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Abstract: Climate change is one of the leading issues affecting river basins due to its direct impacts
on the cryosphere and hydrosphere. General circulation models (GCMs) are widely applied tools to
assess climate change but the coarse spatial resolution of GCMs limit their direct application for local
studies. This study selected five CMIP5 GCMs (CCSM4, HadCM3, GFDL-CM3, MRI-CGCM3 and
CanESM2) for performance evaluation ranked by Nash–Sutcliffe coefficient (NSE) and Kling–Gupta
Efficiency (KGE). CCSM4 and HadCM3 large-scale predictors were favored based on ranks (0.71 and
0.68, respectively) for statistical downscaling techniques to downscale the climatic indicators Tmax,
Tmin and precipitation. The performance of two downscaling techniques, Statistical Downscaling
Methods (SDSM) and Long Ashton Research Station Weather Generator (LARS-WG), were examined
using the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), bias, NSE and KGE with
weights (Wi) for the validation period. The results of statistical measures proved SDSM more efficient
(0.67) in comparison to the LARS-WG (0.51) for the validation time for the Jhelum River basin.
The findings revealed that the SDSM simulation for Tmax and Tmin are more comparable to the
reference data for the validation period except simulation of extreme events by precipitation. The
21st century climatic projections exhibited a significant rise in Tmax (2.37–4.66 ◦C), Tmin (2.47–4.52 ◦C)
and precipitation (7.4–11.54%) for RCP-4.5 and RCP-8.5, respectively. Overall, the results depicted
that winter and pre-monsoon seasons were potentially most affected in terms of warming and
precipitation, which has the potential to alter the cryosphere and runoff of the Jhelum River basin.

Keywords: CMIP5; GCMs; LARS-WG; RCPs; statistical downscaling; SDSM

1. Introduction

Climate change is becoming a leading issue for the 21st century due to its devastating
environmental and socioeconomic impacts. In the last few decades, the frequency and mag-
nitude of extreme climatic events increased subsequently in response to the anthropogenic
activities [1]. Anthropogenic activities, primarily socioeconomic (fossil fuels burning and
land use/land cover changes), have influenced the amount of greenhouse gases which
trigger climate change and extreme climate events. The occurrences of extreme events
are not uniform across the globe; some regions are more susceptible to climate change.
Particularly, Pakistan, has faced frequent heatwaves and floods in the last few years [2–4].
To cope with these extreme climatic events, the timely and effective monitoring of climate
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change is required to make policies for adaptation and mitigation. The impacts of climate
change on water resources and the hydrological cycle are of extreme importance because
all socioeconomic and natural systems ultimately depend on water resources. The climatic
changes can directly impact the availability and changing patterns of water resources such
as flooding and droughts [3,5], and some indirect impacts on food, agriculture and energy
production [6]. These climate change impacts may be worse for the transboundary river’s
basins such as Jhelum where management of the basin depends on different economic,
political, and social interest of the countries. Jhelum River basin is an integral part of the
Himalayas region where an increasing trend of temperature has been observed that in-
creases glacial melting and precipitation, and affects the availability of water resources [7,8].
Climatic change studies in the Jhelum River basin is still at its infancy due to a lack of
significant weather station data. To understand the impacts of climate change on the trans-
boundary Jhelum River basin of the Himalayas region, GCMs have been used to assess the
present and future climatic changes.

The GCMs provide projections of climate at a global scale for policymakers to adapt
better strategies to cope with climate change. GCMs represent significant outputs at
the global, hemispherical and continental scales by incorporating the complexity of the
global system, however, these global dynamics cannot be represented at the local sub-grid
level [9]. The efficiency of GCMs to project the future climate has been debated due to their
uncertainties during the validation processes at the regional scale. Despite improvements in
the GCMs to represent climate processes in better ways, these uncertainties cater to produce
better climate projection but still remain a subject of ample concern at the regional/local
level [10]. GCMs are widely used tools to assess the climate change impacts but their coarse
spatial resolution restricts direct use for the sustainable management at the regional or local
scale [11]. The downscaling techniques are essential to transform GCMs’ spatial resolution
from coarse to fine to allow their direct use at the local/regional scale [12]. The two
widely used downscaling methods, statistical downscaling and dynamical downscaling
applied to relate the GCMs’ coarse resolution and local climatic variables [13]. Dynamic
downscaling of GCMs are employed as a Regional Climate Model (RCM) at finer spatial
resolution (10–50 km) to simulate regional climate by incorporating local features such
as topography. Dynamic downscaling is an emerging and advanced method, but the
advanced computational requirement and heavy data storage limit their use at regional
scale [2]. Statistical downscaling is both a flexible and computationally efficient approach
to downscale GCMs and to use fine resolution data for a climate impact assessment at the
local/regional level [13]. Statistical downscaling has directly built a relationship between
local observation, climatic variables and GCMs’ output without requiring the physical
knowledge of the local region [14]. Therefore, statistical downscaling methods have been
extensively applied by the researchers to simulate climate projections at the local/regional
scale for the climate impact studies [15].

The main theme of statistical downscaling is to develop the relationship among
predictors (GCMs variables) and predictands (local scale variables) through statistical and
mathematical techniques such as linear and non-linear regression models, and weather
generators [13]. Among linear regression models, the Statistical Downscaling Method
(SDSM) is a renowned statistical model developed by [16] that is frequently used by research
to downscale GCMs [17]. SDSM is a hybrid model that employed the weather generators
and regression models to downscale climatic variables. It facilitates the downscaling of
long-term, low-cost, and rapid development of multiple daily weather parameters. The
weather generator’s technique, Long Ashton Research Station Weather Generator (LARS-
WG), is a well-known stochastic weather generator technique used to simulate the weather
data for a single weather station in the form of time series data for both present and future
climatic conditions. The long-term time series data of a climate variables group e.g., Tmax,
Tmin and precipitation are simulated for the single weather station using the LARS-WS
method [6].
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SDSM and LARS-WG have been widely used techniques by the researchers to down-
scale the GCMs’ data for local/regional basins [6,9]. These techniques have been used for
three GCMs (BCC-CSM1-1, CanESM2 and MICROC5) and future projections depicted that
mean annual temperature and precipitation for the future are on the rise [18]. These studies
demonstrated statistical downscaling methods as a vigorous tool to analyze the futuristic
climatic changes for the regional/local basin level. SDSM and LARS-WG have been used
for the better assessment of climate changes in the Jhelum River basin using different GCMs.
The study area is of key importance as it is part of the Indus basin and greater Himalayas
that have permafrost mountain tops. The climate changes ultimately trigger the melting of
snow/glacier at mountain tops. The recent study focused on examining the efficiency of
these statistical downscaling techniques SDSM as a regression model and LARS-WG as
weather generators for downscaling the Tmax, Tmin and precipitation data for the Jhelum
River basin. The basin is the transboundary and conflicted region located at the greater Hi-
malayas, therefore, future projections of Tmax, Tmin and precipitation will help to study the
dynamics of hydrometeorological changes in the basin. The study designed a methodology
to incorporate multiple GCMs for the basin based on local conditions. The selection of
GCMs helped to downscale the long-term time series climatic data for the 21st century by
using two different statistical downscaling techniques (SDSM and LARS-WG). The meteo-
rological station’s data of Jhelum River basin was applied to evaluate the accuracy of SDSM
and LARS-WG. After evaluation of the statistical downscaling techniques, climate change
projections were simulated for RCP 4.5 and RCP 8.5 using six GCMs for the 21st century.

2. Materials and Methods
2.1. Study Area

The Jhelum River is the major tributary of the Indus basin located in the north of
Pakistan. The basin is the transboundary conflicted region divided by the line of control
(LoC) between India and Pakistan. The geographical extent of the region exists between
73–75.63◦ E and 33–35.1◦ N, covering a total area of about 34,475 km2 (Figure 1). The
river is fed by the glacier/snow melting of the drains from the top of the Himalayas
mountains. The basin has a diverse altitudinal variation from 233 to 6178 m that covers the
permanent snow-covered area in the north. The river basin has unique geomorphology
and heterogeneous lithology with varied hydrological conditions which add up to the
basin being more susceptible to climate change [19]. The climate of the basin has diversity
in terms of spatio-temporal variability. The precipitation in the basin is dominant by the
two seasonal rainfall regimes, monsoons during summer and western disturbances during
winter. The details of the eleven meteorological stations of the basin are described in
Table 1.

Table 1. Detail of the Meteorological Stations.

Station
Name Station ID Lat (◦N) Long (◦E) Elevation

(m) amsl
Annual

Prec (mm)
Mean

Teemp(◦C)

Jhelum A 33.1 73.74 614 1255 22.2

Kotli B 33.5 73.89 1402 1423 17.5

Plandri C 33.72 73.71 1676 1346 16.2

Rawlakot D 33.87 73.68 2213 1780 12.8

Murree E 33.92 73.38 845 1188 19.4

Garidopata F 34.22 73.61 702 1388 20.6

Muzaffarabad G 34.38 73.47 996 1693 18.3

Balakot H 34.56 73.34 2363 1301 6.18

Naran I 34.91 73.64 2220 1288 7

Astore J 35.1 74.82 2168 448 6.56

Poonch K 33.91 74.03 815 1516 19.4
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Figure 1. Geographical location of the Jhelum River basin.

2.2. Data Description

The predictands of daily time series data for Tmax and Tmin and precipitation were
acquired from the Pakistan Meteorological Department (PMD) from 1976–2020. Few
stations have some missing values that were replaced by using interpolation technique [15].
The datasets for 1976–2005 of eleven meteorological stations were applied for the evaluation
of the GCMs and selection of the GCMs for the downscaling techniques. The thirty years
of data (1976–2005) were used as the baseline data for statistical downscaling and bias
correction of GCMs of the daily time series for the period 1976–2099.

The projected climate changes are highly uncertain and rely on technological innova-
tions and socioeconomic development to adapt clean technology against greenhouse gas
emissions in the atmosphere. The Coupled Model Intercomparison Project Phase 5 (CMIP5)
in accordance of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on
Climate Change (IPCC) used RCPs that provide a wider picture of future climate change
including a mitigation scenario (RCP-2.6), two medium stabilization scenarios (RCP-4.5 and
RCP-6.0) and an extreme scenario (RCP 8.5). The five GCMs of CMIP5 for one medium sta-
bilization scenario (RCP-4.5) and an extreme scenario (RCP-8.5) were downloaded (Table 2)
from the Royal Netherlands Meteorological Institute’s (KNMI) Climate Explorer [20].

Twenty different NCEP predictors applied for the screening purposes (Table 3) and
based on the relationship among the NCEP predictors and local basin predictands (Tmax
and Tmin and precipitation), following predictors selected for the SDSM.
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Table 2. Selected GCMs from CMIP5 used for downscaling techniques.

Modelling Centre GCM Resolution

National Center for Atmospheric Research USA CCSM4 0.9◦ × 1.25◦

UK Meteorological Office UK HadCM3 2.5◦ × 3.75◦

Geophysical Fluid Dynamics Laboratory USA GFDL-CM3 2◦ × 2.5◦

National Institute for Environmental Studies Japan MRI-CGCM3 1.12◦ × 1.12◦

Canadian Centre for Climate Modelling and Analysis
Canada CanESM2 2.79◦ × 2.8◦

Beijing Climate Center, China BCC-CSM1–1 2.81◦ × 2.81◦

Table 3. Description of NCEP predictor.

No. Predictor Code No. Predictor Code

1 Mean sea level pressure mslp 11 500 hPa meridional velocity p5_v

2 500 hPa relative humidity r500 12 Surface specific humidity Shum

3 850 hPa vorticity P8_z 13 Mean temperature at 2 m temp

4 Surface zonal velocity p_u 14 Surface airflow strength p_f

5 500 hPa vorticity p5_z 15 Surface meridional velocity p_v

6 Surface vorticity p_z 16 Surface wind direction p_th

7 500 hPa wind direction p5th 17 Surface divergence p_zh

8 850 hPa relative humidity r850 18 500 hPa airflow strength p5_f

9 Surface zonal velocity p_u 19 500 hPa zonal velocity p5_u

10 850 hPa meridional velocity p8_v 20 500 hPa geopotential height p500

2.3. Mann–Kendall Trend Model

The Mann–Kendall trend test (MK) is a non-parametric model applied to assess the
climatic trends in the long-term time series data [21]. MK trend model was applied on the
Tmax, Tmin and precipitation data for the baseline period using the following equations.

S =
n−1

∑
i = 1

n

∑
j = i+1

sgn
(
xj−xi

)
, (1)

where xi and xj are the orderly data records in the i and j years; n is the span of the time
series data.

where sgn
(

xj − xi
)
, =


+1,

(
xj − xi

)
> 0

0,
(

xj − xi
)

= 0
−1,

(
xj − xi

)
< 0

 (2)

Var (S) =
1
18

[
n(n− 1)(2n + 5)

q

∑
p = 1

tp
(
tp − 1

)(
2tp + 5

)]
(3)

In Equation (3), q is the number of tied groups whereas tp is the number of observations
in the pth group.

2.4. Screening of the GCMs

The five GCMs were further evaluated based on the accuracy assessment to select
two GCMs for the downscaling purposes because the study focused on the evaluation
of the downscaling processes SDSM and LARS-WG that already made it intensive. The
accuracy assessment of GCMs were carried out by using gridded Tmax, Tmin and precip-
itation datasets cross-validated against the observed station data sets [22]. The gridded
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Tmax, Tmin and precipitation are interpolated using the kriging geospatial technique. The
correspondence values of GCMs for climatic indicators (Tmax, Tmin and precipitation) at the
meteorological stations were used for the performance evaluation of GCMs. The indices
were based on the simulated GCMs’ values and the observed monthly time scale climatic
indicators (Tmax, Tmin and precipitation). The performance indicators between reference
datasets and GCMs modeled data of climatic indicators by using Pearson’s Correlation
Coefficient (r), Kling–Gupta Efficiency (KGE) [19] and Nash–Sutcliffe coefficient (NSE) [20].
The detailed formulas of r, KGE and NSE are as follows:

r =
∑(x− xi)(x′i − x′i)√
∑(xi − xi)

2(x′i − x′i)
2

(4)

KGE = 1−
√
(r− 1)2 + (β− 1)2 + (γ− 1)2 (5)

NSE = 1− ∑n
i = 1 (xo − xs)

2

∑n
i = 1 (xs − xo)

2 (6)

The description of ‘x’ are the climatic indicators (Tmax, Tmin and precipitation) while
subscripts s and o denoted the observed referenced values and simulated modeled values,
respectively. Equation (4)represents the Pearson’s correlation coefficient to measure the
linear relationship between observed and simulated values. Equation (5) describes the
KGE equation including values for г, β and γ while Equation (3) describes the NSE. The
resultant values were normalized and rescaled between 0 and 1 and then finally summed
up to generate rankings for each GCM.

2.5. Bias Correction

The bias correction method mean-based biased correction method (MB-BC) applied to
eliminate errors from the modeled simulated data. The MB-BC method utilized the mean
observed data and GCM simulation for the baseline period [21]. Following, the different
Equations (7) and (8) were used for the bias correction of temperature and precipitation to
avoid negative values for precipitation.

Tde−biased = Tsim(2020−2099) ×
(

Tsim(1976−2005) − Tobs(1976−2005)

)
(7)

Pde−biased = Psim(2020−2099) ×
(

Pobs(1976−2005)

Psim(1976−2005)

)
(8)

2.6. Statistical Downscaling Method

Two downscaling methods (SDSM and LARS-WG) were applied for the eleven me-
teorological stations of Jhelum River basin. The study aimed to compare the efficiency of
the downscaling schemes for the selected GCMs. The three predictands (Tmax, Tmin and
precipitation) were considered against the GCM predictors to analyze the climate changes
in the river basin for the 21st century.

2.6.1. SDSM

SDSM is the hybrid scheme, a combination of Stochastic Weather Generators (SWG)
and Multiple Linear Regression (MLR). MLR was used to develop the relationship between
the predictands (Tmax, Tmin and precipitation) and NCEP predictors (large-scale climate
data) by yielding regression parameters. These regression parameters were further used
for screening and calibration of NCEP predictors. After screening, the NCEP predictors
were established on the correlation analysis of large-scale predictors with the local scale
predictands. The screening of the GCM’s large-scale predictors is the key to success of the
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SDSM and yields through regression parameters were established on the correlation matrix
and absolute partial correlation [8].

The regression parameters, NCEP predictors and GCM data (CCSM4 and HadCM3)
were further used by the SWG scheme to simulate the time series data for the 21st cen-
tury [13]. The precipitation projections were challenging as compared to the temperature
due to its complex nature. The precipitation was modeled by using a conditional sub
model and SWG conditioned and applied on the predictors. The conditional sub model
was designed for the precipitation [22] as it occurs on each day t or not by using the
following equation:

Pt = ∝0 +
n

∑
i = 1

∝i u(i)
t + ∝t−1 wt−1 (9)

The Pt is the conditional processes for precipitation of each day t; u(i)
t is used to

normalized predictor, while ∝i is regression parameter; ∝t−1 and wt−1 are the conditional
possibilities for precipitation occurrence on day t − 1.

2.6.2. LARS-WG Model

LARS-WG is the stochastic weather generator that was applied for the simulation of
weather data for both the present and future climatic conditions. The synthetic weather
data were generated for three timelines: model calibration (1976–2005), model validation
(2006–2020) and scenario generation (2021–2099). For model calibration (1976–2005), the
daily observed series data for Tmax, Tmin and precipitation were applied to examine param-
eters for probability distribution. The observed weather data (Tmax, Tmin and precipitation)
were used in LARS-WG to generate time series of erratic length by selecting random values
from the stations’ distributions [9]. LARS-WG was based on the semi-empirical distribution
that used cumulative probability distribution function to approximate probability of dry
and wet series for Tmax and Tmin and dry and wet days for the precipitation [13]. The future
climate scenarios were generated for the period (2021–2099) for selected RCPs based on
the LARS-WG baseline parameters (1976–2005). In LARS-WG, the differences in current
and future climatic changes were incorporated by using bias correction [23], which is the
difference of the mean monthly changes of Tmax, Tmin and precipitation. The following
equations are used for ∆Ti and ∆Pi:

∆Ti = (T2021−2099 − T1976−2005) (10)

∆Pi =

(
P2021−2099

P1976−2005

)
(11)

The ∆Ti and ∆Pi are to represent long term changes of each month (1 ≤ i ≤ 12), for
temperature and precipitation, respectively.

2.6.3. SDSM and LARS-WG Performance Evaluations

SDSM and LARS-WG performance evaluations were assessed by using statistical
techniques. The statistical errors (Equations (12)–(14)); mean absolute error (MAE), root
mean square error (RMSE) and bias were used along with NSE and KGE. The NSE and KGE
are hypersensitive to extreme values and inconsiderable to the proportional and additive
differences that exist between the observation and model simulations. The equations for
NSE and KGI were described in the above section (Equations (4) and (5)). Following are
the equations for MAE, RMSE and bias:

MAE =
∑n

i = 1|Xo − Xs|
n

(12)

RMSE =

√
1
n

n

∑
i = 1

(Xo − Xs)
2 (13)
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Bias =
∑i = n

i−1 xo

n
− ∑i = n

i−1 xs

n
(14)

Xo and Xs are the observation and simulated data in the above equations by statistical
downscaling, respectively, and n is the number of all samples. Additionally, weight
technique is used for performance matrices incorporating all the measurements errors
to avoid discrepancies. More weight (0.5) was assigned to measurement errors (MAE,
RMSE and bias) while less weight (0.15) was applied to the NSE and KGE due to their
oversensitivity to extreme values [6]. Equation (15) is used to rank the SDSM and LARS-WG
model based on the weights assigned to the different measurement errors. The performance
evaluation of the downscaling methods were summarized by using summation of the
weights of each measurement error by using Equation (15).

Wi = WMAE
MAEi

MAEmax
+ WRMSE

RMSEi

RMSEmax
+ WBias

Biasi

Biasmax
+ WKGE

KGEi

KGEmax
+ WNSE

NSEi

NSEmax
(15)

where the i index represents to the downscaling model; Wi refers to the overall perfor-
mance measure.

3. Results and Discussion
3.1. Temperature and Precipitation Trend Analysis for the Baseline Period

The Mann–Kendall trend model was applied on the eleven meteorological stations of
the Jhelum River basin. In this test, the Kendall’s tau denotes the strength of the monotonic
trend where the value of Kendall’s tau ranges from −1 ≤ τ ≤ 1. The positive Kendall’s tau
indicated an increasing trend whereas the negative values denoted decreasing. Based on a
95% significance level, the p value is ≤ = 0.05 and indicated the presence of a significant
trend while p value ≥ = 0.05 verified that there was no trend in the time series data. The
results found that there were different trends for all stations. The significant trend for Tmax
depicted for Station D station have a p value less than 0.05, while the rest of the stations
showed no significant trend (Table 4).

Table 4. Mann–Kendall test results for Tmax for Meteorological stations.

Station ID Mann–Kendall
Statistics Kendall’s Tau Variance (S) p Value

(Two Tailed Test)

A 38 0.2000 950 0.2300

B −32 0.1684 950 0.3145

C 54 0.2842 950 0.0855

D 88 0.4632 950 0.0048

E 7 0.0369 949 0.8456

F 16 0.0842 950 0.6265

G 16 0.0842 950 0.6265

H −44 −0.1534 950 0.2845

I 24 0.187 950 0.0756

J 26 0.094 950 0.5265

K 33 0.048 950 0.2651

The Mann–Kendall trend for Tmin predicted in line trend results of Tmax. The metro-
logical stations D, I and another station, K, have shown a statistical trend. Other stations
represented an insignificant trend for the historical time series data (Table 5).

The Mann–Kendall statistics results for precipitation illustrated no significant trend
for most of the basin during the historical period. The three stations B, H and K depicted a
negative trend for precipitation (Table 6).
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Table 5. Mann–Kendall test results for Tmin for Meteorological stations.

Station ID Mann–Kendall
Statistics Kendall’s Tau Variance (S) p Value

(Two Tailed Test)

A 36 0.1895 950 0.2561

B 44 0.2316 950 0.1630

C −68 −0.3579 950 0.0297

D 93 0.4908 949 0.0028

E 36 0.1895 950 0.2561

F −20 −0.1053 950 0.5376

G 27 0.2571 408 0.1982

H −34 −0.197 860 0.2131

I 58 0.2876 950 0.0341

J 34 0.1951 950 0.261

K 45 0.3161 950 0.130

Table 6. Mann–Kendall test results for Precipitation for Meteorological stations.

Stations ID Mann–Kendall
Statistics Kendall’s Tau Variance (S) p Value

(Two Tailed Test)

A 14 0.0737 950 0.6732

B −20 −0.1053 950 0.5376

C 34 0.1789 950 0.2843

D 36 0.1895 950 0.2561

E 38 0.2000 950 0.2300

F 54 0.2842 950 0.0855

G −19 −0.1810 408 0.3731

H −24 −0.1245 450 0.4786

I 28 0.1345 950 0.2785

J 16 0.0973 950 0.5732

K −13 −0.131 950 0.3761

3.2. Selection of GCMs

It was difficult to perform statistical downscaling (SDSM and LARS-WG) for all
five GCMs for the river basin. Therefore, the selection of GCMs were made by using
Equations (4)–(6) and the best GCMs were chosen for further processing based on ranks
described in Table 7. The best proved GCMs were CCSM4 and HadCM3, in relationship to
the reference data (Tmax, Tmin and precipitation), with 0.71 and 0.68 ranking, respectively
(Table 7).

3.3. Screening Predictor Variable of SDSM

The twenty predictors (Table 2) analyzed by absolute partial correlation coefficient
(abs P) between the predictors and predictands are summarized in Figure 2. Among the
selected thirteen predictors, 500 hPa vorticity (p5_z) depicted the highest relationship for
Tmax, Tmin and precipitation while the predictor surface divergence (p_zh) showed the
weakest relationship for the predictands. The best predictor for Tmax was surface vorticity
(p_z) with highest value (0.59) and minimum relationship (0.22) of predictor with 500 hPa
geopotential height (p500). The best predictor for Tmin was 500 hPa vorticity (p5_z) and
for precipitation was 850 hPa relative humidity (r850). The weakest relationship of Tmin



Atmosphere 2022, 13, 898 10 of 16

existed with predictor mean temperature at 2 m (temp) and of precipitation with surface
divergence (p_zh). These thirteen predictors were further used in the downscaling process
and the selection criteria, based on the previous studies [24].

Table 7. Selection of GCMs.

GCM Models

Pearson’s Correlation
Coefficient (r) KGE NSE Rank

Tmax Tmin P Tmax Tmin P Tmax Tmin P

CCSM4 0.82 0.93 0.79 0.47 0.49 0.42 0.78 0.89 0.79 0.71

GFDL-CM3 0.49 0.56 0.61 0.39 0.34 0.21 0.51 0.68 0.57 0.48

HadCM3 0.72 0.83 0.77 0.47 0.39 0.32 0.88 0.79 0.91 0.68

MRI-CGCM3 0.59 0.67 0.51 0.29 0.33 0.27 0.61 0.58 0.64 0.49

CanESM2 0.62 0.57 0.49 0.29 0.34 0.37 0.71 0.67 0.64 0.52

BCC-CSM1–1 0.77 0.81 0.67 0.49 0.43 0.33 0.78 0.89 0.81 0.66

Figure 2. Selected predictors against predictands (Tmax, Tmin and precipitation).

3.4. Calibration and Validation of SDSM and LARS-WG

The GCMs’ (CCSM4 and HadCM3) data were downscaled by using statistical down-
scaling methods (SDSM and LARS-WG) during the calibration period (1976–2005). The
results of calibrations are plotted against the observed referenced data in Figure 3. The
calibration results depicted that SDSM yields more accurate and good quality time series
data for Tmax and Tmin against the observations for the calibration period. On the contrary,
LARS-WG predicted more accurate precipitation time series data. The precipitation is the
complex indicator and LARS-WG proved to be more accurate in recording extreme events
and precipitation distribution. The results of the calibration period simulated against
RCP-4.5 were more accurate in comparison to the RCP-8.5, as the later simulation were
more exaggerated from the former one (Figure 3). The precipitation for the summer months
i.e., June, July and August (JJA) were underestimated while for winter months, namely,
December, January and February (DJF) were overestimated. The simulated results of Tmax
for the calibration period were more accurate as compared to the Tmin which was a bit
exaggerated for the winter months (Figure 3).
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Figure 3. Calibration results of SDSM and LARS-WG models (1976–2005).

The statistical downscaling models (SDSM and LARS-WG) were validated for the
period of (2006–2020) by using statistical measures MAE, RMSE, bias, KGE and NSE. These
measures were weighed as discussed in the Materials and Methods section following
Equation (15). The values for the statistical errors were rescaled between 0–1 to avoid
negative values for the precipitation. The performance assessment of the models for the
validation for each of the climatic parameters are described in Table 8. The results of
statistical measures proved SDSM as more efficient (0.67) in comparison to the LARS-WG
(0.51) for the validation period for the Jhelum River basin. SDSM was further applied to
generate future climate changes for the 21st century due to its better performance. The
validation results for RCPs were in line with the calibration period and RCP-8.5 was
exaggerated in comparison to the RCP-4.5 (Table 8). The simulated indicator Tmax proved
best during the validation and precipitation was depicted the least accurate due to its
complex nature (Table 8).
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Table 8. Performance of the models during the validation period (2006–2020).

Models
MAE RMSE Bias KGE NSE

Tmax Tmin P Tmax Tmin P Tmax Tmin P Tmax Tmin P Tmax Tmin P

CCSM4 RCP-4.5

SDSM 0.72 0.93 0.79 0.5 0.69 0.42 0.78 0.89 0.79 0.68 0.53 0.48 0.61 0.72 0.42

LARS-WG 0.49 0.56 0.61 0.9 0.42 0.72 0.51 0.68 0.57 0.48 0.58 0.62 0.62 0.57 0.69

CCSM4 RCP-8.5

SDSM 0.52 0.65 0.67 0.4 0.92 0.51 0.73 0.53 0.65 0.42 0.59 0.61 0.44 0.57 0.59

LARS-WG 0.3 0.49 0.39 0.89 0.84 0.56 0.68 0.62 0.64 0.5 0.46 0.55 0.36 0.38 0.41

HadCM3 RCP-4.5

SDSM 0.79 0.77 0.51 0.41 0.43 0.32 0.61 0.58 0.64 0.49 0.5 0.54 0.59 0.67 0.58

LARS-WG 0.62 0.57 0.49 0.21 0.67 0.71 0.71 0.67 0.64 0.52 0.71 0.65 0.69 0.71 0.65

HadCM3 RCP-8.5

SDSM 0.64 0.81 0.51 0.53 0.81 0.53 0.65 0.57 0.71 0.67 0.64 0.52 0.73 0.69 0.55

LARS-WG 0.65 0.59 0.47 0.76 0.79 0.45 0.29 0.28 0.62 0.51 0.73 0.54 0.63 0.67 0.61

3.5. Future Climate Projections

The projected annual and seasonal changes for Tmax, Tmin and precipitation under both
RCPs (RCP-4.5 and RCP-8.5) for the mid-century (2021–2060) and end-century (2061–2099)
over the Jhelum River basin are summarized in Table 9. Overall, an annual increase in
temperature (Tmax and Tmin) was observed for both RCPs, however, the temperature rise
for RCP-8.5 (4.48 ◦C) was expected to be more significant than RCP-4.5 (2.52 ◦C) (Table 9).
The rate of increase in temperature and precipitation are in line with the previous studies
in the basin [25]. As the climate change triggered changes in the river basin by making it
hot and wet for the upcoming century, it can trigger other physical changes in the basin by
altering the balance of glaciation, deglaciation and flooding.

Table 9. Projected changes in mean Tmax (◦C), Tmin (◦C) and total precipitation (%) on annual and
seasonal bases under future scenarios (RCP-4.5 and RCP 8.5) for mid-century (2021–2060) and end-
century (2061–2099) in comparison to the baseline period (1976–2005) over the Jhelum River basin.

Season/
Period

RCP-4.5 RCP-8.5

CCSM4 HadCM3 Average CCSM4 HadCM3 Average

2021–2060 2061–2099 2021–2060 2061–2099 2021–2060 2061–2099 2021–2060 2061–2099 2021–2060 2061–2099 2021–2060 2061–2099

Tmax
◦C

Annual
(J–D) 1.36 2.46 1.22 2.62 1.29 2.54 2.34 4.61 2.41 4.71 2.37 4.66

Winter
(D–F) 1.46 2.59 1.35 2.76 1.4 2.67 2.59 4.8 2.62 4.71 2.6 4.75

Pre-
monsoon

(A–J)
1.5 2.54 1.26 2.86 1.38 2.7 2.34 4.71 2.51 4.58 2.42 4.64

Monsoon
(J–S) 1.12 2.1 1.06 2.24 1.09 2.17 2.09 4.34 2.1 4.56 2.09 4.45

Tmin
◦C

Annual
(J–D) 1.35 2.54 1.22 2.52 1.96 2.53 2.43 4.53 2.52 4.51 2.47 4.52

Winter
(D–F) 1.48 2.76 1.36 2.75 1.42 2.75 2.66 4.65 2.72 4.61 2.69 4.63

Pre-
monsoon

(A–J)
1.56 2.54 1.25 2.46 1.40 2.5 2.34 4.59 2.51 4.57 2.42 4.58

Monsoon
(J–S) 1.02 2.34 1.06 2.36 1.04 2.35 2.29 4.36 2.35 4.36 2.32 4.36

Precipitation (%)

Annual
(J–D) 6.77 12.62 6.17 12.51 6.47 12.56 7.41 10.58 7.4 12.5 7.4 11.54

Winter
(D–F) 5.49 13.56 4.84 14.9 5.1 14.23 6.51 11.68 7.45 14.5 6.98 13.09

Pre-
monsoon

(A–J)
6.52 11.45 5.78 10.89 6.15 11.17 7.53 9.53 6.65 10.4 7.09 9.96

Monsoon
(J–S) 8.3 12.87 7.89 11.76 8.09 12.3 8.21 10.55 8.1 12.6 8.1 11.57
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The 21st century projection for Tmax was about 2.54 ◦C–4.66 ◦C and for Tmin was about
2.53 ◦C–4.52 ◦C for RCP-4.5 and RCP-8.5 for the whole basin. The seasonal change in
projected Tmax and Tmin depicted the highest temperature changes for the winter season
(DJF) followed by the pre-monsoon (AMJ) period (Table 9) under both scenarios for mid-
century and end-century. This warming of the winter season may trigger the earliest
deglaciation period due to a rise in critical temperature by changing the hydrologic cycle.
The rise in critical temperature during the winter season may alter the precipitation form
from snow to rainfall, consequently shrinking the snow/glacier-covered area in the Jhelum
River basin that leads in a reduction of summer river discharge. In addition, the temperature
increase for the pre-monsoon period could generate early and rapid snow/glacier melting
from a high altitude/elevation of the basin that might cause shrinking of the glacier/snow-
covered area of the basin. The temperature increase for RCP-8.5 simulations were more
intense than RCP-4.5, which could generate more severe consequences for the cryosphere
and hydrosphere of the river basin.

The precipitation projection depicted an increase for both scenarios, but a slight
decrease was observed for RCP-8.5 in comparison to the RCP-4.5. The rise in precipitation
ranges were between 6–12% over the basin. The rate of increase in precipitation were more
considerable for the winter and monsoon season for both scenarios [25]. The minimum
increase in precipitation was observed for the pre-monsoon period. The spatial distribution
of Tmax, Tmin and precipitation was immensely significant due to the powerful impacts of
significant climatic patterns [26,27]. The spatial patterns for precipitation and temperature
for the mid- and end-century for both GCMs under climate scenarios are presented in
Figures 4 and 5. The spatial distribution of precipitation changes is extremely important
because the basin is influenced by two contrasting climatic systems: monsoon during
summer and westerlies circulation pattern during winters. The projected rise in winter
precipitation is due to the southwest side of the basin that is affected by the westerlies
while the rise in precipitation in the northeastern region of the basin is due to the monsoon
precipitation during the summer season (Figure 4). The precipitation spatial pattern is
heterogenous in the basin and, overall, depicted a rise for both RCPs for the 21st century.

Figure 4. Spatial projections of precipitation (mm/day): (a) CCSM4 RCP-4.5 2021–2060; (b) CCSM4
RCP-4.5 2061–2099; (c) CCSM4 RCP-8.5 2021–2060; (d) CCSM4 RCP-8.5 2061–2099; (e) HadCM3
RCP-4.5 2021–2060; (f) HadCM3 RCP-4.5 2061–2099; (g) HadCM3 RCP-8.5 2021–2060; (h) HadCM3
RCP-8.5 2061–2099.
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Figure 5. Spatial projections of average temperature (◦C): (a) CCSM4 RCP-4.5 2021–2060; (b) CCSM4
RCP-4.5 2061–2099; (c) CCSM4 RCP-8.5 2021–2060; (d) CCSM4 RCP-8.5 2061–2099; (e) HadCM3
RCP-4.5 2021–2060; (f) HadCM3 RCP-4.5 2061–2099; (g) HadCM3 RCP-8.5 2021–2060; (h) HadCM3
RCP-8.5 2061–2099.

The spatial distribution of temperature projections (Figure 5) depicted that the north-
eastern part of the basin was more affected from a rise in temperature for both GCMs under
climate scenarios. The southeastern part of the basin was noticed to be least impacted for
a rise in temperature for 21st century. The transition in class boundaries was observed,
especially in the northern part of the basin, which may cause deglaciation due to a rise in
temperature in the high altitudinal (4000–6000 masl) areas of the basin. The temperature
changes in the northern mountainous region might disturb the balance of the cryosphere
and hydrosphere by altering the permanent snow-covered area of the Jhelum River basin.
The temperature changes are considered a more significant variable because they trigger
changes in precipitation forms and snow/glacial reserves. The projected changes in pre-
cipitation and temperature may accelerate the surface runoff during the mid-century and
can introduce recurrent droughts in the end-century due to disturbance in the hydrosphere
and cryosphere. These changes in temperature and precipitation patterns from the mid-
(2021–2060) to the end-century (2061–2099) were more prominent and severe for RCP-8.5
than RCP 4.5.

4. Conclusions and Remarks

This study focused on the climatic changes for the transboundary mountainous region
by using CMIP5 GCMs and climate scenarios. The Jhelum River basin is the part of the
Himalayas mountains which are affluent in glaciers after polar regions and climate changes
can induce tremendous, unexpected variabilities in the basin. GCMs are the most reliable
mathematical tools to project climatic changes as it is a global phenomenon and linked
through permanent circulations such as atmospheric winds and oceanic currents. The GCM
projections for the local/regional basin may cause uncertainties due to the influence of the
micro/regional climate. To overcome the uncertainties, five GCMs from CMIP5 project
were selected for the study and two GCMs, CCSM4 and HadCM3, were chosen based on
the relationship with the reference observed data. The large-scale GCM predictors were
downscaled by using two statistical downscaling methods (SDSM and LARS-WG) that can
relate large-scale predictors with the local climatic variables (Tmax, Tmin and precipitation).

SDSM was proved to be a more effective and efficient method than LARS-WG in
downscaling the climatic variables for the validation period, except for a bit in improved
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performance of LARS-WG for precipitation due to its wet and dry spells. Both climatic
indicators of temperature and precipitation projected a rising trend for the 21st century, but
the change was more pronounced for RCP-8.5 than RCP-4.5, which depicted the storyline
of the climatic scenario. The seasonal changes depicted that the winter season was more
threatened and became warmer and wetter with time which may disturb the existing
snow cover. After winter, the pre-monsoon season predicted a rising trend for temperature
that may introduce early deglaciation by disturbing the balance of the cryosphere and
hydrosphere of the basin.

The study area is a transboundary conflicted region and has a limited number of
weather stations that affect the accuracy of the climatic projections. Multiple GCMs can be
used to check the most suitable location for the study area but it can make the research more
intensive as the focus is on the multiple task of first selecting the GCMs then downscaling
by using two comparable methods. The dynamic downscaling can also be used but it is
a very intensive and computer-oriented downscaling method difficult for the individual
researcher. Two climatic scenarios: one medium stabilization scenario RCP 4.5 and the
other, a high emission scenario RCP 8.5, were selected to project climatic changes. The
other two RCP-2.5 and RCP-6.0 can be used for future projections.
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