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Abstract: Groundwater depletion has become a major concern all over the world. Recently, the rapid
population growth and need for water and food have placed a massive strain on land and water
resources. In this study, groundwater depletion resulting from land-use and climate change was
investigated in the Faisalabad district, Pakistan, from 2000 to 2015. A Pearson correlation analysis
between climatic parameters and land-use indices with groundwater was conducted to explore the
major influencing factors. Interpolation maps of groundwater were generated using the inverse
distance weighting interpolation (IDW) method. The Normalized Difference Built-up Index (NDBI)
of five-year intervals demonstrated a strong increasing trend, whereas the Normalized Difference
Vegetation Index (NDVI) presented a declining trend. The results also indicated a significant declining
trend in groundwater levels in the region, with the annual average groundwater level decreasing at a
rate of approximately 0.11 m/year. Climatic parameters (i.e., precipitation and temperature) further
reveal an insignificant increasing trend estimated using the Mann-Kendall test and Sens’s slope.
Overall, spatial analysis results showed a statistically significant positive trend in the groundwater
level of the Faisalabad district, where the NDBI ratio is high and the NDVI is low, owing to the
extensive extraction of groundwater for domestic and industrial use. These findings may be useful
for a better understanding of groundwater depletion in densely populated areas and could also aid
in devising safety procedures for sustainable groundwater management.

Keywords: groundwater; NDVI; NDBI; climate parameters; district Faisalabad; Pakistan

1. Introduction

Groundwater, an enormous freshwater reserve beneath Earth’s surface, is an essential
resource for humanity and ecosystems [1]. More than a third of the water consumed
worldwide originates from underground sources, supplying approximately 42%, 36%, and
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27% of the water used for agricultural, domestic, and industrial purposes, respectively [2].
It provides a huge amount of fresh water for drinking, agricultural, and industrial use
worldwide [3,4].

Groundwater demand is rapidly increasing with the increase in human activities [5].
Rapid worldwide population growth has resulted in an overall increase in global water
consumption, adding to the anthropogenic stress on water supplies [6]. The subject of
how urbanization affects groundwater depletion has received extensive attention [7]. The
urban expansion of human settlements and industrial development has affected urban
growth patterns, resulting in the conversion of many fertile land surfaces into built-up
regions [8]. Many business organizations and enterprises in various regions of the world
use groundwater as well, especially for industries, such as paper, marble cutting, food,
beverages, and other materials [9]. Climate change is adding to the strain on groundwater
resources and increasing the risk of groundwater recharge. Droughts and climate variability
have adversely affected food security, access to safe drinking water, hygiene, and public
health [10]. Urban expansion and rural development can result in drought owing to
over-pumping for daily use and industrial activities [9,11].

Groundwater use is one of the most important factors in urban development that
potentially affects the groundwater ecosystem. Lack of reasonable land-use policies are
contributing to the degradation of groundwater in developing countries, especially in city
regions. In South Asia, major cities of countries such as Pakistan, India, and Bangladesh
are experiencing population growth, drought, and heat wave disasters, leading to high
stress on water resources [12-14]. These increasing urbanization trends are enforcing
groundwater consumption in the region. An effective land-use management system for
urban development concerned with groundwater could aid in the restoration of the quality
of life and water resources. A lack of information on changes in groundwater storage
hinders the development and implementation of effective water management plans [15].
Thus, evaluating the impact of climate and land-use on groundwater resources is necessary.

Previous studies have offered frameworks for assessing changes in groundwater
resources. A recent study [16] on the impacts of climate on water resources reported that
water yield, especially that controlled by evapotranspiration (ET) and precipitation, as well
as land-use cover change caused by the human population, may indirectly affect available
water resources. According to another study [17], groundwater recharge is affected by
land-use change caused by anthropogenic activities, which also have a significant impact on
groundwater flow dynamics. According to one study in Cambodia [18], precipitation and
temperature also cause significant changes in groundwater. The higher the precipitation,
the higher the potential recharge of groundwater; however, the rapid pace of urbanization,
along with climate change, has substantially impacted surface and groundwater flows.
Several studies [19-24] have been conducted using the SWAT model to investigate the
response of hydrological variables to land-use change and climate variability in a watershed.
Other researchers [7,25-30] have observed that the effect of land-use and climate changes
on groundwater is a major issue worldwide. Different techniques, such as chloride mass
balance (CMB) techniques and empirical methods, can be used to monitor the effect of
land-use and climate changes on regional groundwater [31]. Among various methods,
remote sensing is a suitable technique for monitoring large areas while minimizing the time
and money spent for collecting data, particularly to analyze the impact of land-use change
on groundwater [32]. This has enabled large-scale studies for providing information about
land degradation and variations in groundwater to city planners.

Faisalabad, the third-largest city of Pakistan, is located in the central region of Pakistan
between the high Asia region of the Tibetan Plateau and the low coastal region of the
Arabian Sea. Its population has dramatically increased in recent years and has now become
a serious problem. As the agricultural zone shrinks, the pattern of land-use constantly
changes in urban regions. The increasing population, in both urban and rural parts of the
Faisalabad district, relies on groundwater [33]. Faisalabad district is thus experiencing
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significant groundwater depletion as a result of substantial groundwater extraction and
rapidly growing urban areas.

The objective of this study is to examine the impacts of land-use changes and climate
change on groundwater in the Faisalabad district from 2000 to 2015 using remote sensing
data and field measurements of groundwater wells. The findings of this study can provide
an understanding of the impact of land-use change and climatic variability on groundwater
resources. Therefore, the study is essential for city planners, municipality experts, the irri-
gation department, as well as other governmental officials, for making climate adaptation
plans in the region.

2. Materials and Methods
2.1. Study Area

This research was conducted in the industrial city of the Faisalabad district, Pakistan
(31°25'15.7620"” N, 73°5'21.4584" E) (Figure 1). The plain fields of Faisalabad are mostly
situated on the upper east side of Punjab, with a height of 184 m above sea level [34].
Faisalabad district has a total area of 5856 km?, where Faisalabad city occupies an area of
more than 200 km?. There are eight towns in the district, namely Lyallpur, Jinnah, Igbal,
Madina, Chak Jhumra, Sammundri, Jaranwala, and Tandlianwala (Figure 1).
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Figure 1. Location of the study area and the administrative boundaries of Pakistan (A), Panjab
province (B), and Faisalabad district (C).

In 1901, Faisalabad had a population of 9171 people, which grew to 70,000 in 1941 and
179,000 in 1951, after the partition of Pakistan. After ten years, this number reached 425,000.
According to the Pakistan Bureau of Statistics, the population increased to approximately
5.43 million in 1998, and it exceeded 7.88 million in 2017 [35]. The lower Chenab canal is an
important water source infrastructure responsible for the irrigation of 80% of the cultivated
fields in the study area. Faisalabad rests on alluvial loess soils with calcareous character-
istics, rendering the region extremely productive. The Chenab River flows northwest for
approximately 30 km, while the Ravi River flows south-east for approximately 40 km [36]
(Figure 1). During summer, the highest temperature in the city is about 45 °C. While the
mean maximum and minimum temperatures are recorded as 39 and 27 °C, respectively. In



Atmosphere 2022, 13,1097

40f 15

the winter, these drop to approximately 17 and 6 °C, respectively, and the average annual
rainfall recorded in the district is about 300 mm [37,38].

2.2. Data Acquisition and Image Processing

To assess the combined effects of land-use and climate change on groundwater,
two datasets from 2000 to 2015 were used. These included datasets from remote sens-
ing (i.e., Normalized Difference Built-up Index (NDBI) and Normalized Difference Vegeta-
tion Index (NDVI)) and climate data (i.e., temperature and rainfall).

For the five-year intervals of 2000, 2005, 2010, and 2015, satellite images, including
Landsat 5 Thematic Mapper (TM) and Landsat 8 (Operational Land Imager (OLI), were
collected for the analysis of NDBI and NDVI indices, as well as to determine the effect of
the temporal changes in NDBI and NDVI on groundwater level (GWL) in the Faisalabad
district. The temporal resolution of the images is 16 days, and the spatial resolution is 30 m.
All images were downloaded from the USGS Earth Explorer website (http:/ /earthexplorer.
usgs.gov, last accessed: 28 December 2021). The Landsat data were chosen due to their
accessibility and quality. Cloud-free images were used for analysis, as illustrated in (Table 1).
The data were collected for the pre-monsoon season (March-May) to avoid water reflectance
during the monsoon and rice cultivation season (rice crop period requires an ample amount
of irrigation for the cultivation) in the study area. Image preprocessing began with layer
stacking to create a multispectral image after combining the necessary bands. The images
were also calibrated for noise removal [39]. Therefore, each image was radio-metrically
corrected by converting the raw digital numbers (DNs) into the top of atmosphere (TOA)
reflectance values to enable inter-annual comparisons. After the preparation of the satellite
images, all resulting images were clipped with the vector layer of the administrative
boundary of the Faisalabad district.

Table 1. Satellite imagery was used for remote sensing analysis.

Satellite No. of Images Sensor Date
Landsat 5 9 ™ March-May 2000
Landsat 5 9 ™ March-May 2005
Landsat 5 9 ™ March-May 2010
Landsat 8 9 OLI March-May 2015

The annual climatic data for precipitation and temperature variations of the Faisalabad
district were acquired from the Pakistan Meteorological Department (https://www.pmd.
gov.pk/, accessed on 13 September 2021), which were obtained from numerous metrological
stations in the region over a period of 15 years. Climatic factors resulting from changes
in rainfall are the main factors contributing to groundwater, which may affect the ratio of
recharge and discharge of the groundwater table of an area [40]. In addition, to assess GWL
changes in the region, annual GWL data from 2000 to 2015 were collected from monitoring
wells from the Punjab Irrigation Department of Pakistan (https://irrigation.punjab.gov.
pk/, accessed on 13 September 2021). Records of more than three hundred wells were
reported, from which 48 wells were selected with appropriate records (Figure 1) and were
continuously measured throughout the period of 2000-2015.

2.3. Calculation of Vegetation Indices and Built-Up Indices
2.3.1. Normalized Difference Built-Up Index

The built-up index was computed to examine the growth of areas covered by im-
pervious surfaces, such as asphalt and concrete. It was calculated based on the ratio
between shortwave infrared and near-infrared bands [41]. The NDBI was assessed using
the following equation:

(SWIR1 — NIR)

DBI=
N (SWIR1 + NIR)

)
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In Equation (1), SWIR1 and NIR are reflectances. For Landsat-5 (TM), SWIR1 is the
reflectance measured in band 5 at wavelength A = 1.55 — 1.75 um, and NIR is the reflectance
measured in band 4 at A = 0.76 — 0.90 um. In Landsat-8 (OLI), SWIRI is the reflectance
measured in band 6 at A = 1.56 — 1.65 um, and NIR refers to the reflectance measured in
band 5 at A = 0.85 — 0.87 um.

NDBI values range from —1 to +1. Very low values of the NDBI (0.1 and below)
correspond to non-urban features (such as a canopy of vegetation), while high values
indicate areas covered by impervious surfaces, such as asphalt and concrete.

2.3.2. Normalized Difference Vegetation Index

Vegetation density responds to the plant’s water content. The NDVI derived from
digital satellite data corresponded to the density of green vegetation [42,43]. The NDVI
reflects vegetation density using multispectral data. The magnitude of NDVI is related to
the level of photosynthetic activity for observed vegetation [44]. It is calculated based on
the ratio between the near-infrared band and the Red band:

(NIR — Red)

DVI= ——
N (NIR + Red)

@)
here, in Equation (2), NIR and Red, are reflectances. For Landsat-5 (TM), NIR is the
reflectance measured in band 4 at a wavelength A = 0.76 — 0.90 pum, and Red is the
reflectance measured in band 3 with A = 0.63 — 0.69 um. In Landsat 8 (OLI), NIR is the
reflectance measured in band 5 at A = 0.85 — 0.87 um, and Red refers to the reflectance
measured in band 4 at A = 0.64 — 0.67 um. Areas with a high vegetation index represent
intensive vegetation owing to the high NIR reflectance compared with that of visible light
(VIS). Table 2 lists the vegetation and urban indices that were tested for their potential to
predict the impact on groundwater. Groundwater level related to both NDBI and NDVI
was then investigated to clarify any potential effects on GWL.

Table 2. NDBI and NDVI indices for 2000, 2005, 2010, and 2015.

Index Name Name Formulation (Landsat 5)  Formulation (Landsat 8) References
Normalized Difference (NIR — Red) (NIR — Red)
NDVI Vegetation Index (NIR + Red) (NIR + Red) [45,46]
Normalized Difference (SWIR1 — NIR) (SWIRI — NIR)
NDBI built-up Index (SWIRT + NIR) (SWIRT + NIR) [47]

2.4. Statistical Analysis

We used Pearson’s correlation coefficient (r) to assess the relationship of GWL with
NDVI and NDBI indices, climatic parameters of annual temperature, and precipitation to
characterize the effect on GWL in the district through a set of independent pixel values
chosen from a classified image within the entire study area. The average values for the
three months (March to May) of the year 2000, 2005, 2010, and 2015 were calculated by
using the cell statistic tool in ArcGIS 10.5. The statistical relationship was implemented in
the Origin 2021 (9.8) software package.

2.5. Spatial Interpolation of Groundwater Level Data

Data for un-monitored locations were estimated by applying geo-statistical interpola-
tion methods to the available GWL data. Inverse Distance Weighting (IDW) is a widely
used interpolation method [48,49] for distributed point data of groundwater level mapping.
IDW is an interpolation method by which unknown values at certain locations can be
calculated by linearly combining values at known locations [50,51]. In this study, IDW was
applied to investigate the spatiotemporal variation of the average groundwater levels of
the year 2000, 2005, 2010 and 2015.
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The IDW involves the use of the following equation:

N
Z(sy) = LA Zs,) 3)

where (Sp) is the set of sampling points in the search neighborhood of (S;), and N is
the number of sample points around the prediction point to be used in the prediction
calculation process; A; is the weight of each sample point to be used in the prediction
calculation process, whose value decreases as the distance between the sample point and
the prediction point increases; Z(g) is the prediction at (Sy); and Z ) is the measured
value obtained at (S;). The interpolation was conducted using ArcGIS 10.5.

2.6. Mann—Kendall Test

The non-parametric Mann-Kendall test is widely used for detecting trends in meteo-
rology and hydrology [52]. The Mann—Kendall trend test [53,54] is based on the correlation
between the ranks and sequences of time series. The test statistic (R) of the annual average
GWL time series (x1,x2,x3 ... ., and xn) could be calculated using the Mann—Kendall test as:

Zk 1 k+1 Sign(xj — xk) 4)

where n is the number of data points, and xj and xk denote the data points of time j and
k, respectively:
+1, ifxj—xk>0
Sign(xj — xk) = 0, ifxj—xk=0 )
-1, ifxj—xk <10
Studies [53,54] have previously documented that the R statistic is approximately

normally distributed when n > 8, with the mean and the variance of test statistics VAR(R),
being estimated as:

VAR(R) = {Mn—12n+5 Zﬁll 1)(2t; +5)} (6)

where g denotes the tied group’s number, which is a set of sample data with similar values
and ti indicates the extent of ith ties. The estimated S and VAR(R) can be used to estimate
the test statistic Z when n is >10 [55]:

—s1 _ifS>0
VAR(R)’

Z={ 0, ifS=0 7)
S+l if§ <0
VAR(R)

The standardized Mann—Kendall statistic Z follows a standard normal distribution
with E (Z) = 0 and V (Z) = 1. Positive and negative values of Z specify the direction of
trends, with positive values indicating an increasing trend and vice versa.

2.7. Sen’s Slope Estimator

Sen’s slope [56] estimator was used to estimate the magnitude of change in GWL
(slope Q). The slope Q could be obtained from N pairs of data as:

Xk —Xj

Q = k_j,i:l,z,...N,k>j 8
where xi and x; represent the values of data at k and j times, respectively, and Q; is the

median slope.
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3. Results
3.1. Spatial Patterns of Vegetation and Built-Up Indices

The spatial distributions of NDVI for three months (March-May) over the study
period (2000, 2005, 2010, and 2015) are shown in (Figure 2). The results show that the
three-month average (March-May) vegetation cover over the 15 years decreased gradually.

The maximum NDVI values were higher in 2000 than those in 2015, with maximum average
NDVI values of 0.31, 0.29, 0.26, and 0.19 in 2000, 2005, 2010, and 2015, respectively.
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Figure 2. Spatial patterns of normalized difference vegetation index averaged over 3 months (March—
May), for 2000 (a), 2005 (b), 2010 (c), and 2015 (d).

The study confirmed that the central areas of the Faisalabad district exhibited low
NDVI values and that they increased when moving away from the central area of the
district. This was because of the increasing number of buildings and impervious surface
expansion. The vegetation cover declined with an increase in built-up area.

The spatial distribution of NDBI for the three-month average (March-May) is shown
in (Figure 3). The maximum NDBI values increased from 0.19 in 2000 to 0.51 in 2015. For
the years investigated (2000, 2005, 2010, and 2015), the average maximum values of NDBI
were —0.14, —0.10, —0.07, and —0.05, respectively.

The highest NDBI values were observed in the central part and northeast area of the
district, such as Lyallpur, Jinnah, Igbal Madina, and Chak Jhumra towns at each time-point
because of the densely built-up areas. These are all towns that continuously expanded into
their surroundings over time (Figure 3). The lowest NDBI values were observed in the
southwestern part of the district, such as Sammundri, Jaranwala, and Tandlianwala towns,
where most areas are cultivated farmland.
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Figure 3. Spatial patterns of normalized difference built-up index averaged over 3 months (March—
May), for 2000 (a), 2005 (b), 2010 (c), and 2015 (d).

3.2. Relationship of GWL with NDVI, NDBI, and Climate Patterns

The study revealed that most places in the center of the district exhibited low NDVI
values, while peripheral areas and places covered with vegetation had high NDVI values
(Figure 2). The result indicated that over time the vegetation in the study area has de-
creased while it has increased in built-up areas, which potentially caused GWL depletion.
Conversely, NDBI (Figure 3), was very high in the center of the district and continuously
increased over time. This indicates that NDBI is inversely related to GWL depletion since
groundwater decreased as the built-up index increased.

However, the study confirmed that the correlation coefficient between GWL and NDBI
was positive (Table 3), with a value of r = 0.69, indicating that urbanization has a substantial
impact on groundwater resources. The study also found a negative correlation between
GWL and NDVI (Table 3), with a coefficient of r = —0.65. This means that groundwater
depletion corresponds to a decrease in vegetation indices and an increase in built-up indices
(Figure 4).

Table 3. Statistics of land-use indices and their correlation with depth to water table (DWT).

Statistics of NDVI and NDBI Correlation with DWT
Minimum Maximum Mean Standard Deviation Pearson C.o I:relatlon Significance (p)
Coefficient
NDVI 0.06 0.46 0.26 0.08 0.99 p <0.05
NDBI —0.22 0.05 —0.08 0.06 —0.79 p <0.05

Hence, as the built-up area increased, which affected the penetration of rainwater
into land and also affected the air temperature, this led to the degradation of vegetation
and, as a result, affected the recharge of aquifers. The climatic data on temperature and
precipitation from 2000 to 2015 showed that the annual mean temperature and precipitation
gradually increased in the study area (Figure 5). The maximum annual temperature
increased from 24.53 °C in 2000 to 25.02 °C in 2015 (Table 4).This may be because of the
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rapid urbanization and the development of textile industries, which are characterized by
very high temperatures.
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Figure 5. Spatio-temporal trend analysis of average groundwater trends with temperature (A) and
precipitation (B) in 2000-2015.
Table 4. Statistics of climatic factors and their correlation with DWT.
Minimum Maximum Mean Standard Deviation Corre%a.tlon Significance (p)
Coefficient
Temperature (°C) 24.27 25.90 24.89 0.47 —0.18 p>0.05
Precipitation (mm) 217.11 642.42 418.62 106.41 —0.22 p>0.05

Figure 5 shows that a non-significantly negative correlation was observed between
temperature and rainfall with GWL, indicating that there was a negative relationship be-
tween precipitation and temperature with GWL. This is because the groundwater extraction
ratio is higher than the amount of penetration.

3.3. Spatial Characteristics of Groundwater Level

To examine the probable combined effects of land-use indices and climatic conditions
on the spatial and temporal variability of the annual average GWL in the years 2000, 2005,
2010, and 2015, 48 monitoring wells were selected in the Faisalabad district (Figure 6).
Generally, a clear distinction was observed between the northwest and central regions of
the Faisalabad district. Greater groundwater depletion and lower GWL were observed in
the central region (Figure 6). These findings might suggest that the central part of the study
area, where the population is highly dense, requires more water consumption. It could also
be deduced that groundwater depletion has been becoming progressively worse from 2000
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to 2015; the average GWL depleted by approximately 1.7 m. Groundwater depletion was
thus detected, with all fluctuations showing a similar downward trend.
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Figure 6. Spatial pattern of annual average groundwater level in 2000 (a), 2005 (b), 2010 (c), and 2015 (d).

3.4. Trends in Groundwater Level

This study investigated the trends in GWL in recent years 2000, 2005, 2010, and 2015
using the Mann—Kendall test and Sen’s slope estimator to assess the magnitude of change
in groundwater level. The results in (Figure 7) show that significant decreasing trends were
evident for GWL in the Faisalabad district.
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Figure 7. Spatial patterns of groundwater level were estimated using the Mann-Kendall test, showing
Sen’s slop (A), Z statistics (B), and the annual average data points (C) from 2000 to 2015.

The results revealed that the overall decreasing trend in GWL obtained from the
Sen’s slope in the Faisalabad district was 0.11 m/year. The spatial distribution of the
Mann-Kendall test and Sen’s slope of the GWL in most of the studied wells demonstrated
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a decreasing tendency (Figure 7A). The spatial distribution of the results of the Mann—
Kendall test and Sen’s slope of GWL is presented in (Figure 7B), and most wells showed a
significant positive trend (Z statistics) at confidence levels of 95% and 95%, respectively.
Furthermore, Z statistics of the Mann-Kendall test indicated that the identified decreasing
trends were statistically significant at different confidence intervals.

The results of the Mann—Kendall test and th