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Abstract: In Jordan, ~61% of total residential energy consumption is consumed by heating spaces
using portable kerosene (K) and liquified petroleum gas (LPG) heaters. Here, we evaluated the indoor
air quality (IAQ) versus the use of K and LPG heaters inside a test room reflecting the typical condi-
tions of Jordanian dwellings during the winter season. The experimental setup included particle size
distribution (diameter 0.01–25 µm) measurements, and we utilized a simple sectional indoor aerosol
model (SIAM) to estimate the emission rate and lifetime of the combustion products in the test room.
The particle number (PN) concentration during the LPG operation was 6 × 104–5.9 × 105 cm−3,
depending on the setting at minimum, medium, or maximum. The K heater operation increased
with the PN concentrations to a range of 4 × 105–8 × 105 cm−3. On average, the particle losses were
0.7–1.6 h−1 for micron particles (1–10 µm) and 0.8–0.9 h−1 for ultrafine particles (<0.1 µm). The emis-
sion rate from the LPG heater was 1.2 × 1010–2.8 × 1010 particles/s (6.6 × 106–8.0 × 106 particles/J),
and that for the K heater was about 4.4 × 1010 particles/s (1.9 × 107 particles/J). The results call
for the immediate need to apply interventions to improve the IAQ by turning to cleaner heating
processes indoors.

Keywords: portable heater; liquified petroleum gas; kerosene; emission rate; particulate matter

1. Introduction

In developed countries, kerosene has been a major household, commercial, and indus-
trial fuel since the mid-19th century. The introduction of electrification and the start of gas
fuel usage in the mid-20th century reduced the prevalence of household kerosene heating.
In response to rising electricity and central heating prices, portable household kerosene (K)
and liquified petroleum gas (LPG) heaters became popular in the early 1980s, because they
could be moved from room to another as needed. In developing countries, and limited
income communities, K and LPG are the predominant methods of household heating [1–4].
This is because they are cheap and their consumption can be controlled easily.

Usually, K and LPG heaters are operated in indoor spaces that have no chimney vents
(i.e., unvented). In cold conditions, these indoor environments have minimal ventilation.
Furthermore, in limited-income communities, the ventilation is usually natural and ineffi-
cient [5,6]. All these factors combined lead to scenarios of extreme exposure to fuel (K and
LPG) combustion products [2,7–15]. There has been growing evidence that such exposure is
associated with a range of health effects, such as lung cancer, chronic obstructive pulmonary
disease (COPD), low birth weight, cataracts, pneumonia, tuberculosis, eye irritation, and
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respiratory infections. [16–23]. This is a clear justification for the efforts to find alternative
energy sources, or to utilize new ways of fuel combustion more efficiently and reduce
air pollution [1,24–26]. This includes green sources of electricity. To some extent, K can
be instantly replaced by LPG, which has a higher combustion efficiency (i.e., complete
combustion) than K, resulting in less air pollution.

While in storage conditions, exposure to kerosene or natural gas aerosol or vapor
can be on a daily basis in households where K and LPG is used as a source of heating or
cooking. Furthermore, it is possible that uncombusted kerosene or natural gas components
are present during the heating process, and being emitted in the form of PM. Nevertheless,
while there is a large body of evidence about the toxicity of kerosene and natural gas vapor,
and about aerosol inhalation and dermal exposure to uncombusted fuel, less is known
about the toxicity of the combustion product mixture. This is complicated by the fact that
the nature and concentrations of the pollutants emitted can be strongly influenced by the
source of combustion. The combustion products of K and LPG can include a vast range
of air pollutants [4,7,19,27–36]. This includes particulate matter (PM), elemental carbon
(EC), organic carbon (OC), carbon monoxide and dioxide (CO and CO2), formaldehyde
(HCHO), polycyclic aromatic hydrocarbons (PAH), sulfur dioxide (SO2), nitrogen oxides
(NOx), water vapor (H2O), and oxidative ions (such as H+, SO4

2−, NH4
+). The amounts of

these products emitted into the atmosphere depend on whether the type of combustion is
complete or incomplete. Numerous studies have demonstrated that heater design (radiant
or convective) is influential on emissions of pollutants [5,37–45]. The grade of the fuel is
also qn important parameter affecting pollutant emissions from heaters.

There seems to have been little research conducted on the exposure implications of
household K and LPG combustion [5,40,44,46]. For example, the average CO level in mobile
homes using K heaters was in the range of tens mg/m3, which is approximately seven
times greater than in homes without K and LPG heaters [7,46,47]. Field measurements have
confirmed that kerosene heaters increase indoor concentrations of NO2, SO2, PM2.5, and
PM10 above ambient levels [4,46–49]. Although most of the investigations were performed
more than 20 years ago, more recent studies suggest that improvements in emissions have
not been significant [7,38,45].

In this study, we aimed to evaluate indoor air quality (IAQ) versus the use of K and
LPG heaters inside a test room reflecting the typical conditions of Jordanian dwellings
during the winter season. The IAQ was evaluated with portable aerosol monitors to
measure the particle number concentrations and size distribution within a wide particle
diameter range of 0.01–25 µm. We utilized a simple sectional indoor aerosol model (SIAM)
to estimate the emission rate and lifetime of the combustion products in the test room.

2. Materials and Methods
2.1. Measurement Setup
2.1.1. Instrumentation

The measurement setup consisted of two condensation particle counters (CPC, 3007-
2 and P-Trak 8525, Shoreview, TSI, MI, USA) and a handheld optical particle counter
(AeroTrak 9306-V2, Shoreview, TSI, MI, USA). The use of portable aerosol instruments
has been growing. Their performance was evaluated in the laboratory, in the field, or by
side-by-side comparison with more reliable instruments [50–56].

The CPC measured the total submicron particle number concentration, and it had
a cut-off size of 10 nm; the sampling flow rate was 0.1 lpm (inlet flow rate 0.7 lpm);
maximum detectable concentration was ~105 cm−3 with 20% accuracy. The P-Trak is
a similar particle counter; itscut-off size was 25 nm; and its maximum concentration was
5 × 105 cm−3. The CPC and the P-Trak were operated with a 1 s time resolution. The
AeroTrak measured size-specific particle number concentrations (optical diameter range
was 0.3–25 µm; 6-channels user-defined). The channels were set at 0.3, 0.5, 1, 2.5, 10, and
25 µm. The sampling time resolution was 30 s at a flow rate of 2.83 lpm.
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The measurement was performed inside an office (5 × 3 × 3 m3) on the second floor of
the Department of Physics (University of Jordan, Amman, Jordan). The room was naturally
ventilated, and included full furniture (desk, tables, chairs, window curtains, etc.). The
office was kept closed during the sampling, i.e., the window and door were closed during
the measurement session. The door was opened briefly (less than a couple of seconds), to
access the instruments for routine checkup. The instruments were set up on a table about
75 cm height from the floor, in the middle of the office.

2.1.2. Data Handling

The aerosol database was harmonized, and concentrations were averaged with 1 min
time resolution. The particle number size distribution was generated by merging the data
obtained from the above-mentioned three portable instruments. It was possible to have
eight channels:

• 10–25 nm (the difference between the CPC and the P-Trak)
• 25–300 nm (the difference between the P-Trak and the Aerotrak)
• Six channels taken directly from the AeroTrak (0.3–0.5 µm, 0.5–1 µm, 1–2.5 µm,

2.5–5 µm, 5–10 µm, and 10–25 µm)

The size-fractionated number concentrations were calculated by integrating (practical
summation) the lognormal particle number size distribution over the specified particle
diameter range:

PNDp1−Dp2 =

Dp2∫
Dp1

n0
N ·dlog10

(
Dp
)

(1)

where n0
N = dN/d log10(Dp) was the lognormal particle number size distribution. Simi-

larly, the size-fractionated mass concentrations were calculated by integrating the lognormal
particle mass size distribution:

PMDp1−Dp2 =

Dp2∫
Dp1

n0
M·dlog10

(
Dp
)

(2)

where n0
M = dM/d log10(Dp) was the lognormal particle mass size distribution. The

particles were assumed to be spherical, with unit density of (ρp = 1000 kg/m3). In other
words, the lognormal particle mass size distribution was calculated as follows:

n0
M =

dM
d log10(Dp)

=
dN

dlog
(

Dp
) π

6
D3

pρp = n0
N

π

6
D3

pρp (3)

2.2. Heating Combustion Scenarios

The heating combustion scenarios consisted of the operation of the most commonly
used natural gas and kerosene heaters in Jordan. Many different types of kerosene and
natural gas heaters are used in Jordan. They vary in shape, size, and combustion rate. The
heaters in this study were carefully selected to ensure the most commonly used type. The
model and image of the selected heaters were omitted from this study, to safeguard the
manufacturers’ privacy.

2.2.1. Natural Gas Heater

The natural gas heater (about 42 × 36 × 72 cm3) was a “3-burner portable cabinet
LPG indoor natural gas room heater”. It was made of a metal frame with a compartment
for a 15-kg gas bottle, which was installed from the rear. The front side consisted of the
burner panels, which provided three heat settings—minimum, medium, and maximum)—
providing heat output of 1.5, 2.9, and 4.2 kW, respectively. The corresponding heat con-
sumption was, respectively, 110, 210, and 305 g/h.

We conducted three test Scenarios, one for each heat setting (minimum, medium,
and maximum). The first Scenario started with one panel (minimum setting) turned
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on for about an hour, then turned off. The air inside the room was then allowed to
return to its background concentration level as it had been measured before starting the
heater. The second and third Scenarios were done in a similar way, but with the heat
set at medium (two panels) and maximum (three panels), respectively. These alternating
Scenarios allowed us to obtain an estimated value for the total particle loss, which was
used to correct for the emission rates during the two alternating Scenarios.

2.2.2. Kerosene Heater

There are many kerosene heater designs. They can be categorized into two main types,
based on how the fuel is burned: (1) wick heaters, that rely on the capillary transfer of fuel
(2) vapor-jet nozzle burners, that aerosolize the fuel using manual pumping or heat. The
vapor-jet nozzle burner is more efficient and hotter, but the nozzle can get clogged by soot,
whereas wick stoves are more commonly used because they are cheaper.

The selected kerosene heater was a middle-size type (about 33 × 33 × 48 cm3), that
had a circular shape. The tank (capacity ~5.5 L) was in the bottom, and the combustion
part was sheltered with a round mesh. A cover cap was installed on top of the round mesh.
The combustion part consisted of a wick with an adjustable setting to provide variable
heat output. The fuel consumption was about 0.25 L/h, providing a heat output of about
8000 BTU/h.

We conducted two test scenarios:

• Scenario 1: the heater was ignited inside the room, and allowed to reach its maximum
heat. It operated at its maximum heat for about one hour, and then it was taken out
of the room until the indoor aerosols concentrations returned to their pre-Scenario
1 level (this took 1.5 h).

• Scenario 2: the heater was ignited outdoors until it reached its maximum heat, and
was then taken inside the room to operate for about one hour. Then, it was taken back
outside, and the indoor aerosols concentrations were left to reach their pre-Scenario
2 background level.

As with the natural gas heater alternating scenarios, these alternating scenarios for the
kerosene heater enabled an estimated value to be obtained for the total particle loss, which
was used to correct for the emission rates during the two alternating scenarios.

2.3. Simple Indoor Aerosol Model

Indoor aerosols can be of an indoor or outdoor origin. However, in our combustion
scenarios of natural gas and kerosene heaters, the indoor aerosol sources were the primary
concern, being predominant. Eventually, the emitted aerosols were either deposited onto
surfaces or removed from the indoor air via air exchange with the outdoor air. Aerosol
particles also undergo complex processes through aerosol dynamics and chemical reactions
that change their state, concentration, and physical–chemical properties; however, we
ignored this, because the resolution of the measured particle number size distribution was
too coarse to observe the effects of coagulation, condensation, and chemical reactions.

The dynamic behavior of indoor aerosols can be described by the mass balance equa-
tion [57,58]. A simple indoor aerosol model (IAM) describes the dynamic behavior of
a single component (e.g., total aerosol particle number concentration) inside a single com-
partment (i.e., a single zone). A sectional indoor aerosol model (SIAM) describes the
dynamic behavior of the aerosol population by handling each particle size bin separately
or interactively with other size bins (i.e., in case of the evolution of aerosols via coagulation,
condensation, etc.).

Here, we applied a simplified form of the SIAM mass balance equation:

dIi
dt

= PiλOi − (λ + λd,i)Ii + Sin,i (4)

where t is the time; I and O are the indoor and outdoor concentrations, respectively, of the
aerosol particles; P is the penetration factor of the aerosol particles while being transported
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from the outdoor air into the indoor air; λ is the ventilation rate; λd is the deposition rate
of the aerosol particles onto the available indoor surfaces and Sin represents the emission
rates from an indoor source. The subscript i indicates that the mass balance equation is
valid for a certain particle size range (i.e., particle size channel).

Well-mixed indoor air is the assumption, for the mass balance equation to be valid [57].
Otherwise, spatial variation of indoor aerosol particle concentrations must be taken into
account by, for example, utilizing computational fluid dynamic (CFD) models. The assump-
tion was valid in our room, because its size was small enough for the heat convection from
the convection source to mix the indoor air efficiently. Therefore, the sampled aerosols were
assumed to be convected from the source to the instruments in less than one minute.

With further assumptions as outlined in the following two sections, we utilized the
simplified form of the SIAM to estimate the total particle loss inside the test room, and the
emission rates of the aerosols originated from the combustion process during the operation
of the heaters.

2.3.1. Particle Losses

The second term on the right-hand side of Equation (4) represents the total particle
loss via dry deposition and removal by ventilation. Immediately after an indoor source is
stopped, Equation (4) can be rewritten as:

dIi
dt

= −(λ + λd,i)Ii (5)

Here, it is assumed that the indoor aerosols from indoor origin are dominant (i.e.,
PλO << (λ + λd)I). As such, the decaying concentration can be fitted to Equation (5) to
obtain an estimate for the total particle losses: –(λ + λd,i).

2.3.2. Emission Rates

The third term on the right-hand side of Equation (4) represents the emission rate from
an indoor source. If this term is the dominant parameter (i.e., Sin << PλO – (λ + λd)I), then
we can rewrite Equation (4) as:

dIi
dt

= Sin,i (6)

However, Equation (6) might underestimate the emission rate if the particle loss term
(λ + λd) is comparable to the source term (Sin). Therefore, a more accurate approach is to
correct for the particle loss, which are estimated according to the previous section. As such,
Equation (6) becomes:

Sin,i =
dIi
dt

+
{
(λ + λd,i)Ii

}
emperical (7)

3. Results and Discussion
3.1. Total Particle Concentrations and Particle Size Distributions

The total particle number concentration during the natural gas operation clearly
reflected the burner settings at minimum, medium, and maximum (i.e., 1, 2, and 3 panels).
As an example, the total particle number concentrations are illustrated in Figure 1a for one
of the measurement sessions. During Scenario I (i.e., 1-panel operation), the concentrations
varied within the range 6 × 104–2.4 × 105 cm−3. It was expected that the concentration
level would double or triple during Scenario II (i.e., 2-panel operation) or Scenario III (i.e.,
3-panel operation), but their levels were within the ranges 1.6 × 105–3.5 × 105 cm−3 and
2.8 × 105–5.9 × 105 cm−3, respectively.
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Figure 1. Measurement session examples reflecting the particle number concentrations observed
during the operation of (a) natural gas heater scenarios and (b) kerosene heater scenarios. The
scenarios are explained in Section 2.2 above.

The two kerosene heater operation scenarios had concentrations higher (Figure 1b)
than those observed during the natural gas heater scenarios (Figure 1a). They ranged
between 4 × 105 cm−3 and 8 × 105 cm−3, with relatively higher concentrations during
Scenario I (i.e., igniting the heater inside the room) than during Scenario II (i.e., igniting the
heater outside the room).

The observed particle number size distribution during the natural gas heater operation
was characterized by high concentrations in the first two particle size channels, i.e., particles
with diameter ranges 10–25 nm and 25–300 nm (Figure 2). Interestingly, the increase
in concentrations was more pronounced in the first particle size channel, reflecting the
significant amount of secondary particle formation during the combustion of natural gas.
The more heat output (number of burner panels in operation), the more concentrations
measured in those two channels.

The observed particle number size distributions during the kerosene heater operation
were also characterized by high concentrations in the first two particle size channels
(Figure 3). When compared to the natural gas size distributions, kerosene heating was
accompanied with significantly high concentrations in the second particle size channel; this
indicated soot aerosols formation due to incomplete combustion of kerosene.
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The ratio between the particle number size distributions during the operation of
the heaters, and that of the background conditions, was about 2–3 orders of magnitude
(Figure 4).
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3.2. Particle Losses

The total loss of the aerosol particles was calculated for each particle size channel
(Figure 5). On average, it was 0.7–1.6 h−1 for micron particles (1–10 µm) and 0.8–0.9 h−1

for ultrafine particles (<0.1 µm). For particles within the diameter range 0.3–1 µm, the total
particle loss was 0.5–0.6 h−1, which is an upper estimate for the average ventilation rate of
the test room, because dry deposition was least in that particle size range. The U-shape of
the total particle losses agrees well with the theory of the three-layer deposition model [59].
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3.3. Emission Rates
3.3.1. The Natural Gas Heater Scenarios

Recalling the example illustrated in Figure 1a for the three scenarios of the natural
gas heater operation, we can postulate that the source term Sin,i was overriding the mass
balance equation during the initial stage, leading to the sudden increase in the indoor
particle concentrations. The indoor particle concentrations reached steady-state a short
time after the start of the scenario. During the increasing stage of the indoor concentrations,
the emission rate was estimated according to Equation (6).

Applying Equation (6) revealed that the emission rate during the first stage of the
scenarios emitted ultrafine particles with an average emission rate as high as 1.2 × 1010,
1.9 × 1010, and 2.8 × 1010 particles/s, respectively, during the first stage of each scenario.
The corresponding particle number and mass size distributions of the emission rates are
presented in Figure 6.
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During the steady-state condition, the sources were balanced by the sinks. Assuming
(λ + λd)I >> PλO, then Equation (4) reads:

[Sin,i ≈ (λ + λd,i)Ii]steady−state (8)
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and gives an average steady-state emission rate of 3.6× 109, 6.1× 109, and 10.1 × 109 particles/s,
respectively, for each scenario. These were apparently about one order of magnitude lower
than those observed during the initial stage of each scenario.

According to the manufacturer specifications for the natural gas heater, the heat output
was 1.5, 2.9, or 4.2 kW, and the heat consumption was 110, 210, and 305 g/h, respectively, for
the operation settings at one, two, or three panels during steady-state conditions. This led to
the conclusion that the average amount of particles emitted was 2.1 × 106–2.4 × 106 particles/J
or 1.1 × 1011–1.2 × 1011 particles/g during steady-state conditions. During heating-
up (i.e., the first stage of each scenario) this was 6.6 × 106–8.0 × 106 particles/J or
3.3 × 1011–3.9 × 1011 particles/g.

3.3.2. The Kerosene Heater Scenarios

As illustrated for the kerosene heater scenarios in Figure 1b, the source term Sin,i was
overriding the mass balance equation during the initial stage, leading to a sudden increase
in the indoor particle concentrations. The indoor particle concentrations reached steady-
state a very short time after the start of the scenario. During the increasing stage of the
indoor concentrations, the average emission rates were about 4.4 × 1010 particles/s for both
scenarios; the corresponding particle number and mass size distributions of the emission
rates are presented in Figure 7. During the steady-state stage, the average emission rates
were about 6.2 × 109 particles/s and 5.0 × 109 particles/s, respectively, for each scenario.
As a comparison with the emission rates obtained during the natural gas heater operation,
the emission rates observed during the kerosene heater operation were higher (Figure 8).
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According to the manufacturer specifications for the kerosene heater, the heat output
was 8000 BTU/h (=2.35 kW) and the heat consumption was 0.25 L/h during steady-state
conditions. This lad to the conclusion that the average amount of particles emitted was
2.1 × 106–2.6 × 106 particles/J or 0.9 × 1011–1.1 × 1011 particles/g (assuming density of
kerosene 0.8 g/cm3) during the steady-state conditions. During the heating-up stage, this
was about 1.9 × 107 particles/J or about 7.9 × 1011 particles/g.

Collectively, the results suggest that Jordanian indoor environments can be heavily
polluted during the winter when compared to the surrounding outdoor atmosphere, pri-
marily due to the ubiquity of indoor combustion associated with heating. Although K
and LPG heaters are widely used in the Eastern Mediterranean region, there have been
very few studies of their impact on the indoor air quality [48,60,61]. Jodeh, et al. [61]
performed a measurement campaign in Nablus City, which is an important urban and
industrial center in Palestine, to evaluate the IAQ at four roadsides versus four urban
homes in Nablus. Alsbou and Omari [60] focused on evaluating BTEX (benzene, toluene,
ethylbenzene, and xylene isomers) in indoor air environments during the winter, generated
by commonly used heaters in Jordan (diesel pot-bellied heater with chimney; electric heater;
unfluted gas heater; K heater; and wood pot-bellied heater with chimney) showing that
K heaters were the most polluting heater based on BTEX measurement. All these studies
concluded that the use of heating combustion significantly influences the IAQ, especially
in the winter season.

Hussein, et al., [48] evaluated the IAQ in Jordanian urban dwellings (eight dwellings
in Amman) during the winter versus the summer season, and reported that the use of K
and LPG heaters had a significant negative impact on the IAQ. The particle number (PN)
and particle mass (PM) size distributions varied with the different indoor emission sources,
and among the eight dwellings tested by Hussein, et al. [48] in Amman, Jordan. Natural
gas cooking and natural gas or kerosene heaters were associated with PN concentrations
in the order of 100,000 to 400,000 cm−3, and PM2.5 concentrations often in the range of
10–150 µg/m3. Indoor cooking (using LPG cookers) and combustion processes were also
found to increase concentrations of carbon monoxide, nitrogen dioxide, and volatile organic
compounds. In general, concentrations of indoor particles were lower during the summer
compared to the winter as a result of the use of combustion processes indoors during the
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winter and, at the same time, tightly closed indoor environments to store heat. Following
a quick check for the influence of indoor activities (e.g., combustion processes indoors) on
the IAQ indoors, Hussein, et al., [48] reported that the PN concentrations were generally
below 104 cm−3.

This study is important, because in Jordan about 61% of the total residential energy
consumption is consumed for heating spaces using portable unflued K and LPG stoves [25].
According to their representative survey of 106 low–middle income households in urban
Amman, Younis, et al., [25] showed that unflued K and LPG heaters were used for heating
spaces by around 39% and 89%, respectively. Almost 65% of them used more than one de-
vice for heating their dwelling. Around 50% of those households reported different health
problems related to asthma. Almost 75% of households lived in apartments constructed
with external envelopes of hollow cement blocks, leading to poor fabric performance. The
use of K and LPG as a heating source is not limited to households in Jordan; it is also
widely used in commercial and public service buildings such as unclassified hotels, some
clinics and health centers, and retail shops [62]. Recently, Ahmed, et al. [24] recommended
a set of interventions to improve the IAQ based on enhanced performance of the energy
consumption of residential buildings in Jordan: (1) orientation of the buildings for en-
hanced thermal benefit; (2) window-size-to-wall-area ratios for optimized ventilation, and
(3) insulation, for enhanced heat saving. If these factors were to be taken into account, the
need for combustion sources as a heat source could be reduced significantly.

4. Conclusions

About 61% of the total residential energy consumption in Jordan is consumed for
heating spaces using portable kerosene (K) and liquified petroleum gas (LPG) heaters.
Therefore, the indoor air quality (IAQ) is significantly affected by combustion processes
used for household heating during the winter.

In this study, we evaluated the IAQ versus the use of K and LPG heaters inside a test
room reflecting the typical conditions of Jordanian dwellings during the winter season.
The experimental set-up included measurement of the particle size distribution (diameter
0.01–25 µm) using portable monitors: two condensation particle counters (CPC, 3007-2
and P-Trak 8525) and a handheld optical particle counter (AeroTrak 9306-V2). We utilized
a simple sectional indoor aerosol model (SIAM) to estimate the emission rate and lifetime
of the combustion products in the test room.

On average, the particle loss was 0.7–1.6 h−1 for micron particles (1–10 µm) and
0.8–0.9 h−1 for ultrafine particles (<0.1 µm). An upper estimate for the ventilation rate
was taken from the loss rate of particles 0.3–1 µm in diameter, showing a value around
0.5–0.6 h−1, which is typical for a closed room with natural ventilation.

The LPG heater operated with three different settings: minimum (one panel), medium
(two panels), and maximum (three panels). The particle number (PN) concentration
during the LPG operation was within the range 6 × 104–5.9 × 105 cm−3, depending on
the setting (minimum, medium, or maximum). The emission rate from the LPG heater
was 1.2 × 1010–2.8 × 1010 particles/s (6.6 × 106–8.0 × 106 particles/J) during the heating-
up stage, and 3.6 × 109–10.1 × 109 particles/s (2.1 × 106–2.4 × 106) during the steady-
state stage.

During the K heater operation, the PN concentrations were within the range
4 × 105–8 × 105 cm−3. The corresponding emission rate was about 4.4 × 1010 particles/s
(1.9 × 107 particles/J) during the heating-up stage. During the steady-state operation, the
average emission rate was 5.0 × 109–6.2 × 109 particles/s (6.6 × 106–8.0 × 106 particles/J).

The results call for an immediate need to apply interventions to improve the IAQ by
turning to cleaner heating processes in Jordanian households.
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