, the gas per-
meability of coal with circular pores [48] can be obtained while considering the interaction
of viscous flow and Knudsen diffusions:

K∗cg =
φ(1− Scw)

τ

[
(d∗)2

32
1 + α∗Kn∗

1 + Kn∗
(1 +

4Kn∗

1− bKn∗
) +

Kn∗

1 + Kn∗
Cgµgd∗

3

√
8ZRT
πM

]
(14)

Considering the retained water film, the original water saturation is calculated as:

Scw =
x
L
·
[

1− (1− h
r
)

2
]
+ Swi (15)

4. Results and discussion
4.1. Effect of Imbibition on Water Saturation, Maximum Pore Pressure after Drainage,
and Permeability

An assumption of the results and discussion section is that the bulk water in the
affected blind pores is discharged. The relevant reservoir parameters are shown in Table 2.
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Table 2. Relevant parameters used for each model calculation.

Parameters Value Reference Parameters Value Reference

Average pore
radius r (nm) 25 NMR test Reservoir

temperature T (K) 309 Well logging

Original water
saturation Swi

0.1 Well logging Porosity φ 0.06 NMR test

Original pore
pressure Pg0 (MPa) 16 Well logging Pore tortuosity τ 1.3 Micro CT

Pore length L (m) 0.1 Hypothesis Gas compressibility
Cg (1/Pa) 0.00609 Industry-standard chart

Gas
compressibility

factor Z
0.771 Industry-standard chart Gas viscosity µg

(Pa·s) 0.000018 Industry-standard chart

Gas constant R
(J/(K·mol)) 8.314 Industry-standard chart

Mole content of
adsorbed gas per

unit area na
(mol/m2)

0.000008 Isothermal adsorption
experiment

The effect of imbibition on water saturation in pores of different sizes can be analyzed
using Equation (15), and the results are presented in Figure 5. The longer the imbibition
length in blind pores, the higher the water saturation; additionally, the thicker the water
film, the greater the water saturation.
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Figure 5. Effect of imbibition on water saturation.

The effect of imbibition on the maximum pore pressure observed immediately after
drainage in pores of different sizes can be analyzed based on Equation (2), and the results
are presented in Figure 6. The longer the imbibition length in blind pores, the greater
the maximum pore pressure immediately after drainage; this is mainly because a longer
imbibition length results in greater desorption of adsorbed gas. Additionally, the greater
the thickness of the water film, the greater the maximum pore pressure immediately after
drainage; this is because a thicker water film results in a smaller storage space for gas, and
a greater pore gas pressure.
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The effect of imbibition on the permeability of pores of different sizes can be analyzed
based on Equation (14), and the results are presented in Figure 7. A longer imbibition
period will have a more negative effect on permeability, mainly because it significantly
increases water saturation in the pores and reduces the effective seepage area. Additionally,
a thicker water film will cause imbibition to have a more negative effect on permeability.
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4.2. Effect of Imbibition on Gas Production

1. Permeability and pore pressure before and after imbibition.

According to the three proposed equations, namely Equations (2), (14), and (15), seven
examples demonstrating the influences of different imbibition degrees on water saturation,
maximum pore pressure immediately after drainage, and permeability were conducted, as
shown in Table 3. Case 1, which does not account for the influence of fracturing imbibition,
is widely applied in unconventional methane development [49,50]. The maximum pore
pressure immediately after drainage was set as the reservoir pressure for the model of
wet coal—numerical vertical in harmony-CBM (Figure 8). Only reservoir pressure, water
saturation, and matrix permeability were changed, and all other parameters were the same.
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Table 3. Maximum pore pressure immediately after drainage, matrix permeability, and water
saturation within different imbibition degrees (qg is daily gas production, Gp is cumulative gas
production).

Examples x/L, h (m) Pcg, MPa K*
cg, mD Scw qg, Gp

Case 1 x/L = 0, h = 0 16 0.003253 0.1 qg, Gp
Case 2 x/L = 0.12, h = 0.4 16.214 0.003136 0.1038 qg1, Gp1
Case 3 x/L = 0.3, h = 0.4 16.538 0.003116 0.10952 qg2, Gp2
Case 4 x/L = 0.3 m, h = 2 17.172 0.002612 0.14608 qg3, Gp3
Case 5 x/L = 0.5, h = 0.4 16.902 0.003094 0.11587 qg4, Gp4
Case 6 x/L = 0.3 m, h = 4 17.967 0.002070 0.18832 qg5, Gp5
Case 7 x/L = 0.9 m, h = 0.4 17.645 0.003050 0.12857 qg6, Gp6

Atmosphere 2022, 13, x FOR PEER REVIEW 10 of 15 
 

 

model of wet coal—numerical vertical in harmony-CBM (Figure 8). Only reservoir pres-

sure, water saturation, and matrix permeability were changed, and all other parameters 

were the same. 

  

Figure 8. Model of wet coal—numerical vertical in harmony-CBM. (x-y) Pressure, iteration no. 9 to 

347. 

Table 3. Maximum pore pressure immediately after drainage, matrix permeability, and water satu-

ration within different imbibition degrees (qg is daily gas production, Gp is cumulative gas produc-

tion). 

Examples x/L, h (m) Pcg, MPa K
* 

cg, mD Scw qg, Gp  

Case 1 x/L=0, h=0 16 0.003253 0.1 qg, Gp 

Case 2 x/L=0.12, h=0.4 16.214 0.003136 0.1038 qg1, Gp1 

Case 3 x/L=0.3, h=0.4 16.538 0.003116 0.10952 qg2, Gp2 

Case 4 x/L=0.3 m, h=2 17.172 0.002612 0.14608 qg3, Gp3 

Case 5 x/L=0.5, h=0.4 16.902 0.003094 0.11587 qg4, Gp4 

Case 6 x/L=0.3 m, h=4 17.967 0.002070 0.18832 qg5, Gp5 

Case 7 x/L=0.9 m, h=0.4 17.645 0.003050 0.12857 qg6, Gp6 

2. (2) Comparison of gas well productivity before and after imbibition. 

In the physical model of a vertical well (shown in Figure 8), a reservoir length of 200 

m, a width of 200 m, net pay of 20 m, total porosity of 0.06, and temperature of 309 K were 

assumed. The damaged skin on the fracture face was zero, the permeability ratio in the x 

direction and y directions, and the x and z directions were both one; the coal Langmuir 

volume was 19 cm3/g, Langmuir pressure was 9 MPa, the specific surface ratio was 100 

m2/g, the wellbore radius was 0.1 m, the constant flow pressure was 1000 KPa, and the 

production duration was 60 months; the other parameters are shown in Table 2. 

The effects of imbibition on gas production are shown in Figure 9. Cases 2, 4, and 6 

show that water imbibition had a negative effect on gas production. On the contrary, cases 

3, 5, and 7 show that water imbibition had a positive effect on gas production, in which 

the retained water films were thicker than those in the other two cases, namely cases 4 

and 6. This phenomenon occurs because a decrease in permeability has a larger negative 

effect on gas production than the positive effect of increased pore pressure on gas produc-

tion. To further analyze the effects of imbibition length and water film thickness on coal-

bed methane production, more comparisons were analyzed, shown as follows. 

Figure 8. Model of wet coal—numerical vertical in harmony-CBM. (x-y) Pressure, iteration no.
9 to 347.

2. Comparison of gas well productivity before and after imbibition.

In the physical model of a vertical well (shown in Figure 8), a reservoir length of
200 m, a width of 200 m, net pay of 20 m, total porosity of 0.06, and temperature of 309 K
were assumed. The damaged skin on the fracture face was zero, the permeability ratio
in the x direction and y directions, and the x and z directions were both one; the coal
Langmuir volume was 19 cm3/g, Langmuir pressure was 9 MPa, the specific surface ratio
was 100 m2/g, the wellbore radius was 0.1 m, the constant flow pressure was 1000 KPa,
and the production duration was 60 months; the other parameters are shown in Table 2.

The effects of imbibition on gas production are shown in Figure 9. Cases 2, 4, and 6
show that water imbibition had a negative effect on gas production. On the contrary, cases
3, 5, and 7 show that water imbibition had a positive effect on gas production, in which the
retained water films were thicker than those in the other two cases, namely cases 4 and 6.
This phenomenon occurs because a decrease in permeability has a larger negative effect
on gas production than the positive effect of increased pore pressure on gas production.
To further analyze the effects of imbibition length and water film thickness on coalbed
methane production, more comparisons were analyzed, shown as follows.
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Figure 9. Simulation results of coalbed methane well production after the impaction of different imbi-
bition degrees, (A) is the magnification of the intersection with the ordinate, (B) is the magnification
of the cumulative production between 1800 d and 1820 d.

Comparison 1: The thickness of the retained water film was 0.4 nm, and the relative
imbibition lengths were 0.12, 0.3, 0.5, and 0.9, respectively. The simulation results are shown
in Figure 10. When the thickness of the retained water film is constant, a short imbibition
length has a negative effect on gas production; however, a longer relative imbibition length
results in imbibition having a greater positive effect on gas production (Figure 10A) and
EUR (Figure 10B). The reason is that the entrance of the pore is adsorbed with a water
film, no matter how long the imbibition length is, it dominates the permeability of the
pore. For example, the pore openings connected with fractures are the entrances of water
imbibition and gas flow, as shown in Figure 10, although cases 2, 3, 5, and 7 have different
imbibition lengths, the thickness of water film and pore radius are the same, which means
that the pore entrances have an equal cross-sectional area for gas flow; the other factor
to affect permeability is the gas pressure. As for case 2, increases in water saturation and
decreases in effective permeability will more noticeably increase the energy consumed by
water movement, although this increases pore gas pressure due to the increased desorption
of adsorbed gas. As for cases 3, 5, and 7, increases in pore gas pressure are much more
noticeable, which can increase gas production and offset the negative effect of permeability
reduction on gas production.
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Comparison 2: The relative imbibition length is 0.3, and the thicknesses of the retained
water film are 0.4, 2, and 4 nm, respectively; the simulation results are shown in Figure 11.
As for case 3, the beneficial effects of increased pore pressure on gas production are much
greater than the negative effects of increased water saturation and decreased permeability
on gas production. As for cases 4 and 6, the negative effects of increased water saturation
and decreased permeability on gas production rose with the increasing water film. The
main reason for this phenomenon is as follows: the amount of desorbed gas remained
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constant when the imbibition length was constant, but an increase in pore gas pressure was
observed due to a decrease in gas storage space according to Equation (2), a thicker water
film resulted in a greater pore gas pressure immediately after drainage. However, a thicker
water film also led to a greater increase in water saturation and a decrease in permeability,
and the negative effects of the increased water saturation and decreased permeability on
gas production were much greater than the beneficial effects of increased pore pressure on
gas production.
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5. Conclusions

The assumption used in this study is that the bulk water in affected blind pores is
discharged. By analyzing the influence of fracturing fluid imbibition on blind pores in
the reservoir coal matrix, the following conclusions were obtained through numerical
simulations:

1. Water imbibition can increase the pore gas pressure in blind pores in two ways. Firstly,
imbibed fracturing fluid promotes the desorption of adsorbed gas in the affected area,
increasing the content of free gas; secondly, the water film retained on the inner wall
of pores reduces the space for gas storage. The combined actions of these two aspects
increase the pore gas pressure immediately after water drainage in blind pores.

2. Water imbibition can reduce the effective gas permeability in blind pores in two ways.
Firstly, the water film retained on the inner wall of pores reduces the effective area for
gas seepage; secondly, the increase in water saturation reduces the efficiency of the
gas flow. The combined actions of these two aspects reduce the effective permeability
of gas in blind pores.

3. Water imbibition is not always deleterious to coalbed methane production and EUR.
When the relative imbibition length is constant, a thicker water film results in a more
obvious decrease in gas production and EUR; when the thickness of water film is
constant, more imbibition results in a more obvious increase in gas production and
EUR.

Some deficiencies in the proposed model need to be devoted to future research:
(1) there is no direct method to obtain the imbibition depth, because imbibition depth
is related to pore length, gas pressure, mineral type, and so on. (2) A theory analysis
was mainly conducted in this paper; however, an experiment for the imbibition effect
on the coalbed methane well is more effective but difficult to implement under current
experimental conditions; (3) the effect of imbibition on the coal structure cannot currently
be quantitatively analyzed, and the effects of the pore structure, pore wall, and mineral
types on imbibition are still unknown, but the image description by deep learning and
numerical simulation can make up for the deficiencies.
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Nomenclature

r average pore radius, m b gas slip constant, dimensionless
d * diameter of circular pore considering water film, m Cg gas compressibility, 1/MPa
τ pore tortuosity, dimensionless α* rarefaction coefficient of ideal gas, dimensionless
x imbibition length, m α0 rarefaction coefficient when Knudsen number
c average gas thermal kinematic velocity, m/s tends to infinity, dimensionless
L pore length, m α1 fitting constant, dimensionless
φ coal porosity, % χ fitting constant, dimensionless
Z gas compressibility factor, dimensionless J∗c−Kn Knudsen diffusion mass flux through
R gas constant, 8.314 J/(K·mol) circular pores, kg/(m2·s)
T reservoir temperature, K J∗c−vs viscous flow mass flux through circular pores, kg/(m2·s)
h thickness of water film on pore walls, m J∗cT integrated mass flux through circular pores, kg/(m2·s)
λ∗g mean free path of gas considering water film, m K∗cg gas permeability for circular pores considering
µg gas viscosity, mPa·s the influence of imbibition, mD
M the molar mass of methane molecule, g/mol Kn∗ Knudsen number in circular pores considering
P gas pressure, MPa water film, dimensionless
Pg0 original gas pressure, MPa Swi original water saturation, %
Pcg maximum pore pressure after drainage, MPa Scw water saturation considering the influence of imbibition, %
ρN molar density of gas molecules, mol/m3 Va desorption amount of adsorbed gas in affected area, mol
< collision direction of gas molecules and wall. na molar content of adsorbed gas per unit pore area, mol/m2

qg gas rate, 103 m3/d Gp cumulative production, 106 m3

ω∗c−m frequency of intermolecular collision considering ω∗c−w frequency of molecular-wall collision considering
water film, mol/s water film, mol/s

f c-v weighting coefficient for viscous flow that is f c-Kn weighting coefficients for Knudsen diffusion that are
dominated by molecule-wall collisions, dimensionless dominated by intermolecular collisions, dimensionless
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