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Abstract: Ozone (O3) is an important secondary substance that plays a significant role in atmospheric
chemistry and climate change. Although O3 is essential in the stratosphere, it is harmful to human
health in the troposphere, where this study was conducted. In recent years, O3 pollution in the
Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions has
deteriorated, which has become an important environmental problem. The generation of O3 is closely
related to meteorological factors. In this study, the weather classification method was adopted to
study the effect of meteorological conditions on O3 concentration. In the BTH region, Tianjin was
selected as the representative city for the research. The real-time pollutants data, meteorological
re-analysis data, and meteorological data in 2019 were combined for the analysis. The subjective
weather classification method was adopted to investigate the effects of different weather types on
O3 concentration. The backward trajectory tracking model was used to explore the characteristics
and changes of O3 pollution under two extreme weather types. The results indicate there is a good
correlation between O3 concentration and ambient temperature. Under the control of low pressure
on the ground and the influence of southwest airflow in the upper air for Tianjin, heavy O3 pollution
occurred frequently. The addition of external transport and local generation will cause high O3 values
when the weather system is weak. The O3 concentration is closely related to ambient temperature.
Continuous high-temperature weather is conducive to the photochemical reaction. The multi-day
O3 pollution process would occur when the weather system is robust. The first and second types
of extreme weather are more likely to cause persistent O3 pollution processes. Under the premise
of stable emission sources, the change in weather patterns was the main reason affecting the O3

concentration. This study aims to improve O3 pollution control and air quality prediction in the BTH
region and large cities in China.

Keywords: O3; weather type; meteorological factors; backward trajectory

1. Introduction

Urban near-ground ozone (O3) is a secondary pollutant formed by a series of pho-
tochemical reactions of precursors, such as nitrogen oxides (NOX) and volatile organic
compounds (VOCs) under sunlight conditions [1–3]. As a strong atmospheric oxidant, it
greatly affects human health and plant growth [4,5]. The high concentrations of O3 not
only affect the normal growth of organisms, but change the local atmospheric environment,
which plays a pivotal role in global climate change [5–8]. In addition, O3 also has adverse
effects on the human body. Inhalation of O3 could cause respiratory diseases [9]. Prolonged
exposure to high concentrations of O3 could destroy the immune system’s defensive capa-
bilities and induce lymphocyte chromosomal lesions [10]. Long-term exposure to a high-O3
environment will lead to nervous system poisoning and damage to the immune defense
capabilities. In severe cases, it will induce chromosomal lesions of lymphocytes, cancerous
cells, and neonatal malformations [11–13].
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The rapid development of urbanization and industrialization in China has resulted
in the massive emission of atmospheric active substances into the environment. As a
result, most cities are facing severe photochemical pollution problems characterized by
high concentrations of O3. Previous studies have shown that the characteristics of air
pollution dominated by PM2.5 in China are changing to O3 pollution. Many cities in China
are becoming new hot spots for O3 pollution in the world [14]. There are three central pho-
tochemical regions in China, including Beijing-Tianjin-Hebei (BTH), Yangtze River Delta
(YRD), and Pearl River Delta (PRD). From 2013 to 2018, the average annual concentration
of PM2.5 decreased by more than 40% in those areas, but the O3 concentration increased
sharply, with the average yearly concentration rising by 10%. O3 pollution in super-large
urban agglomerations, mainly in the BTH, YRD, PRD and their surrounding areas, has
deteriorated significantly. It has become another serious environmental problem in China.
Therefore, the issue of O3 pollution has attracted extensive attention from domestic and
foreign researchers. As a secondary photochemical reaction product, the formation of near-
surface O3 not only requires sufficient precursor emissions, but its chemical conversion
and diffusion processes are closely related to meteorological conditions [15]. A study has
shown that meteorological conditions unfavorable to the diffusion of pollutants are the
main reason for heavy pollution events [16]. Considering meteorological factors, strong
radiation, less cloud cover, high temperature, long durations of sunshine, and low humidity
conditions are favorable for the photochemical reaction and could promote the formation
of O3 [17]. Low wind speed is beneficial to the accumulation of local O3 concentration, and
wind direction affects the regional transport of O3 pollution [18]. In general, atmospheric
circulation directly affects cloud cover, temperature, wind speed, humidity, rainfall, and
other meteorological conditions. Different circulation backgrounds lead to various pho-
tochemical reaction efficiencies and pollution transport processes, which have disparate
effects on O3 concentration. Therefore, O3 pollution is closely related to meteorological
factors. Determining the weather type could help to better assess the influence of meteoro-
logical conditions on O3 pollution [19]. Previous studies have shown that weather typing
is an important method for studying the influence of meteorological conditions on O3
concentration [20]. Subjective classification methods classify and study the atmospheric
pollution process based on weather maps and synoptic principles. In comparison, objec-
tive classification methods mainly depend on the oblique rotation decomposition method,
Lamb–Jenkinson algorithm, as well as other objective algorithms. These methods have
stronger usability and application values. At present, the subjective classification method
has been widely used in Beijing, Shanghai, Ningbo, and Fujian to conduct research on O3
pollution [21,22]. Although there are some studies on the characteristics and sources of
O3 pollution in the BTH region, few studies focused on the relationship between different
weather patterns and characteristics of O3 [23,24].

Tianjin is located in the north-central part of the BTH region, which is easily affected
by sea–land wind circulation. As the largest port city in North China, Tianjin has developed
petroleum, chemical, and equipment manufacturing industries. It is one of the cities with
heavier O3 pollution in the BTH region. Due to the geographical location and current
environmental situation of the prominent O3 pollution problem, it is reasonable to select
Tianjin as a representative city to analyze and study the relationship between O3 pollution
characteristics and meteorology. Generally, summer is the worst season for O3 pollution. In
order to study the influence of meteorological factors on the O3 characteristics under heavy
pollution processes, the real-time O3 concentrations dataset and meteorological parameters
in Tianjin from June to August were investigated in this study. The backward trajectory
tracking model was exploited to explore the characteristics and variations of O3 pollution
under two extreme weather types. This research aims to improve the prevention policy of
O3 pollution in the BTH region and large urban agglomerations in China during severe O3
pollution periods.
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2. Materials and Methods
2.1. Study Area

As the core city of the BTH region, Tianjin is located at 116◦43′ E–118◦04′ E and
38◦34′ N–40◦15′ N. It is located on the west coast of the Pacific Ocean, in the northeast of
the North China Plain, where the five tributaries of the Haihe River meet. It is the traffic
throat and ocean shipping port from Beijing to East China. The energy structure in Tianjin is
relatively simple, and oil is the dominant form of energy production. The primary forms of
energy consumption mainly concentrate on coal, crude oil, and natural gas. This is similar
to the situation in most cities in the BTH region. Tianjin belongs to the north temperate zone,
which is dominated by monsoon circulation. The climate type is a semi-humid monsoon
climate, with the average annual precipitation being 550–680 mm. Due to the proximity of
the Bohai Sea, the marine climate has a significant impact on the urban area of Tianjin. The
sea–land wind cycle has a great influence on the composition and distribution of aerosol
molecules. As an important port city in the BTH region, Tianjin’s geographical location
and urban construction have an essential impact on the regional atmospheric environment.
Therefore, the study of O3 pollution characteristics in Tianjin is of great significance for
atmospheric pollution management in the BTH region.

2.2. Data Acquisition

The hourly monitoring data of pollutants in the study period were gathered during
this research from 14 national air quality monitoring stations in Tianjin. The location of the
monitoring stations is shown in Figure 1. The Model 49i O3 analyzer (Thermo corporation,
Waltham, MA, USA) was used for O3 monitoring, with a minimum detection limit of
0.5 × 10−9 and a time resolution of 5 min. This instrument works based on absorbing
ultraviolet light (UV) at 254 nm. The intensity of this single ultraviolet light is directly
related to the concentration of O3. By measuring the intensity of ultraviolet light, the
concentration of O3 can be calculated. The design of the double optical chamber detection
system improves the stability of light intensity and the sensitivity of the instrument. The
quality control is in strict accordance with the requirements of the “Technical Specification
for Operation and Quality Control of Ambient Air Quality Continuous Automated Moni-
toring System for SO2, NO2, O3, CO” (HJ 818-2018). The meteorological data came from
observation stations of the meteorological department in Tianjin, including the real-time
temperature, relative humidity, and wind direction and speed. The surface weather maps
and 500 hPa weather maps are obtained from the Central Weather Station (www.nmc.cn
(accessed on 1 June 2019)). During the study period, all the monitors were scientifically
managed and maintained to ensure the regular operation of the equipment. Daily quality
control was carried out to ensure the reliability of the monitoring data. The monitoring
data during the calibration period or within two hours after the instrument was started up
were regarded as invalid data and were removed. Moreover, data with large differences
from surrounding observations were considered to be major errors caused by chance and
were deleted. Routinely, the data were recorded every 5 min, and 12 groups of data were
collected every hour. Hourly averages were done only when there were at least 9 sets of
valid data, and the daily mean was calculated only if there were 18 or more sets of effective
hourly averages per day.

www.nmc.cn
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Figure 1. The national air quality monitoring station in Tianjin.

2.3. Analytical Method

Meteorological elements have a great impact on environmental pollutants. The pri-
mary purpose of the weather classification method is to classify a mass of complex weather
circulation patterns into several dominant types according to frequency distributions.
Through the weather classification method, the impact of atmospheric changes on pol-
lutants were systematically analyzed. Based on the external characteristics and internal
mechanism of meteorological parameters, the subjective classification method effectively
distinguishes weather types. Generally, researchers analyze the characteristics of atmo-
spheric circulation according to synoptic principles by manually reviewing a large number
of weather maps. Thus, several main weather types are summarized, which have strong
applicability to different research areas. Based on previous research, this method usually
divides weather types into four types: low pressure, high pressure, uniform pressure, and
other weather types [25]. Its classification results have strong guidance for the purpose
of research [26]. In this study, the subjective weather classification method was adopted.
Based on the data of the surface weather and 500 hPa high-altitude weather, the weather
patterns during the experiment were divided in detail. Then, combined with the atmo-
spheric diffusion theory, the O3 characteristics under different weather types were analyzed.
Additionally, the relationship between meteorological elements and atmospheric pollutants
under varying weather types were specifically clarified. Furthermore, the effects of different
weather types on the O3 concentration in the BTH area are clearly stated.

2.4. Backward Trajectory Model

The hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT backward
trajectory model) is a professional model for calculating and analyzing the transportation
and diffusion trajectory of air pollutants [27]. The backward trajectory model is a mixture
method of the Lagrangian and Eulerian methods. The Lagrangian method is used for advec-
tion and diffusion processing, while the Euler method is adopted for pollutant concentration
calculation. This model was developed jointly by the National Oceanic and Atmospheric
Administration (NOAA, Washington, DC, USA) Air Resources Laboratory and the Aus-
tralian Bureau of Meteorology. It is a professional model that is mainly used to calculate and
analyze the transport and diffusion trajectories of atmospheric pollutants. Meanwhile, it in-
cludes functions for processing the input fields of various meteorological elements, physical
processes, and pollutant emission sources, which contains a complete pattern of transport,
diffusion, and settlement. The model has been widely used in the world to study the source
and transmission path of pollutants [28–30]. In this study, the HYSPLIT model was used
to track the backward trajectory during the heavy pollution period. Based on Meteoinfo
software and Global Data Assimilation System (GDAS) data provided by National Centers
for Environmental Prediction (NCEP, College Park, MD, USA), the backward trajectory af-
fecting the atmospheric group in Tianjin was simulated. Furthermore, the hourly backward
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trajectory of the air mass arriving (starting from 0:00 daily) from June to September was
calculated. The trajectory is extended for 24 h, and the simulated height includes 100 m,
500 m, and 1000 m. On the basis of model analysis, a cluster analysis method was used to
classify the trajectories in different periods to analyze their origin characteristics.

3. Results and Discussion
3.1. O3 and Meteorological Parameters

According to the latest China air quality standards (GB 3095-2012), the minimum
limit for the daily maximum eight-hour moving average of O3 (O3-MDA8) is 160 µg/m3.
The ratio of the number of days exceeding this limit to the total number of monitoring
days is the over-standard rate. During this monitoring period, the O3-MDA8 in Tianjin
exceeded the secondary concentration limit for a total of 46 days, and the over-standard rate
reached 50%. Figure 2a shows the distribution of O3 pollution levels in Tianjin from June
to August in 2019. The number of days for excellent (AQI (Air quality index) ≤ 50), good
(50 < AQI ≤ 100), light pollution (100 < AQI ≤ 150), moderate pollution (150 < AQI ≤ 200),
and severe pollution (AQI > 200) were 10 days, 36 days, 27 days, 17 days, and 2 days,
respectively. O3 concentration was generally lower in August, while severe pollution
occurred in June, which is due to the more frequent occurrence of adverse weather con-
ditions in June. Figure 2b shows the diurnal variation of hourly O3 concentration and
non-attainment frequency during the study period. The diurnal variation of the hourly O3
concentration and the over-standard frequency both showed a single-peak distribution.
The O3 concentration in the daytime was significantly higher than that in the night, and
the high value of O3 concentration was mainly concentrated at 12:00–17:00, with the peak
value at 15:00. The average O3 concentration at 15:00 was 170 µg/m3, and exceeded the
national standard by 33-times (160 µg/m3). It indicates that O3 concentrations during the
afternoon were significantly higher than at other times of the day.
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Figure 2. (a) Air quality classification during monitoring (b) Hourly-mean O3 concentration of Tianjin
(average of the hourly concentration from all monitors at each hour) and the number of exceedances
over the secondary standard (160 µg/m3) for each hour during monitoring.

According to the meteorological data, the mean daily average temperature in Tianjin
was 27.7 ◦C and the mean daily maximum temperature was 31.8 ◦C during the study
period. The average relative humidity was 58.0% and the average wind speed was 1.6 m/s.
Southeasterly and southwesterly winds were the prevailing wind direction. The correlation
of O3 concentration with air temperature and relative humidity is shown in Figure 3. It can
be seen that O3-MDA8 presented a significant positive correlation with air temperature.
The correlation coefficient between O3-MDA8 and daily maximum temperature is 0.77.
As well, the correlation coefficient between O3-MDA8 and daily mean temperature is
0.66. However, O3-MDA8 had a weak negative correlation with relative humidity, with
a correlation coefficient of 0.42. The results show that the daily maximum temperature
is one of the critical meteorological factors affecting O3 pollution. Since O3 is generated
by photochemical reactions of primary pollutants such as VOCs and NOX under sunlight,
high temperatures are conducive to the progress of photochemical reactions, which could
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lead to an increase in O3 concentration. Chen et al. quantitatively analyzed the effects
of eight major meteorological factors on surface O3 concentration in China. They found
that temperature, sunshine duration, and evaporation had consistently positive effects
on O3 concentration in most cities, while humidity and precipitation had consistently
negative effects on O3 concentration [31]. Zhao et al. carried out relevant studies on O3
concentration in Hong Kong and confirmed that O3 concentration increased with the rise
of air temperature. The O3 concentration was positively correlated with sunshine duration
and negatively correlated with relative humidity [32]. Relative humidity mainly affects O3
concentration in two aspects: On the one hand, higher humidity will lead to precipitation,
which will reduce O3 concentration through wet cleaning. However, higher humidity
will affect O3 chemistry by reducing the production of oxygen atoms and increasing the
production of hydroxyl radicals; then, the O3 concentration would be reduced. In general,
higher humidity will inhibit O3 production [33].
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3.2. The Relationship between Weather Type and O3

During the study period, there were no significant differences in emission sources
in Tianjin. Therefore, the difference in meteorological elements under different weather
types is the main factor that affects the O3 concentration. According to the surface weather
map and the 500 hPa high-altitude weather map, the weather types in Tianjin during
the observation period were divided into four categories, as shown in Table 1. During
the research period, the days in case 1 (low-altitude: before low pressure-low pressure,
high-altitude: before trough-trough) in Tianjin accounted for 25.0% of the total monitoring
days. Moreover, 31.5% of the days were in case 2 (low-altitude: before high pressure-high
pressure, high-altitude: after trough-before ridge). Last, 31.5% of the weather was in case 3
(low-altitude: uniform pressure field, high-altitude: ridge-trough-flat). The proportion of
days affected by typhoon accounted for 12% of the days.

During case 1, the low-altitude is mainly controlled by a low-pressure system, then the
high-altitude is mainly affected by southwesterly airflow. The local emissions of precursors
are difficult to diffuse, which is conducive to the generation of localized O3. The wind
direction and speed in the four cases are shown in Figure 4a–d, respectively. Due to
southwest and southeast being the dominant wind directions (Figure 4a), it was easy to
transport pollutants from Hebei, and even Shandong, to Tianjin. Moreover, the blocking
effect of the northern mountains also caused pollutants to accumulate. Therefore, local
generation and extraneous transport will lead to the occurrence of high O3 concentration
in this scenario [34]. In the second scenario, the high-altitude air mass is mainly affected
by the southwest airflow, and the low-altitude is mostly controlled by the high-pressure
system with low temperatures, which is not conducive to the generation of local O3. At the
same time, the dominant wind direction is easterly (Figure 4b), which makes it easy to bring
clean air from the sea to Tianjin. It also has a specific scavenging effect on locally-generated
pollutants. These combined effects result in lower O3 concentrations in this situation. Under
the third scenario, the temperature conditions were between the first and second weather
types. The southwesterly and southeasterly winds were the dominant wind directions
(Figure 4c). The light breeze and inconspicuous pressure gradient of the uniform pressure
field are not conducive to the transmission and diffusion of pollutants. Therefore, the O3
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concentration is also in the moderate condition. When in the fourth category, Typhoon
Lekima had moved steadily northwest from Zhejiang province to Bohai Bay under the
guidance of southeasterly airflow. As the precipitation brought by the typhoon has an
excellent removal effect on O3 concentration, the O3 concentration was generally low in the
place where the hurricane passed.

Table 1. Statistics of weather types in summer 2019.

Scenario

Weather Types

Days (D) Maximum
Temperature (◦C)

Average
Temperature (◦C)

Average
Relative

Humidity (%)
O3-MDA8

(µg/m3)
Exceeding
Rate (%)Low-Altitude High-

Altitude

case 1
before low

pressure-low
pressure

before trough-
trough 23 34.2 29.3 52.0 206 87.0

case 2
before high

pressure-high
pressure

after
trough-before

ridge
29 30.1 26.3 57.1 128 13.8

case 3 uniform
pressure field

ridge-trough-
flat(little
pressure
gradient)

29 32.5 28.1 56.1 187 72.4

case 4 typhoon typhoon 11 30.0 26.7 77.6 111 9.1
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and (d) case 4.

3.3. Analysis of Typical O3 Pollution Processes

In order to study the characteristics of weather systems under different pollution
scenarios, the process of sustained high/low O3 concentration that occurred in different
weather types was investigated. The process of high-concentration O3 from June 12 to 14
and June 22 to 29 under the first weather type were selected as a representative of heavy
pollution, while the process of low-concentration O3 from June 15 to 17 under the second
weather type were recognized as a representative of great air quality.
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3.3.1. Analysis of Typical Serious Pollution Processes

From June 12 to June 14, the mean value of O3 maximum 8-h per day >160 µg/m3

for Tianjin is under the first weather category. Taking 08:00 on the 12th as an example, the
ground and upper air weather maps are shown in Figure 5a,b, respectively. The diurnal
variation of pollutant concentration and meteorological elements is shown in Figure 6a.
During this period, the O3-MDA8 in Tianjin exceeded the standard for three consecutive
days, with the highest hourly concentration being 289 µg/m3. The highest temperature on
that day reached 37.6 ◦C. The maximum concentration of O3 appeared in the three days
from 15:00 to 16:00, which was the same time as the maximum temperature. The winds are
southwesterly or southeasterly with wind speeds of 1–2 m/s in this period. Influenced by
the upper southwest airflow, the transported pollutants transported easily converged and
sank to the ground under the control of the low-pressure field. Due to the low surface wind
speed, the transported pollutants were not easily diffused. Combined with the generation
of local pollutants, high O3 concentrations were very likely to occur.
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In order to trace the emission source, the HYSPLIT model was used to simulate the
backward trajectory for 24 h before 15:00 on the 12th with Tianjin City (39.1◦ N, 117.2◦ E)
as the endpoint. Figure 7a–c show the 24-h backward trajectory of the air masses at
different altitudes for the three O3 processes, respectively. The air mass with a height of
100 m mainly comes from Shandong Province (South of Tianjin) to Tianjin via Cangzhou
and other cities. The air masses at elevations 500 m and 1000 m mainly come from the
southwestern region, reaching Tianjin from Xingtai, Hengshui, Shijiazhuang, Baoding, etc.
After 14:00 on June 11th (06:00, 11th UTC), the high air mass has a clear tendency to sink,
resulting in the accumulation of the polluted air mass transmitted from outside. Under the
dual influence of foreign transmission and local generation, the O3 concentration in Tianjin
reached a severe pollution situation on June 12.
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During the pollution process from June 22 to 29, the meteorological conditions in Tian-
jin were in case 1, as shown in Figure 5c,d. Affected by the high-altitude southwest airflow,
the high-temperature weather continued for seven days, and the O3-MDA8 exceeded the
national standard for eight days. From June 22 to 28, the maximum daily concentration of
O3 appeared at 15:00–16:00—the same time as the maximum daily temperature. Among
them, the highest temperature on the 24th was 38.0 ◦C, and the highest O3 concentration
attained was 280 µg/m3. Figure 5c,d show the surface and upper-air synoptic maps for
this period, which are dominated by southwesterly or southeasterly winds of magnitude 2.
After 10:00 on June 29, the meteorological conditions changed to north wind control, and
the O3 concentration was significantly lower than previous periods. The diurnal variation
of pollutant concentration and meteorological elements from June 22 to 29 are shown in
Figure 6b. The analysis results of the backward trajectory model (Figure 7b) show that the
low air mass during this high O3 concentration period mainly came from the southern
region. Firstly, it moved westward from Shandong Province, then northwards through
Cangzhou to reach Tianjin. The high air mass also primarily came from the south part,
moving westward from Shandong Province, then northwards through Hengshui to Tianjin.
After 20:00 on June 24 (12:00, 24th UTC), the 100-m high air mass had a clear tendency
to sink, but the 500-m high air mass did not drop to the ground. The polluted air mass
transmitted from outside had no impact on the local area. The O3 pollution was mainly
generated by local photochemical reactions at high temperatures.

3.3.2. Analysis of Typical O3 Low-Value Processes

From June 15 to 17, the value of O3-MDA8 was lower than 100 µg/m3 for three
consecutive days. During this period, the meteorological conditions in Tianjin are as
is in case 2, as shown in Figure 8. The immense pressure gradient made the weather
system active, and the systemic easterly winds delayed the peak O3 concentration. The
maximum daily concentration of O3 during these three days all appeared at 17:00, which
was obviously lagging behind the typical process in case 1. The diurnal variation of
pollutant concentration and meteorological elements from June 15 to 17 are shown in
Figure 9. The daily maximum temperature is below 30 ◦C, and the highest O3 value period
is accompanied by southeasterly winds of 1.6–5.4 m/s. The meteorological conditions are
conducive to the spread of pollutants. According to the analysis of the backward trajectory
at 8:00 on June 16 (9:00, 16th UTC) (Figure 7c), all high-level air masses during the higher
O3 concentration period came from the northeastern region via the Bohai Sea. Moreover,
the high-level air masses showed no tendency to sink and accumulate. Due to the dilution
effect of the marine air mass on the locally generated pollutants, the O3-MDA8 on the day
reached its lowest value, which was only 73 µg/m3.
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4. Conclusions

In this study, Tianjin was selected as a typical representative city in the BTH region
that suffers from severe O3 pollution, and the characteristics of O3 pollution in this region
were discussed in detail. The meteorological conditions during the study period were used
to analyze the impact of weather types on the O3 concentration. Moreover, the HYSPLIT
model was adopted to explore the characteristics and variation of O3 pollution under
extreme weather conditions.

In the summer of 2019, the O3-MDA8 of O3 in Tianjin exceeded the second-level
concentration limit (160 µg/m3) of the “Ambient Air Quality Standard” (GB 3095-2012) for
46 days, with the failure rate reaching 50.0%. By analyzing the meteorological conditions,
the O3 concentration had a relatively significant positive correlation with air temperature,
and a weak negative correlation with relative humidity. The daily maximum temperature
was a critical meteorological factor affecting O3 pollution. During this period, the days in
case 1 accounted for 25.0% of the total monitoring days. Furthermore, 31.5% of the days
were in case 2 and 31.5% of the weather was in case 3. The proportion of days affected by
Typhoon Lekima was 12.0%. The pollution process generally occurs in the first and second
weather types. The first weather type is mainly controlled by low-pressure systems on the
ground. Moreover, the high altitude is mainly affected by the southwest airflow. It is the
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main weather type that causes the high O3 concentration in Tianjin. When the weather
system is weak, the external transport pollutants tend to sink and accumulate, which
then superimpose the generation of local pollutants, resulting in high O3 concentrations.
However, when the weather system is robust, there will be a prolonged period of hot
weather. Then, the O3 pollution is generated by local photochemical reaction under high
temperatures without accumulation of external transport pollutants. The second weather
type is mainly controlled by high-pressure systems on the ground and influenced by
northwest airflow in the upper air. In this scenario, the immense pressure gradient makes
the weather system active, and the photochemical reaction is relatively weaker. In addition,
a systematic easterly wind delayed the peak of O3 concentration. As a result, the O3
concentration is significantly lower than in case 1, reaching excellent air quality levels.

In the current situation of emission sources, the change in weather patterns is the lead-
ing cause of the high O3 pollution process. The observation and analysis of meteorological
elements could provide practical guidance for predicting O3 pollution, which is of great
significance for the prevention and control of O3 pollution in prominent cities and urban
agglomerations. In addition, the analysis results of this study have good consistency with
the O3 pollution situation in Tianjin during the past five years, and have strong application
value for many cities in the BTH region. However, due to differences in geographical
conditions, whether the research conclusions are consistent with other regions in China
needs further research.
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